

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 431

Image Inpainting Using Generative Adversarial Networks

 Mounika Yamani M. Raghava,Ph.D

 PG Scholar in CSE, CVRCE, Professor in CSE,CVRCE

 Hyderabad, India, Hyderabad, India

mounikayamani18@gmail.com raghava.m@cvr.ac.in

ABSTRACT:

There is need to recover the damaged

photographs, ancient paints, etc. Damage may occur

due to several causes such as overlaid text, scratches,

and scaled image to recover the image from such cases

and providing a good looking photograph using a

technique called inpainting. This term inpainting is also

called as the observer does not know the original

image. This inpainting has been done by professional

artists. However, we did not get the pure accuracy and

quality if it was done by manually and also more time-

consuming process.

 We are proposing a method to inpaint the

images with higher efficiency by using a generator and

discriminator networks known as GAN .(Generative

Adversarial networks). with the help GAN we can

inpaint region by generating images with the help of

generator, and discriminator to label the imagines.

Here we evaluate the performance of inpainting by

finding the G-Loss(generator loss) D-

loss(discriminator loss),Mean squared error (MSE) and

structural similarity of an image(SSIM).

INTRODUCTION:

Images get corrupted by random scratches during

image acquisition process as the old photographs may

get damaged due to cracks. Missing regions in the

image is filled with the help of the inpainting

techniques. As early as the Renaissance, people try to

restore damaged paintings in a way that the paintings

will properly look like the original for an observer who

is unfamiliar with the original. This process is called

restoration, conservation, Inpainting or retouching.

This is done to preserve the paintings and other fine art

for future generations. example of image inpainting

was shown in figure 1(a),1(b).

figure 1: Example of Image Restoration

 1.1 (a) Original image with scratches

 1.2(b) Restored image

 Image inpainting is a widely used

reconstruction technique by advanced photo and video

editing applications for repairing damaged images or

refilling the missing parts. The aim of the inpainting

can be stated as reconstruction of an image without

introducing noticeable changes. Although fixing small

deteriorations are relatively simple, filling large holes

or removing an object from the scene are still

challenging due to huge variabilities and complexity in

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 432

the high dimensional image texture space. We propose

a neural network model and a training framework that

completes the large blanks in the images. As the

damaged area(s) take up large space, hence the loss of

information is considerable, the CNN model needs to

deal with both local and global harmony and

conformity to produce realistic outputs. Recent

advances in generative models show that deep neural

networks can synthesize realistic looking images

remarkably, in applications such as super-resolution,

deblurring, denoising and inpainting.

 In this work we present an approach for

inpainting using Generative adversarial

network(GAN). The proposed method is capable of

reconstructing images and at the same time provides

higher resolution, i.e. we are able to inpaint blindly at

higher resolution. convolutional neural network learns

an end to end mapping between corrupted low

resolution images and corresponding true high

resolution images with little pre-processing. This

reduces computational complexity and also do not

require any prior information about missing region.

IMAGE INPAINTING Definition:

 Image inpainting is a process to modify an

image in a non-detectable form. The aim of inpainting

algorithms is to recover missing information in an

image(cracks in the old photographs, spots on an

image) such that the resultant image is visually

plausible.

PROBLEM DEFINITION: Given image with

significant portions missing or damaged. Reconstitute

missing regions with data consistent with the rest of the

image.The core challenge of image inpainting lies in

synthesizing visually realistic and semantically

plausible pixels for the missing regions that are

coherent with existing ones.

 figure 2: Illustration of Problem Definition

LITERATURE SURVEY:

 In the literature survey, we have included some of the

previous techniques implemented for inpainting image

restoration which we have referred to solve inpainting

problem. Image Restoration techniques are majorly

divided in to three categories. These comprises of

following methods.

(i) Partial Differential Equation (PDE) based

(ii) Texture synthesis based

(iii) Exemplar and search based

Partial Differential Equation (PDE) based : Partial

Differential Equation (PDE) based algorithm is

proposed by Marcelo Bertalmioet.al [1].This algorithm

is the iterative algorithm. The algorithm is to continue

geometric and photometric information that arrives at

the border of the occluded area into area itself. This is

done by propagating the information in the direction of

minimal change using is isotope lines. This algorithm

will produce good results if missed regions are small

one. But when the missed regions are large this

algorithm will take so long time and it will not produce

good results.

