Non-linear oscillation of inextensible cable-connected satellites system at the equilibrium position near the main resonance for small eccentricity e of the orbit with oblateness of the earth and air resistance as perturbative forces

Arbind Kumar Tiwari and Santosh Kumar Singh
Research Scholar, Dept of Mathematics, Jai Prakash University (Chapra) PG Head of Mathematics, Jai Prakash University (Chapra)
Email ID: arbindkrtiwarigpl@gmail.com

Abstract

This paper is devoted to study the non-linear main resonant oscillation of the system about stable position of equilibrium where it oscillates like a dumb-bell satellite in the phase plane (a, θ), B.K.M. method has been exploited to get the general solution valid at and near the main resonance $\mathrm{n}=1$.

Key word: Satellite, B.K.M. Method, parametric resonance, oblateness.

INTRODUCTION

The Russian mathematics Belestky; V. V. (1960) made significant studies on the effect of perturbative forces on cable-connected satellites system. Similar problems have been studied by Singh, R.B. and Sharma, B; B.R.A.Bihar University, Muzaffarpur, India.

Non-linear oscillation of the system about stable position of equilibrium for small eccentricity near the main resonance $n=1$.

The differential equation of motion of inextensible cable-connected satellites system in the central gravitational field of oblate earth with air resistance in polar form is obtained in the form :
$(1+\mathrm{ecosv}) \Psi^{\prime \prime}+2 e \Psi^{\prime} \sin \mathrm{V}+3 \sin \Psi \cos \Psi$
$=2 e \sin \mathrm{v}+5 B(1+e \cos \mathrm{~V})^{2} \sin \Psi \cos \Psi-\mathrm{f}(1+\mathrm{e} \cos \mathrm{V})^{-2} \cos \Psi$
$+f e(1-3 e \cos V) \sin V \sin \Psi$
Where $\quad B=$ oblateness force parameter
$\mathrm{f}=$ Air resistance force parameter
e = eccentricity of orbit
$\mathrm{v}=$ True anomaly of the centre of
mass of the system
Here dashes denote differentiation w.r. to v.
The Equilibrium position are given by
$\phi=\phi_{o}$ and $\Psi=\Psi_{0}=\sin ^{-1}\left(\frac{-f}{3-5 B}\right)=A_{o}$
The equation of small oscillation about the position of equilibrium is obtained by putting $\Psi=\Psi_{0}+\delta$ in (1) and considering expansion only up to third order infinitesimals in the form:
$\delta^{\prime \prime}+n^{2} \delta=e\left[\left(2+A_{0} \mathrm{f}\right) \operatorname{sinv}+2 \delta^{\prime} \sin v-\delta^{\prime \prime} \cos v+10 A_{0} B \sqrt{\sqrt{1-A_{0}^{2}}} \mathrm{C}\right.$
osv $+10 B\left(1-2 A_{0}^{2}\right) \delta \cos v-20 B A_{0} \sqrt{1-A_{0}^{2}} \delta^{2} \cos v$
$-\frac{20}{3} B\left(1-2 A_{0}^{2}\right) \delta^{3} \operatorname{cosv}+2 \mathrm{f}$
$\sqrt{1-A_{0}^{2}} \cos \mathrm{v}-2 \mathrm{~A}_{0} \mathrm{f} \delta \cos \mathrm{v}-f \sqrt{1-A_{0}^{2}} \delta^{2} \cos \mathrm{v}+f \sqrt{1-A_{0}^{2}} \delta \sin \mathrm{v}$
$\left.-\frac{A_{0}}{2} f \delta^{2} \sin \mathrm{v}-\sqrt{1-A_{0}^{2}} f \delta^{3} \sin \mathrm{v}+\frac{A_{0}}{3} f \delta^{3} \cos \mathrm{v}\right]$
Where $n^{2}=(3-5 B)\left(1-2 A_{0}^{2}\right)-A_{0} \mathrm{f}$
Now let us construct the general solution of the oscillation system based on B.K.M. method which will be valid at and near the main resonance $\mathrm{n}=1$. Assuming e to be a small parameter, the solution in the first approximation can be sought in the form :
$\delta=a \cos k$ where $\mathrm{k}=\mathrm{v}+\theta$
Here the amplitude a and phase θ must satisfy the system of ordinary differential equations
$\left.\begin{array}{l}\frac{d a}{d v}=e A_{1}(a, \theta) \\ \frac{d \theta}{d v}=n-1+e B_{1}(a, \theta)\end{array}\right\}$
Where $A_{1}(a, \theta)$ and $B_{1}(a, \theta)$ are the periodic solutions periodic with respect to θ of the system of partial differential equations:
$(\mathrm{n}-1) \frac{\partial \mathrm{A}_{1}}{\partial \theta}-2 \mathrm{an} B_{1}=\frac{1}{\pi} \int_{0}^{2 \pi} \mathrm{f}_{0}\left(\mathrm{v}, \delta, \delta^{\prime}, \delta^{\prime \prime}\right) \cos k d k$
and $\quad a(\mathrm{n}-1) \frac{\partial \mathrm{B}_{1}}{\partial \theta}+2 \mathrm{n} A_{1}=-\frac{1}{\pi} \int_{0}^{2 \pi} \mathrm{f}_{0}\left(\mathrm{v}, \delta, \delta^{\prime}, \delta^{\prime \prime}\right) \sin k d k$

