

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 822

The Implementation and Various uses of Open Source

Software’s
Author Name: - Manpreet Kaur

Guide Name: - Narinder Kumar Sharma

College: - University College of Computer Applications

Author Phone No: - 8728883382

Email Id: - Kaurp5532@Gmail.Com

ABSTRACT

Open source is software developed by

uncoordinated but loosely collaborating

programmers, using freely distributed source

code and the communications infrastructure of

the Internet. Open source has a long history

rooted in the Hacker Ethic. The term open

source was adopted in large part because of

the ambiguous nature of free software. Various

categories of free and non-free software are

commonly referenced, some with

interchangeable meanings. Several licensing

agreements have therefore been developed to

formalize distribution terms. The Cathedral

and the Bazaar is the most frequently cited

description of the open-source development

methodology, however although the paper

identifies many mechanisms of successful open-

source development, it does not expose the

dynamics. There are literally hundreds, if not

thousands, of open-source projects currently in

existence.

The term Open Source is widely applied to

describe some software development

methodologies. This paper does not provide a

judgment on the open source approach, but

exposes the fact that simply stating that a

project is open source does not provide a

precise description of the approach used to

support the project. By taking a

multidisciplinary point of view, we propose a

collection of characteristics that are common,

as well as some that vary among open source

projects. The set of open source characteristics

we found can be used as a tick-list both for

analyzing and for setting up open source

projects. Our tick-list also provides a starting

point for understanding the many meanings of

the term open source.

Keywords: -

Open Source Software; Software Process;

Software Business Models; Information

Systems (IS) Development

INTRODUCTION

 1. INTRODUCATION
Open-source software (OSS) is computer

software with its source code made available

with a license in which the copyright holder

provides the rights to study change and

distribute the software to anyone and for any

purpose. Open-source software is very often

developed in a public, collaborative manner.

Open-source software is the most prominent

example of open-source development and often

compared to (technically defined) user-

generated content or (legally defined) open-

content movements.

A report by the Standish Group (from 2008)

states that adoption of open-source software

models has resulted in savings of about

$60 billion per year to consumers.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 823

Figure 1.1: A screenshot of Linux Mint running the Xfce desktop environment, Firefox, a calculator

program, the builtin calendar, Vim, GIMP, and VLC media player, all of which are open source

software.

1.1 DEFINITIONS

The Open Source Initiative's (OSI) definition is

recognized as the standard or de

facto definition. Eric S. Raymond and Bruce

Perens formed the organization in February

1998. With about 20 years of evidence from

case histories of closed and open development

already provided by the Internet, OSI

continued to present the "open source" case to

commercial businesses. They sought to bring a

higher profile to the practical benefits of freely

available source code, and wanted to bring

major software businesses and other high-tech

industries into open source.

OSI uses The Open Source Definition to

determine whether it considers a software

license open source. The definition was based

on the Debian Free Software Guidelines,

written and adapted primarily by

Perens. Perens did not base his writing on the

"four freedoms" of Free Software from the Free

Software Foundation (FSF), which were only

widely available later.

Figure 1.2: the logo of the Open

Source Initiative

1.1.1 PROLIFERATION OF THE TERM

While the term "open source" applied

originally only to the source code of software,

it is now being applied to many other areas

such as Open source ecology, a movement to

decentralize technologies so that any human

can use them. However, it is often misapplied

to other areas which have different and

competing principles, which overlap only

partially.

http://en.wikipedia.org/wiki/Linux_Mint
http://en.wikipedia.org/wiki/Xfce
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Firefox
http://en.wikipedia.org/wiki/Vim_(text_editor)
http://en.wikipedia.org/wiki/GIMP
http://en.wikipedia.org/wiki/VLC_media_player
http://en.wikipedia.org/wiki/Open_Source_Initiative
http://en.wikipedia.org/wiki/Eric_S._Raymond
http://en.wikipedia.org/wiki/The_Open_Source_Definition
http://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Free_Software_Foundation

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 824

1.1.2 OPEN SOFTWARE LICENSING

A license defines the rights and obligations that

a licensor grants to a licensee. Open source

licenses grant licensees the right to copy,

modify and redistribute source code (or

content). These licenses may also impose

obligations (e.g., modifications to the code that

are distributed must be made available in

source code form, an author attribution must be

placed in a program/ documentation using that

open source).

Authors initially derive a right to grant a

license to their work based on the legal theory

that upon creation of a work the author owns

the copyright in that work. What the

author/licensor is granting when they grant a

license to copy, modify and redistribute their

work is the right to use the author's copyrights.

The author still retains ownership of those

copyrights; the licensee simply is allowed to

use those rights, as granted in the license, so

long as they maintain the obligations of the

license. The author does have the option to

sell/assign, versus license, their exclusive right

to the copyrights to their work; whereupon the

new owner/assignee controls the copyrights.

The ownership of the copyright (the "rights") is

separate and distinct from the ownership of the

work (the "thing") – a person can own a copy

of a piece of code (or a copy of a book) without

the rights to copy, modify or redistribute copies

of it.

When an author contributes code to an open

source project (e.g., Apache.org) they do so

under an explicit license (e.g., the Apache

Contributor License Agreement) or an implicit

license (e.g., the open source license under

which the project is already licensing code).

Some open source projects do not take

contributed code under a license, but actually

require (joint) assignment of the author's

copyright in order to accept code contributions

into the project (e.g., OpenOffice.org and its

Joint Copyright Assignment agreement).

Placing code (or content) in the public domain

is a way of waiving an author's (or owner's)

copyrights in that work. No license is granted,

and none is needed, to copy, modify or

redistribute a work in the public domain.

Examples of free software license / open

source licenses include Apache License, BSD

license, GNU General Public License, GNU

Lesser General Public License, MIT License,

Eclipse Public License and Mozilla Public

License.

