
 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1064 

Programmable Logic Arrays 

Akshay dutt (16195),Anosh Justin (16199),Gautamsaini (16211) 

Department of ECE Dronacharya College of Engineering Khentawas, Farrukh Nagar-123506 

Gurgaon, Haryana  

Email-gautamsaini1996@gmail.com 

 

ABSTRACT 

A high performance CMOS Programmable Logic 

Array (PLA) circuit implemented by a new circuit 

technique is presented. The gate outputs are 

preconditioned to minimize delay using a new 

clocking scheme and circuit design. A multi-level 

logic and layout synthesis tool which utilizes the 

CVTL circuit technique is also presented. We 

describe the overall design methodology for 

generating the high performance PLA. The 

simulated benchmark circuits show that the average 

power-delay product is 2.1 times smaller than the 

pseudo-n MOS implementations for 0.25 μm process 

 

KEYWORDS 

CMOS logic circuits, delays, integrated circuits 

design, logical partitioning, multivalued logics, 

programmable logic arrays, performance evaluation. 

INTRODUCTION 

A programmable logic array (PLA) is a kind 

of programmable logic device used to 

implement combinational logic circuits. The PLA 

has a set of programmable AND gate planes, which 

link to a set of programmable OR gate planes, which 

can then be conditionally complementuce an output. 

This layout allows for a large number of logic 

functions to be synthesized in the sum of products 

(and sometimes product of sums) canonical forms. 

 

 

 

 

PLA's differ from Programmable Array 

Logic devices (PALs and GALs) in that both the 

AND and OR gate planes are programmable. 

 

 
 

Figure: A schematic example of PLA 

HISTORY 

In 1970, Texas Instruments developed a mask-

programmable IC based on the IBM read-only 

associative memory or ROAM. This device, the 

TMS2000, was programmed by altering the metal 

layer during the production of the IC. The TMS2000 

had up to 17 inputs and 18 outputs with 8 JK flip 

flop for memory. TI coined the term Programmable 

Logic Array for this device 

 

IMPLEMENTATION 

PROCEDURE 

1. Preparation in SOP (sum of product form). 

mailto:gautamsaini1996@gmail.com
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Electrical_network
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/Canonical_form_(Boolean_algebra)
http://en.wikipedia.org/wiki/Programmable_Array_Logic
http://en.wikipedia.org/wiki/Programmable_Array_Logic
http://en.wikipedia.org/wiki/Programmable_Array_Logic
http://en.wikipedia.org/wiki/Programmable_Array_Logic
http://en.wikipedia.org/wiki/Generic_array_logic
http://en.wikipedia.org/wiki/Texas_Instruments
http://en.wikipedia.org/wiki/Photomask
http://en.wikipedia.org/wiki/IBM


 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1065 

2. Obtain the minimum SOP form to reduce a 

product of terms to a minimum. 

3. Decide the input connections of the AND matrix 

for generating the required product terms. 

4. Then decide the input connections of OR matrix 

for generating the sum of terms. 

5. Decide the connections for inverse matrix. 

6. Program the PLA.

 

PLA BLOCK DIAGRAM: 

1ST BLOCK 2ND BLOCK 
3RD 

BLOCK 
4TH BLOCK 5TH BLOCK 

INPUT 

BUFFER 

AND 

MATRIX 

OR 

MATRIX 

INVERT/ NON INVERT 

MATRIX 

FLIP FLOP OUTPUT 

BUFFER 

 

Why Pla Over Rom 

 

the desired outputs for each combination of 

inputs could be programmed into a read-only 

memory, with the inputs being loaded onto the 

address bus and the outputs being read out as data. 

However, that would require a separate memory 

location for every possible combination of inputs, 

including combinations that are never supposed to 

occur, and also duplicating data for "don't care" 

conditions (for example, logic like "if input A is 1, 

then, as far as output X is concerned, we don't care 

what input B is": in a ROM this would have to be 

written out twice, once for each possible value of 

B, and as more "don't care" inputs are added, the 

duplication grows exponentially); therefore, a 

programmable logic array can often implement a 

piece of logic using fewer transistors than the 

equivalent in read-only memory. This is 

particularly valuable when it is part of a processing 

chip where transistors are scarce (for example, the 

original 6502 chip contained a PLA to direct 

various operations of the processor 

 

STARTING OUT 

 

The first part of a PLA looks like:

 

 

 
Each variable is hooked to a wire, and to a wire with a NOT gate. So the top wire is x2 and the one just below 

is its negation, \x2. 

http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/MOS_Technology_6502


 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1066 

Then there's x1 and just below it, its negation, \x1. 

The next part is to draw a vertical wire with an AND gate. I've drawn 3 of them. 

 

 
Let's try to implement a truth table with a PLA. 

x2 x1 x0 z1 z0 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 0 1 

 
Each of the vertical lines with an AND gate corresponds to a minterm. For example, the first AND 
gate (on the left) is the minterm: \x2\x1x0. 