Texture synthesis based : In Texture synthesis based

inpainting, texture is synthesized in a pixel by pixel

way, by picking existing pixels with similar neighbor

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 433

hoods in a randomized fashion. This algorithm

performs very well but it is very slow since the filling-

in is being done pixel by pixel. The texture synthesis

[2] based Inpainting perform well in approximating

textures. These algorithms have difficulty in handling

natural images as they are composed of structures in

form of edges. Hence while appreciating the use of

texture synthesis techniques in Inpainting, it is

important to understand that these methods address

only a small subset of Inpainting issues and these

methods are not suitable for a large objects.

Exemplar and search based: Third category is

exemplar based inpainting. Criminisi et al. in [3]

presented a technique for region filling and object

removal by exemplar based inpainting. Using this

algorithm both texture and structure are propagated in

the missing area. The algorithm is based on patch

based filling approach. The best matching

patch(example) is found from known region and

copied to the unknown region. Thus propagating the

information. Although, the technique is superior than

previously developed approaches in terms of both

visual quality and computation efficiency, the

limitation is that it fails to obtain reasonable results

when similar patches are not found.

Dataset:

Dataset is set of data items used for applying our

model to predict the result. In olden days we have used

registers to store data, As technology is increasing and

world is moving towards digitalization the usage of

data is drastically improving day by day. We are no

longer using registers, now a days organizations

providing data in the form of excel sheets i.e in the

form of CSV (Comma Separated values)or even in the

form of collection of Images with labels. We have

used

CIFAR10 dataset: The CIFAR-10 dataset (Canadian

Institute For Advanced Research) is a collection of

images that are commonly used to train machine

learning and computer vision algorithms. It is one of

the most widely used datasets for machine learning

research. The CIFAR-10 dataset contains 60,000 32x32

color images in 10 different classes. we can import

CIFAR10 dataset in keras by using following line.

from keras.datasets import cifar10

PROPOSED GAN BASED MODEL:

GAN (Generative Adversarial Networks): GANs or

Generative Adversarial Networks are Deep Neural

Networks that are generative models of data. Given a

set of training data, GANs can learn to estimate the

underlying probability distribution of the data. This is

very useful, because apart from other things, we can

now generate samples from the learnt probability

distribution that may not be present in the original

training set.

Given a training set X (say a few thousand images

of cats), The Generator Network, G(x), takes as input a

random vector and tries to produce images similar to

those in the training set. A Discriminator network, D(x),

is a binary classifier that tries to distinguish between the

real images according the training set X and the fake

images generated by the Generator. As such, the job of

the Generator network is to learn the distribution of the

data in X, so that it can produce real looking images &

make sure the Discriminator cannot distinguish between

images from the training set and images from the

Generator. The Discriminator needs to learn to keep up

with the Generator trying new tricks all the time to

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 434

generate fake images and fool the Discriminator.

Ultimately, the Generator learns the true distribution of

the training data and becomes really good at generating

real-looking images. The Discriminator can no longer

distinguish between training set of images and

generated images. In this way, two networks are

continuously trying to make sure the other does not do a

good job at their task.

 figure 3 : GAN concept: D tries to correctly

detect, if images came from real world examples

or G. G as the adversary tries to improve its image

generation to fool D.

Generative Adversarial Network for Image

Inpainting:

We introduce a generative model and a

training procedure for the arbitrary and large hole

filling problem. The generator network takes the

corrupted image and tries to reconstruct the repaired

image. We utilized the CNN architecture as our

generator model with a few alterations. During the

training, we employ the adversarial loss to obtain

realistic looking outputs. The key point of our work is

the following: we design model that uses discriminator

to label the images that are generated by generator .The

proposed System architecture is shown in Figure .