The proliferation of open-source licenses is one

of the few negative aspects of the open-source

movement because it is often difficult to

understand the legal implications of the

differences between licenses. With more than

180,000 open source projects available and its

more than 1400 unique licenses, the

complexity of deciding how to manage open-

source usage within "closed-source"

commercial enterprises have dramatically

increased. Some are home-grown while others

are modeled after mainstream FOSS licenses

such as Berkeley Software Distribution

("BSD"), Apache, MIT-style (Massachusetts

Institute of Technology), or GNU General

Public License ("GPL"). In view of this, open

source practitioners are starting to use

classification schemes in which FOSS licenses

are grouped (typically based on the existence

and obligations imposed by the copyleft

provision; the strength of the copyleft

provision).

An important legal milestone for the open

source / free software movement was passed in

2008, when the US federal appeals court ruled

that free software licenses definitely do set

legally binding conditions on the use of

copyrighted work, and they are therefore

enforceable under existing copyright law. As a

result, if end-users do violate the licensing

conditions, their license disappears, meaning

they are infringing copyright.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 825

1.1.3 CERTIFICATIONS

Certification can help to build higher user

confidence. Certification could be applied to

the simplest component that can be used by

developers to build the simplest module to a

whole software system. There have been

numerous institutions involving in this area of

the open source software including The

International Institute of Software Technology

/ United Nations University. UNU/IIST is a

non-profit research and education institution of

The United Nations. It is currently involved in

a project known as "The Global Desktop

Project". This project aims to build a desktop

interface that every end-user is able to

understand and interact with, thus crossing the

language and cultural barriers. It is drawing

huge attention from parties involved in areas

ranging from application development to

localization. Furthermore, this project will

improve developing nations' access to

information systems. UNU/IIST aims to

achieve this without any compromise in the

quality of the software It believes a global

standard can be maintained by introducing

certifications and is currently organizing

conferences in order to explore frontiers in the

field.

Alternatively, assurance models (such as

DO178B) have already solved the

"certification" approach for software. This

approach is tailorable and can be applied to

OSS, but only if the requisite planning and

execution, design, test and traceability artifacts

are generated.

1.2 OPEN-SOURCE SOFTWARE

DEVELOPMENT

1.2.1 DEVELOPMENT MODEL

In his 1997 essay The Cathedral and the

Bazaar, open-source evangelist Eric S.

Raymond suggests a model for developing

OSS known as the bazaar model. Raymond

likens the development of software by

traditional methodologies to building a

cathedral, "carefully crafted by individual

wizards or small bands of mages working in

splendid isolation". He suggests that all

software should be developed using the bazaar

style, which he described as "a great babbling

bazaar of differing agendas and approaches."

In the traditional model of development, which

he called the cathedral model; development

takes place in a centralized way. Roles are

clearly defined. Roles include people dedicated

to designing (the architects), people responsible

for managing the project, and people

responsible for implementation. Traditional

software engineering follows the cathedral

model. Fred P. Brooks in his book The

Mythical Man-Month advocates this model. He

goes further to say that in order to preserve the

architectural integrity of a system; the system

design should be done by as few architects as

possible.

The bazaar model, however, is different. In this

model, roles are not clearly defined. Gregorio

Robles suggests that software developed using

the bazaar model should exhibit the following

patterns:

Users should be treated as co-developers

The users are treated like co-developers and so

they should have access to the source code of

the software. Furthermore users are encouraged

to submit additions to the software, code fixes

for the software, bug reports, documentation

etc. Having more co-developers increases the

rate at which the software evolves. Lanus‟s law

states, "Given enough eyeballs all bugs are

shallow." This means that if many users view

the source code, they will eventually find all

bugs and suggest how to fix them. Note that

some users have advanced programming skills,

and furthermore, each user's machine provides

an additional testing environment. This new

testing environment offers that ability to find

and fix a new bug.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 826

Early releases

The first version of the software should be

released as early as possible so as to increase

one's chances of finding co-developers early.

Frequent integration

Code changes should be integrated (merged

into a shared code base) as often as possible so

as to avoid the overhead of fixing a large

number of bugs at the end of the project life

cycle. Some open source projects have nightly

builds where integration is done automatically

on a daily basis.

Several versions

There should be at least two versions of the

software. There should be a buggier version

with more features and a more stable version

with fewer features. The buggy version (also

called the development version) is for users

who want the immediate use of the latest

features, and are willing to accept the risk of

using code that is not yet thoroughly tested.

The users can then act as co-developers,

reporting bugs and providing bug fixes.

High modularization

The general structure of the software should be

modular allowing for parallel development on

independent components.

Dynamic decision making structure

There is a need for a decision making structure,

whether formal or informal, that makes

strategic decisions depending on changing user

requirements and other factors. Cf. Extreme

programming.

Data suggests, however, that OSS is not quite

as democratic as the bazaar model suggests. An

analysis of five billion bytes of free/open

source code by 31,999 developers shows that

74% of the code was written by the most active

10% of authors. The average number of authors

involved in a project was 5.1, with the median

at 2.

1.2.2 ADVANTAGES AND

DISADVANTAGES

Software experts and researchers on open

source software have identified several

advantages and disadvantages. The main

advantage for business is that open source is a

good way for business to achieve greater

penetration of the market. Companies that offer

open source software are able to establish an

industry standard and, thus, gain competitive

advantage. It has also helped build developer

loyalty as developers feel empowered and have

a sense of ownership of the end product.

Moreover, lower costs of marketing and

logistical services are needed for OSS. OSS

also helps companies keep abreast of

technology developments. It is a good tool to

promote a company's image, including its

commercial products. The OSS development

approach has helped produce reliable, high

quality software quickly and inexpensively.

The term "open source" was originally

intended to be trademark able; however, the

term was deemed too descriptive, so no

trademark exists. Besides, it offers the potential

for a more flexible technology and quicker

innovation. It is said to be more reliable since it

typically has thousands of independent

programmers testing and fixing bugs of the

software. It is flexible because modular

systems allow programmers to build custom

interfaces, or add new abilities to it and it is

innovative since open source programs are the

product of collaboration among a large number

of different programmers. The mix of divergent

perspectives, corporate objectives, and personal

goals speeds up innovation.

Moreover, free software can be developed in

accord with purely technical requirements. It

does not require thinking about commercial

pressure that often degrades the quality of the

software. Commercial pressures make

traditional software developers pay more

attention to customers' requirements than to

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 827

security requirements, since such features are

somewhat invisible to the customer.

