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ABSTRACT 

In this thesis, aerodynamic performance of a vertical axis wind turbine by morphing the trailing 

edges of the wind turbine will be analyzed. 3D models of the vertical axis wind turbine by 

morphing the trailing edges will be done in Catia. 

CFD analysis will be performed and compared for pressures, velocities, lift and drag for all the 

models at different wind speeds. Static analysis will also be performed on the models by 

applying pressures obtained from CFD analysis to determine stresses and deformations using 

different materials for blade. 

CFD and Static analysis will be done in Ansys 14.5. 

INTRODUCTION 
The need for electricity in present days is of prime importance due to the sort of evolved life 

mankind needs. The production of power using traditional methods has taken its toll on the 

environment and the earth has been polluted to degrees beyond imagination. Alternative energy 

and green energy from natural recourses is the need of the hour. Technology must be used so as 

to provide human needs and luxuries but still not affect our planet. With increasing awareness 

about our needs and priorities, one alternative source where we can draw power would be the 

wind.  

Wind turbine was invented by engineers in order to extract energy from the wind. Because the 

energy in the wind is converted to electric energy, the machine is also called wind generator 

 Vertical Axis Wind Turbine (VAWT)  

One notable difference of the vertical axis wind turbine (VAWT) is that the axis of rotation is 

perpendicular to the direction of the free-stream flow. VAWTs are categorized into two distinct 

categories; Savonius and Darrieus according to the principle used to capture energy from the 

wind. Savonius type wind turbines operate using the principles of drag whereas Darrieus type 

wind turbines operate primarily on the principle of lift. Although VAWTs are not as efficient as 

HAWTs, they are increasingly popular in urban residential areas. This is largely due to the fact 

that a VAWT possesses fewer moving parts and operates at a low tip speed ratio which makes it 

significantly quieter and thus well suited for urban residential areas [Eriksson et al, 2008]. 

HAWTs require a yaw mechanism to redirect itself in the direction of the wind, whereas VAWTs 

are less sensitive to the changing wind direction and turbulence. Another advantage associated 

with VAWTs is the simplicity in design. Unlike HAWTs, the gearbox and generator is located at 

ground level which significantly reduces the complexity of the design and is also relatively easy 
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to maintain and thus lowering the maintenance cost. Figure (4) shows the vertical axis wind 

turbine categories. 

 

LITERATURE SURVEY 
VARIABLE GEOMETRY VERTICAL AXIS MACHINES P. J. Musgrove in 1975 led a 

research project at Reading University in the UK whose purpose was to attempt to rationalize the 

geometry of the blades by straightening out the blades of a Darrieus type wind turbine. This led 

to the design of a straight bladed vertical axis wind turbine designated as the H rotor blade 

configuration. At the time it was thought that a simple H blade configuration could, at high wind 

speeds, over speed and become unstable. It was thus proposed that a reefing mechanism be 

incorporated into the machine design thus allowing the blades to be feathered in high winds. 

These earlier machines with feathering blades were known as Variable Geometry Vertical Axis 

Wind Turbines. There were a number of these designs which had different ways of feathering 

their blades. During the late 1970's there was an extensive research program carried out. This 

included wind tunnel tests and the building of a few prototype machines in the40-100 kW range. 

This work culminated in a final reefing arrowhead blade design for a large 25 meter, 130 kW 

rated machine, located in Carmarthen Bay in South Wales. This machine known as the VAWT 

450, was built by a consortium of Sir Robert McAlpine and Northern Engineering Industries 

(Vertical Axis Wind Turbines Limited) in 1986. The project was funded by the UK 

government’s Department of Trade and Industry.  

CFD - MODEL 1 AT 10 M/S SPEED  

 
Static Pressure (Pa) = 6.15e+01 
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Density (kg/m
3
) = 1.23e+00 

 
Velocity Magnitude (m/s) 

 
Static Temperature (K) = 3.00e+02 

MODEL 1 STRUCTURAL ANALYSIS AT 10M/S WITH MATERIAL AL 6061 

 
Model 1 geometry  
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Geometry model Mesh  

 
Model 1 Pressure = 6.15e+005 MPa 

 
  Stress = 0.010092 
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Strain = 1.474e-7  

 
Total Deformation = 1.9163 mm 

 
Directional Deformation = 1.4455 mm 

B) Model 1 structural analysis at 10m/s with material cfrp 30 
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Stress = 0.0099647 MPa 