Here we are using algorithm as GAN Model to train

our dataset It compose of two networks:

1. Generator

2. Discriminator

 figure 4: System Architecture

Generator network: The generative network G takes

the masked image from the user and forwards to the

Discriminator to label the images. In our Project we

have taken CIFAR10 dataset and categorize the images

to cats and dogs and then labeling the images by

passing through Discriminator which in turn undergoes

Pool of Convolution layers ,after that model gets

switched off for every 0.5% probability to not getting

overfitting by using Drop-out layer. Here we have

designed our generator to pass through 4 convolution

layers and return the result to activation function which

in turn returns to the model which generates the

missing patch of the image and output gets returned to

the Discriminator for labeling.

Discriminator network: Discriminator network D

takes the generated real images and aims to distinguish

them while the generator network G makes an effort to

fool it. As long as D successfully classifies its input, G

benefits from the gradient provided by the D network

via its adversarial loss. We achieve our goal of

obtaining an objective value that measures the quality

of the image as a whole as well as the consistency in

local details through our GAN approach depicted in

Figure.

 Rather than training two separate networks

simultaneously, we design a weight sharing

architecture at the first few layers so that they learn

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 435

common low level visual features. After a certain layer,

they are split into two pathways. The first path ends up

with a binary output which decides whether the whole

image is real or not. The second path evaluates the

local texture details similar to the GAN. Fully

connected layers are added at the end of the second

path of our discriminator network to reveal full

dependency across the local patches.

figure 5 : Applying GAN model to inpainting

The overall architecture hence provides an objective

evaluation of the naturalness of the whole image as

well as the coherence of the local texture. We evaluate

our model by calculating two different losses known as

L2 Loss with respect to generator as well as

Discriminator point of view. In order to view the

similarity between the images we use Structural

Similarity Index of image as well as Mean Square

Error.

Algorithm: Image Inpainting using GAN

Input: Supplying images from dataset

for number of training iterations do

Sample half batch of images x

Generating random mask m for x;

Construct inputs x • m ;

Passing through pool of convolution layers

 returns bottle neck features

 Passing through deconvolution layer

 returns vector of 1*1*n

 Generator G generates images of n*n*n

 Discriminator D takes vector from Generator

Categorize generated images -> valid and fake images;

tries to reconstruct mask m that is missing of size

n*n*n;

Terminates : By passing through Drop-out layer

Output: Mask generated

Experimental Setup

Jupyter Notebook Setup in Google Cloud Platform:

Step 1 : Creating Account: Create a free account in

Google Cloud with 300$ credit. For this step, you will

have to put your payment (Credit card) information and

verify your account.

Step 2: Create a new project

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 436

 To use Jupyter Notebook on the instance, we

need to create an instance first. Log into the

Google Cloud Console. Create a new Project

using the "+" sign as shown in the image.

Step 3 : Create VM Instance

 Once the project is created, select the project

and click on the Products and icons and

navigate to the Compute Engine label and

click on VM Instances.

 Click Create an instance Name your

instance, choose a zone that you want. Click

on Customize and look for the appropriate

memory, CPUs ,etc as per your need. Change

Boot Disk accordingly and the SSD size.

Step 4: Configure the Virtual Machine

 GCP provides various types of VM, with

various CPU type, operating system and memory

.Inorder to choose this Click on "Customize" to

Customize as per your requirement As you can

see on the picture, I’m using 8vCPUs with 30 GB

Ram and the OS is Ubuntu 16.04 with 100 GB

standard disk . As a note, the Zone choices is

crucial because every different has different

capability. Here we are Running this Project on

GPU so Here we are choosing 1 GPU i.e. NVIDIA

Tesla P100.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 437

 You will need to check off the HTTP traffic it

will needed when we access the instance for

Jupyter Notebook. You may un-check “Delete

boot disk when instance is deleted” to ensure

the data is available even after the instance

dies.

And click on Create. You are done!! The instance will

be up and running in a few minutes.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 438

Step 7: Start your VM instance

Now start your VM instance. When you see the green

tick click on SSH. This will open a command window

and now you are inside the VM.

 Let us move in to the shell of the instance we

just created. To do that, it is very simple in

google cloud. They have a shell which can be

accessed over the browser. This saves us from

the hassle of accessing the SSH(Secure Shell)

keys.

 Let us go back to the instance page and Select

the instance and against the SSH value, there is

a drop down list with 4 options. We will use

the first one. As soon you login to the shell,

run password and make a note of your user

directory. That will be needed for the rest of

the steps.