It is sometimes said that the open source

development process may not be well defined

and the stages in the development process, such

as system testing and documentation may be

ignored. However this is only true for small

(mostly single programmer) projects. Larger,

successful projects do define and enforce at

least some rules as they need them to make the

teamwork possible. In the most complex

projects these rules may be as strict as

reviewing even minor change by two

independent developers.

Not all OSS initiatives have been successful,

for example SourceXchange and Eazel.

Software experts and researchers who are not

convinced by open source's ability to produce

quality systems identify the unclear process,

the late defect discovery and the lack of any

empirical evidence as the most important

problems (collected data concerning

productivity and quality). It is also difficult to

design a commercially sound business model

around the open source paradigm.

Consequently, only technical requirements may

be satisfied and not the ones of the market. In

terms of security, open source may allow

hackers to know about the weaknesses or

loopholes of the software more easily than

closed-source software. It depends on control

mechanisms in order to create effective

performance of autonomous agents who

participate in virtual organizations.

1.2.3 DEVELOPMENT TOOLS

In OSS development, the participants, who are

mostly volunteers, are distributed among

different geographic regions, so there is need

for tools to aid participants to collaborate in

source code development. Often, these tools

are also available as OSS.

Revision control systems such as Concurrent

Versions System (CVS) and later Subversion

(SVN) and Git, and the GNU Compiler

Collection are examples of tools that help

centrally manage the source code files and the

changes to those files for a software project.

These tools are themselves OSS.

Utilities that automate testing, compiling, and

bug reporting help preserve stability and

support of software projects that have

numerous developers but no managers, quality

controller, or technical support. Building

systems that report compilation errors among

different platforms include Tinderbox.

Commonly used bug trackers include Bugzilla

and GNATS.

Tools such as mailing lists, IRC, and instant

messaging provide means of Internet

communication between developers. The Web

is also a core feature of all of the above

systems. Some sites centralize all the features

of these tools as a software development

management system, including GNU

Savannah, Source Forge, and Bounty Source.

1.2.4 PROJECTS AND ORGANIZATIONS

Some of the "more prominent organizations"

involved in OSS development include the

Apache Software Foundation, creators of the

Apache web server; the Linux Foundation, a

nonprofit which as of 2012 employed Linus

Torvalds, the creator of the Linux operating

system kernel; the Eclipse Foundation, home of

the Eclipse software development platform; the

Debian Project, creators of the influential

Debian GNU/Linux distribution; the Mozilla

Foundation, home of the Firefox web browser;

and OW2, European-born community

developing open source middleware. New

organizations tend to have a more sophisticated

governance model and their membership is

often formed by legal entity members.

Several open source programs have become

defining entries in their space, including the

GIMP image editing system; Sun's Java

programming language and environment; the

MySQL database system; the FreeBSD UNIX

operating system; LibreOffice office

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 828

productivity suite; Basecamp for project

management and the Wireshark network packet

sniffer and protocol analyser.

Open Source development is often performed

"live and in public", using services provided

for free on the Internet, such as the Launch pad

and GitHub web sites.

Open Source Software Institute is a

membership-based, non-profit (501 (c)(6))

organization established in 2001 that promotes

the development and implementation of open

source software solutions within US Federal,

state and local government agencies. OSSI's

efforts have focused on promoting adoption of

open source software programs and policies

within Federal Government and Defense and

Homeland Security communities.

Open Source for America is a group created to

raise awareness in the U.S. Federal

Government about the benefits of open source

software. Their stated goals are to encourage

the government's use of open source software,

participation in open source software projects,

and incorporation of open source community

dynamics to increase government transparency.

Mil-OSS is a group dedicated to the

advancement of OSS use and creation in the

military.

PROBLEM FORMULATION

Before developing research we keep following

things in mind so that we can develop powerful

and quality research.

3.1 PROBLEM STATEMENT

Open-source software can be sold and used in

general commercially. Also, commercial open-

source applications are a part of the software

industry for some time. Despite that, except for

Red Hat and VA Software, no other pure open-

source company has gone public on the major

stock markets. While commercialization or

funding of open-source software projects is

possible, it is considered challenging.

Since several open-source licenses stipulate

that derived works must distribute their

intellectual property under an open-source

(copyleft) license, ISVs and VARs have to

develop new legal and technical mechanisms to

foster their commercial goals, as many

traditional mechanisms are not directly

applicable anymore.

Traditional business wisdom suggests that a

company's methods, assets, and intellectual

properties should remain concealed from

market competitors as long as possible to

maximize the profitable commercialization

time of a new product. [According to whom?]

Open-source software development minimizes

the effectiveness of this tactic; development of

the product is usually performed in view of the

public, allowing competing projects or clones

to incorporate new features or improvements as

soon as the public code repository is updated,

as permitted by most open-source licenses.

Also in the computer hardware domain, a

hardware producer who provides free and open

software drivers reveals the knowledge about

hardware implementation details to

competitors, who might use this knowledge to

catch up.

Therefore, there is considerable debate about

whether vendors can make a sustainable

business from an open-source strategy. In

terms of a traditional software company, this is

probably the wrong question to ask. Looking at

the landscape of open source applications,

many of the larger ones are sponsored (and

largely written) by system companies such as

IBM who may not have an objective of

software license revenues. Other software

companies, such as Oracle and Google, have

sponsored or delivered significant open-source

code bases. These firms' motivation tends to be

more strategic, in the sense that they are trying

to change the rules of a marketplace and reduce

the influence of vendors such as Microsoft.

Smaller vendors doing open-source work may

be less concerned with immediate revenue

growth than developing a large and loyal

community, which may be the basis of a

corporate valuation at merger time.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 829

A variety of open-source compatible business

approaches have gained prominence in recent

years [according to whom?]; notable examples

include dual licensing, software as a service,

not charging for the software but for services,

fermium, donation-based funding, and crowd

funding.