 
Strain = 8.0857e-7  

 
Total Deformation = 10.648 mm 

 
Directional Deformation = 8.0319 mm  

CFD - MODEL 2 AT 10 M/S SPEED  
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Geometry of model 2  

 
Mesh  

 
Static Pressure = 6.10e+01 
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Density = 1.22e+00 kg/m

3 

 
Velocity magnitude = 1.32e+01 m/s  

 
Static Temperature = 3.00e+02 K 

 

TABLES & GRAPHS 
Model 1  

At 10 m/s 

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.010092 0.0099647 0.010233 

Strain  1.474e-7 8.0857e-7 6.0591e-8 

Total Deformation (mm) 1.9163 10.648 0.77664 
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Directional Deformation  1.4455 8.0319 0.58586 

 

At 20 m/s  

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.040368 0.039859 0.040932 

Strain  5.8962e-7 3.2343e-6 2.4236e-7 

Total Deformation (mm) 7.6651 42.591 3.1066 

Directional Deformation  5.7819 32.128 2.3434 

At 30 m/s 

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.088119 0.087009 0.089352 

Strain  1.2871e-6 7.0602e-6 5.2906e-7 

Total Deformation (mm) 16.732 92.972 6.7814 

Directional Deformation  12.621 70.132 5.1155 

 

MODEL 2 

At 10 m/s 

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.009872 0.0097399 0.010021 

Strain  1.4459e-7 7.9329e-7 5.9436e-8 

Total Deformation (mm) 1.8981 10.547 0.76931 

Directional Deformation  1.4355 7.9766 0.58179 

 

At 20 m/s 

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.032907 0.032466 0.033402 

Strain  4.8196e-7 2.6443e-6 1.9812e-7 

Total Deformation (mm) 6.327 35.157 2.5644 

Directional Deformation  4.7848 26.588 1.9393 

 

At 30 m/s 

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.082267 0.081166 0.083506 

Strain  1.2049e-6 6.6107e-6 4.953e-7 

Total Deformation (mm) 15.818 87.892 6.411 

Directional Deformation  11.962 66.471 4.8482 

 

MODEL 3 

At 10 m/s  

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.0097679 0.0096426 0.0099078 

Strain  1.43e-7 7.8504e-7 5.8742e-8 

Total Deformation (mm) 1.942 10.79 0.78706 

Directional Deformation  1.4858 8.2556 0.60215 

At 20 m/s  

 al 6061 cfrp 30 kevlar 
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Stress (MPa) 0.03256 0.032142 0.033026 

Strain  4.7668e-7 2.6168e-6 1.9581e-7 

Total Deformation (mm) 6.4733 35.968 2.6236 

Directional Deformation  4.9525 27.519 2.0072 

At 30 m/s  

 al 6061 cfrp 30 kevlar 

Stress (MPa) 0.081399 0.080355 0.082565 

Strain  1.1917e-7 6.542e-6 4.8952e-7 

Total Deformation (mm) 16.183 89.92 6.5588 

Directional Deformation  12.381 68.797 5.0179 

 
Stress analysis at 10m/s 

 
Stress analysis at 20m/s 
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Stress analysis at 30m/s 

 
Total Deformation at 10 m/s 

 
Total Deformation at 20m/s 
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Total Deformation at 30 m/s 

CONCLUSION 

In this thesis, aerodynamic performance of a vertical axis wind turbine by morphing the trailing 

edges of the wind turbine will be analyzed. 3D models of the vertical axis wind turbine by 

morphing the trailing edges will be done in Catia. 

CFD analysis will be performed and compared for pressures, velocities, lift and drag for all the 

models at different wind speeds. Static analysis will also be performed on the models by 

applying pressures obtained from CFD analysis to determine stresses and deformations using 

different materials for blade. 

As if we verify all the resulted tables and graphs above we have got the output values of pressure 

and velocity from the CFD analysis at different speeds with different angles of blades. Here we 

have considered 3 angles of blades. 

By verifying all the results here if we observe the stress at 10 and 20 m/s is less for the model 3 

with CFRP material, but the deformation is very high when we compare there and if the speed is 

increased to 30m/s CFRP did not sustain there, so by observing all the three models with 

different materials and different speeds, we can conclude that the material with Kevlar of model 

3 is having the better parameters and can sustain the maximum period of life. 
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