The second AND gate (from the left) is the minterm: \x2x1x0. 

The third AND gate (from the left) is the minterm: x2\x1\x0. 

I've added a fourth AND gate which is the minterm: x2x1x0. 

The first three minterms are used to implement z1. The third and fourth minterm are used to 
implement z0. 

This is how the PLA looks after we have all four minterms. 



 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1067 

 

 
 
Now you might complain. How is it possible to have a one input AND gate? How can three inputs be hooked 

to the same wire to an AND gate? Isn't that invalid for combinational logic circuits? 

That's true, it is invalid. However, the diagram is merely a simplification. I've drawn the each of AND gate 

with three input wires, which is what it is in reality (there is as many input wires as variables). For each 

connection (shown with a black dot), there's really a separate wire. We draw one wire just to make it look neat. 

 

The vertical wires are called the AND plane. We often leave out the AND gates to make it even easier to draw. 

We then add OR gates using horizontal wires, to connect the minterms together. 



 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1068 

 

 
Again, a single wire into the OR gate is really 4 wires. We use the same simplification to make it easier to 

read. 

The horizontal wires make up the OR plane. 

This is how the PLA looks when we leave out the AND gates and the OR gates. It's not that the AND gates and 

OR gates aren't there---they are, but they've been left out to make the PLA even easier to draw. 

 

APPLICATIONS 

One application of a PLA is to implement the 

control over a data path. It defines various states in 

an instruction set, and produces the next state (by 

conditional branching). [e.g. if the machine is in 

state 2, and will go to state 4 if the instruction 

contains an immediate field; then the PLA should 

define the actions of the control in state 2, will set 

the next state to be 4 if the instruction contains an 

immediate field, and will define the actions of the 

control in state 4]. Programmable logic arrays 

should correspond to a state diagram for the 

system. 

Other commonly used programmable logic 

devices are PAL, CPLD and FPGA. 

Note that the use of the word "programmable" does 

not indicate that all PLAs are field-programmable; 

in fact many are mask-programmed during 

http://en.wikipedia.org/wiki/Datapath
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_Array_Logic
http://en.wikipedia.org/wiki/Complex_programmable_logic_device
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmability


 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 1069 

manufacture in the same manner as a mask ROM. 

This is particularly true of PLAs that are embedded 

in more complex and numerous integrated circuits 

such as microprocessors. PLAs that can be 

programmed after manufacture are 

called FPGA (Field-programmable gate array), or 

less frequently FPLA (Field-programmable logic 

array). 

The Commodore 64 home computer released in 

1982 used a "906114-01 PLA" to handle system 

signals. 

 

REFRENCES 

[1.]  Motorola Semiconductor Data Book, 

Fourth Edition. Motorola Inc. 1969. p. IC-73. 

 

[2.] Andres, Kent (October 1970). A Texas 

Instruments Application Report: MOS 

programmable logic arrays. Texas 

Instruments. Bulletin CA-158. Report 

introduces the TMS2000 and TMS2200 series 

of mask programmable PLAs. 

 

[3.] Greer, David L. Electrically 

Programmable Logic Circuits US Patent 

3,818,452. Assignee: General Electric, Filed: 

April 28, 1972, Granted: June 18, 1974 

 

[4.] Greer, David L. Multiple Level 

Associative Logic Circuits US Patent 

3,816,725. Assignee: General Electric, Filed: 

April 28, 1972, Granted: June 11, 1974 

 

[5.] Greer, David L. Segmented Associative 

Logic Circuits US Patent 3,849,638. 

Assignee: General Electric, Filed: July 18, 

1973, Granted: November 19, 1974 

 

[6.] "Semiconductors and IC’s: 

FPLA". EDN (Boston, MA: Cahners 

Publishing) 20 (13): 66. July 20, 1975. Press 

release on Intersil IM5200 field 

programmable logic array. Fourteen inputs 

pins and 48 product terms. Avalanched-

induced-migration programming. Unit price 

was $37.50 

 

[7.] FPLA's give quick custom 

logic". EDN (Boston, MA: Cahners 

Publishing) 20 (13): 61. July 20, 1975. Press 

release on Signe tics 82S100 and 82S101 

field programmable logic arrays. Fourteen 

inputs pins, 8 output pins and 48 product 

terms. NiCr fuse link programming. 

 

[8.] Pellerin, David; Michael Holley 

(1991). Practical Design Using 

Programmable Logic. Prentice-Hall. 

p. 15. ISBN 0-13-723834-7.

 

http://en.wikipedia.org/wiki/Mask_ROM
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Commodore_64
http://www.google.com/patents?id=Bhc3AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=Bhc3AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=Bhc3AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=hgI1AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=hgI1AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=hgI1AAAAEBAJ&printsec=abstract
http://www.google.com/patents?id=We0tAAAAEBAJ&printsec=abstract
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-723834-7