The underlying objective of these business

models is to harness the size and international

scope of the open-source community (typically

more than an order of magnitude larger than

what would be achieved with closed-source

models) for a sustainable commercial

venture.[citation needed] The vast majority of

commercial open-source companies experience

a conversion ratio (as measured by the

percentage of downloader‟s who buy

something) well below 1%, so low-cost and

highly-scalable marketing and sales functions

are key to these firms' profitability.

3.2 OBJECTIVE

Software development requires much

knowledge and work. I wonder why useful

software such as Mozilla and VideoLAN are

made free for download. Much free software

tends to be very good indeed. I'm not against

free software, though. I also benefit from them.

Free software is developed and given away

normally with an option to donate to help with

development costs.

Open source software is developed by groups

of people that contribute different features and

functions to an application or operating system.

Take Linux for example. There are many

versions of Linux that have been contributed

too over the years, but the underlying code is

very similar and uses a Linux Kernel as the

basis for the OS.

Free software model in the context of your

question liberates the revenue model from the

software product. You are no more just

charging for a product, although you can still

charge for the product. For example if shoe-

making was open sourced. You'd not just sell

shoes, but also the design blueprint for it. How

do you gain the upper hand? If you're the

person with original plan, everyone down the

line credits you. Buyers know who the original

person who knows the stuff is. If you're one

who bought the shoes and now designed your

derivative, they'd sell based on whats the

specialty of your derivative. You'd realize that

setting up shop would require capital and it‟s

somewhat true for open source software. All

major successful free software has the biggest

corporations FUNDING the labor towards

developing them. VideoLAN doesn't exactly

enjoy a prominent corp. backing, so their

development on Mac had/still has come down

to a crawl.

I would add an example of open source ERP.

OpenERP is a comprehensive suite of business

applications and has a modular approach which

allows customers to start with one application

and then adds other modules as they go. It‟s

license free, customizable and very easy to

use.

The product has gained a lot of popularity due

to its no license policy and the verity of

solutions it offers. To which its community can

contribute to develop and improve. To know

more about the line of solutions OpenERP

offers, follow this link: http://bit.ly/aUeAZu.

The main objective of this research is to study

the open sources and its applications used in

the industry.

RESEARCH METHODOLOGY

4.1 METHODOLOGY

The Cathedral and the Bazaar is the most

frequently cited description of the open-source

development methodology. Eric Raymond‟s

discussion of the Linux development MODEL

as applied to a small project is a useful

commentary. However, it should be noted that

although the paper identifies many mechanisms

of successful open-source development, it does

not expose the dynamics. In this sense, the

description is inherently weak.

http://bit.ly/aUeAZu.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 830

4.1.1 Plausible Promise

Raymond remarks that it would be difficult to

originate a project in bazaar mode. To build a

community, a program must first demonstrate

plausible promise. The implementation can be

crude or incomplete, but it must convince

others of its potential. This is given as a

necessary precondition of the bazaar, or open-

source, style.

Interestingly, many COMMERCIAL

SOFTWARE companies use this approach to

ship software products. Microsoft, for example,

consistently ships early versions of products

that are notoriously bug ridden. However as

long as a product can demonstrate plausible

promise, either by setting a standard or

uniquely satisfying a potential need, it is not

necessary for early versions to be particularly

strong.

Critics suggest that the effective utilization of

bazaar principles by closed source developers

implies ambiguity. Specifically that the

Cathedral and the Bazaar does not sufficiently

describe certain aspects of the open-source

development process.

4.1.2 Release Early, Release Often

Early and frequent releases are critical to open-

source development. Improvements in

functionality are incremental, allowing for

rapid evolution, and developers are "rewarded

by the sight of constant improvement in their

work."

Product evolution and incremental

development are not new. Mills initially

proposed that any software system should be

grown by incremental development (Mills,

1971). Brooks would later elaborate on this

concept, suggesting that developers should

grow rather than build software, adding more

functions to systems as they are run, used, and

tested (Brooks, 1986). Basili suggested the

concept of iterative enhancement in large-scale

software development (Basili and Turner,

1975), and Boehm proposed the spiral

MODEL, an evolutionary prototyping

approach incorporating risk management.

Let's have a look at the general diagram in a different way to see what is running

concurrently: Release Early, Release Often

Figure 4.1: General Diagram In A Different Way To See What Is Running Concurrently: Release

Early, Release Often

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 831

Open source relies on the Internet to noticeably

shorten the iterative cycle. Raymond notes that

"it wasn‟t unknown for [Linux] to release a new

kernel more than once a day." (Raymond,

1998a) Mechanisms for efficient distribution

and rapid feedback make this practice effective.

However, successful application of an

evolutionary approach is highly dependent on a

modular architecture. Weak modularity

compromises change impact and minimizes the

effectiveness of individual contributors. In this

respect, projects that do not encourage a

modular architecture may not be suitable for

open-source development. This contradicts

Raymond‟s underlying assertion, that open

source is a universally better approach.

4.1.3 Debugging is Parallelizable

Raymond emphasizes large-scale peer review as

the fundamental difference underlying the

cathedral and bazaar styles. The bazaar style

assumes that "given a large enough beta-tester

and co-developer base, almost every problem

will be characterized quickly and the fix

obvious to someone." Debugging requires less

coordination relative to development, and thus

is not subject "to the same quadratic complexity

and management costs that make adding

developers problematic." (Raymond, 1998a)

The basic premise is that more debuggers will

contribute to a shorter test cycle without

significant additional cost. In other words,

"more users find more bugs because adding

more users adds more ways of stressing the

program." (Raymond, 1998a) However, open

source is not a prerequisite for peer review. For

instance, various forms of peer review are

commonly employed in SOFTWARE

ENGINEERING. The question might then

become one of scale, but Microsoft practices

beta-testing on a scale matched only by larger

open-source projects.

Raymond continues, suggesting that debugging

is even more efficient when users are co-

developers, as is most often the case in open-

source projects. This is also subject to debate.

Raymond notes that each tester "approaches the

task of bug characterization with a slightly

different perceptual set and analytical toolkit, a

different angle on the problem." (Raymond,

1998a) This is characterized by the fact that

developers and end-users evaluate products in

very different ways. It therefore seems likely

that peer review under the bazaar MODEL

would be constrained by a disproportionate

number of co-developers.