wheref $\mathrm{f}_{0}\left(\mathrm{v}, \delta, \delta^{\prime}, \delta^{\prime \prime}\right)$ can be easily obtained in the form :
$\mathrm{f}_{0}\left(\mathrm{v}, \delta, \delta^{\prime}, \delta^{\prime \prime}\right)=\left(2+A_{0} \mathrm{f}\right) \sin \mathrm{v}-2 \mathrm{an} \operatorname{sinv} \sin \mathrm{k}+\mathrm{an}^{2} \cos \mathrm{v} \cos \mathrm{k}$
$+\left(10 A_{0} B \sqrt{1-A_{0}^{2}}+2 f \sqrt{1-A_{0}^{2}}\right) \cos v$
$+\left[10 B\left(1-2 A_{0}^{2}\right)-2 A_{0} \mathrm{f}\right] a \cos k \cos v$
$-\left[2 B A_{0} \sqrt{1-A_{0}^{2}}+f \sqrt{1-A_{0}^{2}}\right] a^{2} \cos ^{2} k \cos v$
$+\left[\frac{A_{0} f}{3}-\frac{20}{3} B\left(1-2 A_{0}^{2}\right)\right] a^{3} \cos ^{3} k \cos v$
$+\mathrm{f} \sqrt{1-A_{0}^{2}} a \cos k \sin \mathrm{v}-\frac{A_{0}}{2} \mathrm{f} a^{2} \cos ^{3} k \sin \mathrm{v}$
$-\sqrt{1-A_{0}^{2}} \mathrm{f} a^{3} \cos ^{3} k \sin v$

Now, substituting the value of $\mathrm{f}_{0}\left(\mathrm{v}, \delta, \delta^{\prime}, \delta^{\prime \prime}\right)$ from (9) in (8), we get on integrating.
$(n-1) \frac{\partial \mathrm{A}_{1}}{\partial \theta}-2$ a n $B_{1}=\mu \cos \theta-v \sin \theta$
and $a(n-1) \frac{\partial \mathrm{B}_{1}}{\partial \theta}+2 \mathrm{n} A_{1}=-v \cos \theta-\mu \sin \theta$
where $\mu=\left\{\left(10 A_{0} B+2 f\right)-\frac{1}{2}\left(20 A_{0} B+f\right) a^{2}\right\} \sqrt{1-A_{0}^{2}}$
and $v=\left(2+A_{0} f\right)-\frac{1}{4} a^{2} f$
The particular solution periodic with respect to θ of the system of equations (10) and (11) can be easily obtained as
$A_{1}=\frac{1}{n+1}(-v \cos \theta-\mu \sin \theta)$
$B_{1}=\frac{1}{a(n+1)}(v \sin \theta-\mu \cos \theta)$
Putting the values of A_{1} and B_{1} from (13) in (7), we get
$\frac{d a}{d v}=-\frac{e}{n+1}(\mu \sin \theta+v \cos \theta)$
$\frac{d \theta}{d v}=(n-1)-\frac{e}{a(n+1)}(\mu \cos \theta-v \sin \theta)$
The system of equations (14) may be written as
$\frac{d a}{d v}=\frac{1}{a} \frac{\partial \phi}{\partial \theta}$
$\frac{d \theta}{d v}=-\frac{1}{a} \frac{\partial \phi}{\partial a}$
Where $\phi=\frac{a e}{n+1}(\mu \cos \theta-v \sin \theta)-\frac{(n-1)}{2} a^{2}$
obviously, the system of equations (15) are in canonical form and hence admits a first integral of the form:

$$
\begin{equation*}
\phi=c_{0}^{1} \tag{17}
\end{equation*}
$$

Where c_{0}^{1} is the constant of integration In order to examine the stability, the integral curve (16) in the phase plane (a, θ) have been plotted with the equation.
$\left(n^{2}-1\right) a^{2}-2 a e(\mu \cos \theta-v \sin \theta)+c_{0}=0$
Where $C_{0}=2(n+1) C_{0}^{1}=$ constant
Integral curves plotted in fig 1 and fig 2 for $\mathrm{n}=0.957$ and $\mathrm{n}=1.29$ respectively for different values of parameters involved. Since both curves are closed curves and so we get the stability.
Conclusions: We conclude that the non-linear oscillation of satellites system about the equilibrium position is $\emptyset=\emptyset_{0}$ and $\Psi=\Psi_{0}=\sin ^{-1}\left(\frac{-f}{3-5 B}\right)=A_{o}$. It can be used to study the equilibrium position and stability of oscillatory satellites system in other perturbative forces.

Fig - 1

References :

1. Beletsky VV: "Motion of Artificial Satellite Relative to the Centre of Mass of the system", Nauka, 1965 (Russian)
2. Sharma B: The motion of a system of two cable- connected satellites in the atmosphere.

Ph.D. thesis, submitted to B.U.; Muz in 1974
3. Tiwari A Kumar: Effect of oblateness of the earth and air resistance on the non-linear motion and stability of an inextensible cable-connected satellite system in orbit in case of main and parametric resonance Ph.D. thesis; submitted to J.P. University, Chapra (Saran in 2014)