 Then, the terminal pops-up like as shown in

below figure.

Step 8 : Install Jupyter notebook and other packages

In your SSH terminal, enter:

wget http://repo.continuum.io/archive/Anaconda3-4.0.0-

Linux-x86_64.sh

This will install anaconda and all the dependencies on the

Linux environment.

source ~/.bashrc

Now, install other softwares :

pip install keras

Step 10 : Launching Jupyter Notebook

To run the Jupyter notebook, just type the following

command in the ssh window you are in :

Jupyter-notebook --no-browser --port=<PORT-NUMBER>

Once you run the command, it should show something

like this:

Here the port number is 5000 which we have given in

step 5.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 439

In order to launch your Jupyter notebook, just type the

following in your browser:

http://<External Static IP Address>:<Port Number>

where, external ip address is the ip address

which we made static and port number is the one which

we allowed firewall access to.

Here ip address is: 104.196.48.190

Step 12 : Creating Project folder in Jupyter Notebook

Inorder to create folder in Jupyter notebook

on the right corner of the notebook there is “new”

button on clicking on “new “ list is pop up on the

screen with four options , among them select Folder to

create a folder.

Here we are naming Project folder as inpaint_keras as

shown in below.

After uploading the project files to the Project folder

inpainting_keras, it looks like as shown in below

figure:

In the above figure image_inp_keras. ipynb is a python

file in which project code is written, saved_model is sub

folder in project folder where images are stored during the

execution of code at respective epochs. (iterations).

Step 13 : Running Project in Jupyter Notebook:

In order to run the Project in Jupyter Notebook go to Cell-

>Run All to run the Project.

After running the Project each cell gets executed at an

equal number of epochs. Following is the figure which

shows each and every epoch and their loss and accuracy

levels of inpainting the image.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 440

CONCLUSION:

 Image inpainting using Generative

Adversarial Networks uses generator and discriminator

as two networks to fill the missing parts of the images,

instead of using only the CNN independently which

increase computation time more and it passes through

several CNN layers to get the resemble output, we have

defined a model with four convolution layers and a

pool and dropout layer, after series of convolutional

layers we appplied deconvolution

layers(autoencoder),then we apply activation function

to get the model as an output, which passes through

discriminator which is used to build the patch(64*64)

that is missing in the image with the help of Generator.

In this way we have inpainted the region of an

images(128*128 in size) of dataset i.e CIFAR10

References:

[1] Marcelo Bertalmio, Luminita Vese, Guillermo

Sapiro (2003), “Simultaneous Structure and Texture

Image In painting”, IEEE transactions on image

processing, vol. 12

[2] K. Sangeetha, Dr. P. Sengottuvelan, E.

Balamurugan,”Combined Structure and Texture Image

Inpainting Algorithm for Natural Scene Image

Completion.” - Journal of Information Engineering and

Applications. ISSN 2224-5758 (print) ISSN 2224-

896X Vol 1, No.1, 2011.

[3] Antonio Criminisi, Patrick Pérez, and Kentaro

Toyama. Region filling and object removal by

exemplar-based image inpainting. Image Processing,

IEEETransactions on, 13(9):1200–1212, 2004.

[4] N.Neelima1, M.Arulvan,”Object Removal by

Region Based Filling Inpainting”,978-1-4673-5301-

4/13,IEEE,2013.

[5] Kohler, R., Schuler, C., Scholkopf, B., Harmeling,

S.: Mask-specific inpainting with deep neural

networks. In: German Conference on Pattern

Recognition, Springer(2014) 523-534

[6] Xie, J., Xu, L., Chen, E.: Image denoising and

inpainting with deep neural networks.

In: Advances in Neural Information Processing

Systems. (2012) 341-349

[7] N.Neelima1, M.Arulvan,”Object Removal by

Region Based Filling Inpainting”,978-1-4673-5301-

4/13,IEEE,2013.

Mounika Yamani is pursuing his

Masters of Technology in CVR

College of Engineering

Hyderabad, India in Computer

Science and Engineering

specialization. she will complete

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 441

 her PG in 2019.

M.Raghava is working as Associate Professor in

Department of Computer Science and Engineering at

CVR College of Engineering, Hyderabad.