XPERIMENTAL RESULT

5.1 OPEN SOURCE PROFILE

There are literally hundreds, if not thousands, of

open-source projects currently in existence.

These projects include operating systems,

programming languages, utilities, INTERNET

APPLICATIONS and many more. The

following projects are notable for their

influence, size, and success.

5.1.1 Linux

Linux is a Unix-like operating system that runs

on several platforms, including Intel processors,

Motorola MC68K, and DEC Alphas (SSC,

1998). It is a superset of the POSIX

specification, with SYS V and BSD extensions.

Linux began as a hobby project of Linux

Torvalds, a graduate student at the University of

Helsinki. The project was inspired by his

interest in Minix, a small UNIX system

developed primarily as an educational tool by

Andy Tannenbaum. Linux set out to create, in

his own words, "a better Minix than Minix." In

October 1991, Linux announced the first official

release of Linux, version 0.02. Since then,

hundreds of PROGRAMMERS have

contributed to the ongoing improvement of the

system.

Linux kernel development is largely coordinated

through the Linux-kernel mailing list. The list is

high volume, and currently includes over 200

active developers as well as many other

debuggers and testers. With the growth of the

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 832

project, Linux has relinquished control over

certain areas of the kernel, such as file systems

and networking, to other „trusted lieutenants."

However, Linux remains the final authority on

decisions related to kernel development. The

kernel is under the GPL, and official versions

are made available via FTP.

Arguably the most well known open-source

project, Linux has quietly gained popularity in

academia as well as among scientific

researchers and Internet service providers.

Recently, it has made commercial advances, and

is currently MARKETED as the only viable

alternative to Microsoft Windows NT. A study

by International Data Corporation reported that

Linux accounted for 17.2 % of server operating

system shipments in 1998, an increase of 212%

over the previous year (Shank land, 1998). The

Linux kernel is typically packaged with the

various other programs that comprise a UNIX

operating system. Several commercial

companies currently sell these packages as

Linux distributions.

5.1.2 Apache

Apache originated in early 1995 as a series of

enhancements to the then-popular

public DOMAIN HTTP daemon developed by

Rob McCool at the National Center for

Supercomputing Applications, or NCSA. Rob

McCool had left NCSA in mid 1994, and many

Webmasters had become frustrated with a lack

of further development. Some proceeded to

develop their own fixes and improvements. A

small group coordinated these changes in the

form of patches and made the first official

release of the Apache server in April 1995,

hence the name A PAtCHy server. (Laurie,

1999)

The Apache Group is currently a core group of

about 20 project contributors, who now focus

more on business issues and security problems.

The larger user COMMUNITY

MANAGES mainstream development Apache

operates as a meritocracy, in a format similar to

most open-source projects. Responsibility is

based on contribution, or "the more work you

have done, the more work you are allowed to

do." (The Apache Group, 1999) Development is

coordinated through the new-http mailing list,

and a voting process exists for conflict

resolution.

Apache has consistently ranked as the most

popular Web server on the Internet (Net craft,

1999). Currently, Apache dominates the market

and is more widely used than all other Web

servers combined. Industry leaders such as

DEC, UUNet, and Yahoo use Apache. Several

companies, including C2Net, distribute

commercial versions of Apache, EARNING

MONEY FOR support services and added

utilities.

5.1.3 Mozilla

Mozilla is an open-source deployment of

Netscape‟s popular Web browsing suite,

Netscape Communicator. Netscape‟s decision

was strongly influenced by a whitepaper written

by employee Frank Hecker (Hecker, 1998),

which referenced the Cathedral and the Bazaar.

In January 1998, Netscape announced that the

source code for the next generation of

Communicator would be made freely available.

The first developer release of the source code

was made in late March 1998.

Mozilla.org exists as a group within Netscape

responsible for coordinating development.

Mozilla has established an extensive web site,

which includes problem reporting and

version MANAGEMENT TOOLS. Discussion

forums are available through various

newsgroups and mailing lists. The project is

highly modular and consists of about 60 groups,

each responsible for a particular subsystem. All

code issued in March was released under the

NPL. New code can be released under the MPL

or any compatible license. Changes to the

original code are considered modifications and

are covered by the NPL.

http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html
http://chinese-school.netfirms.com/computer-article-open-source.html

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 833

Although it has benefited from widespread

media exposure, Mozilla has yet to result in a

production release. It is therefore difficult to

evaluate the commercial success of the project.

The recent merger of AOL and Netscape has

introduced ADDITIONAL uncertainty, but

many continue to feel confident that the project

will produce a next generation browser.

5.1.4 Perl and Python

Perl and Python are mature scripting languages

that have achieved considerable market success.

Originally developed in 1986 by Larry Wall,

Perl has become the language of choice for

system and network administration, as well as

CGI programming. Large commercial Web sites

such as Yahoo and Amazon make extensive use

of Perl to provide interactive services.

Perl, which stands for Practical Extraction and

Report Language, is maintained by a core group

of programmers via the perl5porters mailing

list. Larry Wall retains artistic control of the

language, but a well-defined extension

mechanism allows for the development of add-

on modules by independent programmers.

(Wall et al, 1996)

Python was developed by Guido van Rossum at

Centrum voor Wiskunde en Informatica, or

CWI, in Amsterdam. It is an interactive, object-

oriented language and includes interfaces to

various system calls and libraries, as well as to

several popular windowing systems. The Python

implementation is portable and runs on most

common platforms. (Lutz, 1996)

5.1.5 KDE and GNOME

KDE and GNOME are X11 based desktop

environments. KDE also includes an application

development framework and desktop office

suite. The application framework is based on

KOM/Open Parts technology, and leverages

open industry standards such as the object

request broker CORBA 2.0. The office suite,

KOffice, consists of a spreadsheet, a

presentation tool, an organizer, and an email and

news client.

GNOME, or the GNU Network Object Model

Environment, is similar in many ways to KDE.

However GNOME uses the gtk+ toolkit, which

is also open source, whereas KDE uses Qt, a

foundation library from Troll Tech that was

commercially licensed until recently.

KDE and GNOME are interesting because they

represent the varying commitments in the open

source community to commercial markets and

the free software philosophy. The KDE group

and Troll Tech initially tried to incorporate Qt, a

proprietary product, into the Linux

infrastructure. This was met with mixed

reactions. The prospect of a graphical desktop

for Linux was so attractive that some were

willing to overlook the contradictory nature of

the project. However, others rejected KDE and

instead supported GNOME, which was initiated

as a fully open source competitor. Eventually,

Troll Tech realized Qt would not be successful

in the Linux market without a change in license,

and a new agreement was released, defusing the

conflict. GNOME continues, aiming to best

KDE in terms of functionality rather than

philosophy (Perens, 1999).

5.1.6 Other Open Sources

Other lesser known, but equally interesting,

projects include GIMP, FreeBuilder, Samba,

and Kaffe. Each of these projects follows the

open source methodology, originating under the

direction of an individual or small group and

rapidly extending to a larger development

community.

GIMP, or the GNU Image Manipulation

Program, can be used for tasks such as photo

retouching, image composition and image

authoring. GIMP was written by Peter Mattis

and Spencer Kimball, and released under the

GPL. FreeBuilder is a visual programming

environment based on Java. It includes an

integrated text editor, debugger, and compiler.

Samba allows UNIX systems to act as file and

http://chinese-school.netfirms.com/computer-article-open-source.html

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 834

print servers on Microsoft Windows networks.

Development is headed by Andrew Tridgell.

Kaffe is a cleanroom implementation of the Java

virtual machine and class libraries.

5.2 LIST OF COMMERCIAL OPEN-

SOURCE APPLICATIONS AND

SERVICES

Much of the Internet runs on open-source

software tools and utilities such as Linux,

Apache, MySQL, and PHP, known as the

LAMP stack for web servers. Using open source

appeals to software developers for three main

reasons: low or no cost, access to source code

they can tailor themselves, and a shared

community that ensures a generally robust code

base, with quick fixes for any new issues that

surface.

Despite doing much business in proprietary

software, some companies like Oracle

Corporation and IBM participated in developing

free and open-source software to deter from

monopolies and take a portion of market share

for them. See Commercial open-source

applications for the list of current commercial

open-source offerings. Netscape's actions were

an example of this, and thus Mozilla Firefox has

become more popular, getting market share

from Internet Explorer.

 Active Agenda is offered for free, but

requires all extensions to be shared back with

the world community. The project sells a

"Non-Reciprocal Private License" to anyone

interested in keeping module extensions

private.

 Adobe Systems offers Flex for free, while

selling the Flash Builder IDE.

 Apple Inc. offers Darwin for free, while

selling Mac OS X.

 Asterisk (PBX), digital electronics hardware

controlled by open-source software

 Codeweavers sells CrossOver commercially,

deriving it from the free Wine project they

also back.

 Canonical Ltd. offers Ubuntu for free, while

they sell commercial technical support

contracts.

 Cloudera's Apache Hadoop-based software.

 Francisco Burzi offers PHP-Nuke for free,

but the latest version is offered commercially.

 DaDaBIK, although following a

donationware approach, requires a small,

minimum donation fee, to be downloaded.

 IBM proprietary Linux software, where IBM

delivers database software, middleware and

other software.

 Ingres is offered for free, but services &

support are offered as part of a subscription.

The Ingres Icebreaker Appliance is also

offered as a commercial database appliance.

 Id Software releases their legacy game

engines under the GPL, while retaining

proprietary ownership on their latest

incarnation.

 Mozilla Foundation has a partnership with

Google and other companies which provides

revenue for inclusion of search engines in

Mozilla Firefox.

 MySQL is offered for free, but with the

enterprise version includes support and

additional features.

 Novell offers openSUSE for free through the

openSUSE Project, while selling SUSE

Linux Enterprise (SLE).

 OpenSearchServer offers its community

edition on SourceForge and an enterprise

edition with professional services to

enterprises with a paid license

 Oracle - VirtualBox is free and open-source

to anyone, but the VirtualBox extension pack

can only be used for free at home, therefore

requiring payment for business

 Red Hat sells support subscriptions for Red

Hat Enterprise Linux (RHEL) which is an

enterprise distribution periodically forked

from the community-developed Fedora.

 Sourcefire offers Snort for free, while selling

Sourcefire 3D.

 Sun Microsystems (acquired by Oracle in

2010) once offered OpenOffice.org for free,

while selling StarOffice.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 835

 Untangle provides its Lite Package for free,

while selling its Standard and Premium

Packages by subscription.

 Zend Technologies offers Zend Server CE

and Zend Framework for free, but sells Zend

Server with support and additional features.

5.3 OPEN SOURCE DEVELOPMENT

LABS

Open Source Development Labs (OSDL) was a

non-profit organization supported by a global

consortium tasked to "accelerate the deployment

of Linux for enterprise computing." Founded in

2000, its goals included "to be the recognized

center-of-gravity for the Linux industry."

On January 22, 2007, OSDL and the Free

Standards Group merged to form The Linux

Foundation, narrowing their respective focuses

to that of promoting Linux in competition with

Microsoft Windows.

5.3.1 ACTIVITIES

OSDL sponsored key industry projects,

including industry initiatives to enhance Linux

for use in corporate data centers, in

telecommunications networks, and on desktop

computers. It also:

 Provided hardware resources to the free

software community and the open source

community

 Tested and reported on open source

software.

 Employed a number of Linux

developers.

Its employees included Linus Torvalds, the first

OSDL fellow, and Bryce Harrington. In 2005,

Andrew "Tridge" Tridgell was the second

OSDL fellow for a year.

It had data centers in Beaverton, Oregon, United

States and Yokohama, Japan.

OSDL had investment backers that included: 7

funders of Computer Associates, Fujitsu,

Hitachi, Ltd., Hewlett-Packard, IBM, Intel

Corporation, Nippon Electric Corporation, as

well as a large collection of independent

software vendors, end-user companies and

educational institutions. A steering committee

composed of representatives from the

investment backers directed OSDL, which also

had a significant staff of its own.

5.3.2 WORKING GROUPS

OSDL had established four Working Groups

since 2002:

 Mobile Linux Initiative (MLI)

 Carrier Grade Linux (CGL)

 Data Center Linux (DCL)

 Desktop Linux (DTL)

5.4 THE GROWTH OF OPEN

SOURCE

Open source software is having a major impact

on the software industry and its production

processes. Many software products today

contain at least some open source software

components. Some commercial products are

completely open source software. In some

markets, for example, web servers, open source

software hold a dominant market share.

Open source software today has a strong

presence in industry and government. Walli et

al. observe: “Organizations are saving millions

of dollars on IT by using open source software.

In 2004, open source software saved large

companies (with annual revenue of over $1

billion) an average of $3.3 million. Medium-

sized companies (between $50 million and $1

billion in annual revenue) saved an average $1.1

million. Firms with revenues under $50 million

saved an average $520,000.”

Commercially, the significance and growth of

open source is measured in terms of revenue

generated from it. Lawton and Notarfonzo state

that packaged open source applications

generated revenues of $1.8 billion in 2006. The

software division of the Software & Information

Industry Association estimates that total

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 836

packaged software revenues were $235 billion

in 2006. Thus, open source revenue, while still

small compared to the overall market (~0.7%) is

not trivial any longer.

However, open source software today is part of

many proprietary (closed) source products, and

measuring its growth solely by packaged

software revenue is likely to underestimate its

size and growth by a wide margin. To measure

the growth of open source we need to look at the

total growth of open source projects and their

source code.

Several studies have been undertaken to

measure the growth and evolution of individual

open source software projects. Most of these

studies are exemplary, focusing on a few

selected projects only. The exception is Koch‟s

work, which uses a large sample (>4000

projects) to determine overall growth patterns in

open source projects, concluding that

polynomial growth patterns provide good

models for these projects. Such work is mostly

motivated by trying to understand how

individual open source projects grow and

evolve.

The work presented in this paper, in contrast,

analyzes the overall growth of open source,

aggregating data from more than 5000 active

and popular open source projects to determine

the total growth of source code and number of

projects. Assuming a positive correlation

between work spent on open source, its total

growth in terms of code and number of projects,

and the revenue generated from it,

understanding the overall growth of open source

will give us a better indication of how

significant a role open source will play in the

future.

Understanding overall open source growth helps

more easily answer questions about, for

example, future product structures (how much

code of an application is likely to be open

source code?), labor economics (how much and

which open source skills does a company

need?), and revenue (what percentage of the

software market‟s revenue will come from open

source?).

The work presented in this paper shows that the

total amount of open source code and the total

number of projects is growing exponentially.

Assuming a base of 0.7% of the market‟s

revenue, exponential growth is a strong

indicator that open source will be of

significantly increasing commercial importance.

The remainder of this paper discusses our study

and validates the hypothesis of exponential

growth of open source.

However, we cannot unambiguously identify

situations where a developer adds redundant

source code to the code base. Copy and paste is

a common practice in software development,

independently of whether it is internal, external,

planned or opportunistic. To deal with this

issue, we adopt two approaches.

1. In the first approach we ignore the copy and

paste problem and analyze the source lines

of code added. The argument is that copy

and paste is a reality of software

development and that the copied code is part

of the project. Hence, copy and paste simply

needs to be accepted.

2. In the second approach we find the average

and the standard deviation for the code

added over time. We ignore all commits

where lines of code added is greater than

average code added per commit plus three

times the standard deviation. The heuristic‟s

assumption is that by not considering such

large commits we ignore all commits based

on copy and paste.

An analysis of average code contribution size in

commits provides a cut-off value of 3060 SLoC

that we use for the heuristic. This second

approach is conservative in that we ignore not

only copy and paste but also commits

containing new code added. So we err on the

lower side of total open source contributions.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 837

We employ these two approaches to get an

upper and a lower bound for the growth in

source lines of code and number of projects. We

can therefore say that properties like the

exponential growth observed in both the upper

and lower bound curve apply to the real curve as

well.

5.5 ANALYSIS AND RESULTS

We first analyze growth rate and total growth in

open source software code and then analyze

growth rate and total growth in open source

software projects.

5.5.1 Growth in source code

Figures 1 and 2 show plots that represent the

growth in source lines of code added using

Approach 1 and 2 respectively. The Y-axis

shows the number of lines of code added each

month and the X-axis shows the time. Each data

point on the plot represents the total number of

lines of code added during that month. The time

frame is 1995 through 2006 for all projects. We

can see an upward trend in the amount of code

added over time. Both Approach 1 and 2 show a

similar pattern of growth.

Figure5.1: Graph of source lines of code added

[millions] (Approach 1)

Figure 5.2: Graph of source lines of code added

[millions] (Approach 2)

Table shows models for the two plots. In both

cases, the best fitting model is an exponential

curve with an R-square value of about 0.9,

giving us confidence in the validity of the claim

that the amount of code added is growing

exponentially.

Table 5.1: Model of source lines of code added

Figure 3 shows the total number of lines of open

source code over time. Table 2 shows the

statistical models for the two approaches. The

doubling time for Approach 1 is 12.5 months,

and the doubling time for Approach 2 is 14.9

months. We observe that the total code in

Approach 2 is lower than in Approach 1 but

follows a similar trend. This behavior is

expected as we eliminated all large commits in

the second approach to exclude copy and paste

contributions.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 838

Figure 5.3: Graph of total source lines of code

[millions] (both approaches)

Table 5.2: Model of total source lines of code

5.5.2 GROWTH IN OPEN SOURCE

Figure 4 shows the number of projects added

over time and Table 3 shows the model and its

fit with the data. For each project, there is a first

occurrence of a project action (for example, the

initial commit action), and that point of time is

considered the birth date of the project. This is

the point of time when the project is counted as

added to the overall set of projects.

Figure 5.4: Graph of number of open source

projects added

Table 5.3: Model of number of open source

projects added

Large distributions like Debian are counted as

one project. Popular projects such as GNU

Emacs are counted as projects of their own,

little known or obsolete packages such as the

Zoo archive utility are ignored. Many of the

projects that were included in a Debian

distribution around 1998 are not popular enough

today (as stand-alone projects) to be included in

our copy of the Ohloh database. And again, we

get the best fit for the resulting curve for an

exponential model with an R-square value of

0.88. Figure 5 then shows the total number of

projects and Table 4 shows the corresponding

model and its fit with the data. Again, we get the

best fit for an exponential model with an R-

square value of 0.96. The doubling time is 13.9

months.

Figure 5.5: Graph of total number of open

source projects

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 839

Table 5.4: Model of total number of open source

projects

5.5.3 REVIEW OF FINDINGS

This section shows the growth of source code in

open source projects as well as the growth of

open source projects itself. We consistently get

the best fit for the data using exponential

models. The doubling time based on the

exponential models is about 14 months for both

the total amount of source code and the total

number of projects. It should be noted that if we

were to break up the data sets into separate time

periods, we might find better fits for other

models than the exponential model. In future

work we will analyze the overall growth in

distinct phases, each of which is best explained

by a separate growth model.

We discuss the size and frequency of code

contributions to open source projects. We can

use those results to further increase our

confidence in the results presented above.

Specifically, the lines of code added can be

assumed equal to the product of the average size

of a commit in terms of source lines of code and

the commit frequency. Our analysis shows that

the average commit size is almost constant

while the commit frequency (number of

commits per week) increases exponentially

between Jan 1995 to Dec 2006. This verifies our

findings about the exponential growth in open

source.

CONCLUSION AND FUTURE

WORK

This chapter is based upon the conclusion of

what we have done so far and how the system

can be further enhanced with an increase in

requirements.

6.1 CONCLUSION
Open source is software developed by

uncoordinated but loosely collaborating

programmers, using freely distributed source

code and the communications infrastructure of

the Internet. Open source is based on the

philosophy of free software. However, open

source extends this ideology slightly to present a

more commercial approach that includes both a

business model and development methodology.

Various categories of free and non-free software

are commonly, and incorrectly, referenced,

including public domain, freeware, and

shareware. Licensing agreements such as the

GPL have been developed to formalize

distribution terms. The Open Source Definition

provides a framework for evaluating these

licenses.

There are hundreds, if not thousands, of open-

source projects currently in existence. These

projects face growing challenges in terms of

scalability and inherently weak tool support.

However open source is a pragmatic example of

software development over the Internet

The significance of open source has been

continuously increasing over time. Our research

validates this claim by looking at the total

growth of open source. Our work shows that the

additions to open source projects, the total

project size (measured in source lines of code),

the number of new open source projects, and the

total number of open source projects are

growing at an exponential rate. The total amount

of source code and the total number of projects

double about every 14 months.

Our results open gates for further research

around the growth of open source and the

acceptance of open source in industry and

government. Future research should explore

questions like what factors are influencing this

exponential growth, how source code growth

relates to the number of engaged software

developers, and whether or how long open

source can sustain this exponential growth.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 840

REFERENCES

[1]. Mockus, A. AT&T Bell Labs. Naperville,

IL, USA “A case study of open source software

development: the Apache server” Date of

Conference: 4-11 June 2000, Pages 263-272,

Print ISBN: 1-58113-206-9, INSPEC Accession

Number: 6734866

[2]. Joseph Feller, Brian Fitzgerald. “A

Framework Analysis of the Open Source

Software Development Paradigm” Published In

ICIS '00 Proceedings of the twenty first

international conferences on Information

System, Pages 58 - 69 Publication Date: 10 Dec

2012

[3]. Stefan Koch and Georg Schneider, “Effort,

Co-Operation and Co-Ordination in an Open

Source Software Project: GNOME” Date of

Conference: 8 Feb. 2002, Pages: 27 – 42

[4]. Yunwen Ye, “Toward an understanding of

the motivation of open source software

developers” Date of Conference: 3-10 May

2003, Pages 419 - 429, Print ISBN: 0-7695-

1877-X, INSPEC Accession Number: 8064388).

[5]. Godfrey, M.W; “Evolution in open source

software: a case study” Publication Date: 11-14

Oct 2000, Pages 131 - 142, E-ISBN: 1063-6773,

Print ISBN: 0-7695-0753-0, INSPEC Accession

Number: 6771737)

[6]. Georg von Krogh. ; “Community, joining,

and specialization in open source software

innovation: a case study” Date of Conference:

19 June 2003, Pages 1141 – 1152

[7]. Guido Hertel, Sven Niedner; “Motivation of

software developers in Open Source projects”

Date of Conference: 12 April 2003, Pages 141 –

152

[8] Georg Von Krogh; “Special issue on open

source software development” Vol 32, Issue 7,

Date of Conference: July 2003, Pages 1149 –

1157

[9] Andrea Bonaccorsi, Cristina Rossi; “Why

Open Source software can succeed” Vol 32,

Issue 7, and Date of Conference: July 2003,

Pages 1243 – 1258

[10] Siobhán O‟Mahony; “Guarding the

commons: how community managed software

projects protect their work” Vol 32, Issue 7,

Date of Conference: 28 May 2003, Pages 1179

– 1198

[11] David Zeitlyn; “Gift economies in the

development of open source software:

anthropological reflections” Vol 32, Issue 7,

Date of Conference: 10 April 2003, Pages 1287

– 1291

[12] Nikolaus Franke, Eric von Hippel;

“Satisfying heterogeneous user needs via

innovation toolkits: the case of Apache security

software” Vol 32, Issue 7, Date of Conference:

29 May 2003, Pages 1199 – 1215

[13] Audris Mockus; “A case study of open

source software development: the Apache

server” ICSE '00 Proceedings of the 22nd

international conference on Software, Date of

Conference: 1 June 2000, Pages 263 – 272

[14] Gacek, C; “The many meanings of open

source” Publication Date: 9 Aug 2004, Pages 34

- 40, Print ISBN: 0740-7459, INSPEC

Accession Number: 7949988)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Paracha,%20M.A..QT.&searchWithin=p_Author_Ids:38201609900&newsearch=true

