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ABSTRACT: 

There is need to recover the damaged 

photographs, ancient paints, etc. Damage may occur 

due to several causes such as overlaid text, scratches, 

and scaled image to recover the image from such cases 

and providing a good looking photograph using a 

technique called inpainting. This term inpainting is also 

called as the observer does not know the original 

image. This inpainting has been done by professional 

artists. However, we did not get the pure accuracy and 

quality if it was done by manually and also more time-

consuming process.  

 We are proposing a method to inpaint the 

images with higher efficiency by using a generator and 

discriminator networks known as GAN .(Generative 

Adversarial networks). with the help GAN we can 

inpaint region by generating images with the help of 

generator, and discriminator to label the imagines. 

Here we evaluate the performance of inpainting by 

finding the G-Loss(generator loss) D-

loss(discriminator loss),Mean squared error (MSE) and 

structural similarity of an image(SSIM). 

INTRODUCTION:  

Images get corrupted by random scratches during 

image acquisition process as the old photographs may 

get damaged due to cracks. Missing regions in the 

image is filled with the help of the inpainting 

techniques. As early as the Renaissance, people try to 

restore damaged paintings in a way that the paintings 

will properly look like the original for an observer who 

is unfamiliar with the original. This process is called 

restoration, conservation, Inpainting or retouching. 

This is done to preserve the paintings and other fine art 

for future generations. example of image inpainting 

was shown in figure 1(a),1(b).  

 

figure 1: Example of Image Restoration 

 1.1 (a)   Original image with scratches 

   1.2(b) Restored image  

 Image inpainting is a widely used 

reconstruction technique by advanced photo and video 

editing applications for repairing damaged images or 

refilling the missing parts. The aim of the inpainting 

can be stated as reconstruction of an image without 

introducing noticeable changes. Although fixing small 

deteriorations are relatively simple, filling large holes 

or removing an object from the scene are still 

challenging due to huge variabilities and complexity in 
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the high dimensional image texture space. We propose 

a neural network model and a training framework that 

completes the large blanks in the images. As the 

damaged area(s) take up large space, hence the loss of 

information is considerable, the CNN model needs to 

deal with both local and global harmony and 

conformity to produce realistic outputs. Recent 

advances in generative models show that deep neural 

networks can synthesize realistic looking images 

remarkably, in applications such as super-resolution, 

deblurring, denoising and inpainting. 

 In this work we present an approach for 

inpainting using Generative adversarial 

network(GAN). The proposed method is capable of 

reconstructing  images and at the same time provides 

higher resolution, i.e. we are able to inpaint blindly at 

higher resolution. convolutional neural network learns 

an end to end mapping between corrupted low 

resolution images and corresponding true high 

resolution images with little pre-processing. This 

reduces computational complexity and also do not 

require any prior information about missing region. 

IMAGE INPAINTING Definition: 

 Image inpainting is a process to modify an 

image in a non-detectable form. The aim of inpainting 

algorithms is to recover missing information in an 

image(cracks in the old photographs, spots on an 

image) such that the resultant image is visually 

plausible.  

PROBLEM DEFINITION: Given image with 

significant portions missing or damaged. Reconstitute 

missing regions with data consistent with the rest of the 

image.The core challenge of image inpainting lies in 

synthesizing visually realistic and semantically 

plausible pixels for the missing regions that are 

coherent with existing ones. 

 

 figure 2: Illustration of Problem Definition 

LITERATURE SURVEY: 

 In the literature survey, we have included some of the 

previous techniques implemented for inpainting image 

restoration which we have referred to solve inpainting 

problem. Image Restoration techniques are majorly 

divided in to three categories. These comprises of 

following methods. 

(i) Partial Differential Equation (PDE) based  

(ii) Texture synthesis based  

(iii)  Exemplar and search based  

Partial Differential Equation (PDE) based : Partial 

Differential Equation (PDE) based algorithm is 

proposed by Marcelo Bertalmioet.al [1].This algorithm 

is the iterative algorithm. The algorithm is to continue 

geometric and photometric information that arrives at 

the border of the occluded area into area itself. This is 

done by propagating the information in the direction of 

minimal change using is isotope lines. This algorithm 

will produce good results if missed regions are small 

one. But when the missed regions are large this 

algorithm will take so long time and it will not produce 

good results. 

Texture synthesis based :  In Texture synthesis based 

inpainting, texture is synthesized in a pixel by pixel 

way, by picking existing pixels with similar neighbor 
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hoods in a randomized fashion. This algorithm 

performs very well but it is very slow since the filling-

in is being done pixel by pixel. The texture synthesis 

[2] based Inpainting perform well in approximating 

textures. These algorithms have difficulty in handling 

natural images as they are composed of structures in 

form of edges. Hence while appreciating the use of 

texture synthesis techniques in Inpainting, it is 

important to understand that these methods address 

only a small subset of Inpainting issues and these 

methods are not suitable for a large objects. 

Exemplar and search based: Third category is 

exemplar based inpainting. Criminisi et al. in [3] 

presented a technique for region filling and object 

removal by exemplar based inpainting. Using this 

algorithm both texture and structure are propagated in 

the missing area. The algorithm is based on patch 

based filling approach. The best matching 

patch(example) is found from known region and 

copied to the unknown region. Thus propagating the 

information. Although, the technique is superior than 

previously developed approaches in terms of both 

visual quality and computation efficiency, the 

limitation is that it fails to obtain reasonable results 

when similar patches are not found. 

Dataset: 

Dataset is set of  data items used for applying our 

model to predict the result. In olden days we have used 

registers to store data, As technology is increasing and 

world is moving towards digitalization the usage of 

data is drastically improving day by day. We are no 

longer using registers, now a days organizations 

providing data in the form of excel sheets i.e in the 

form of CSV (Comma Separated values)or even in the 

form of collection of Images  with labels. We have 

used 

CIFAR10 dataset: The CIFAR-10 dataset (Canadian 

Institute For Advanced Research) is a collection of 

images that are commonly used to train machine 

learning and computer vision algorithms. It is one of 

the most widely used datasets for machine learning 

research. The CIFAR-10 dataset contains 60,000 32x32 

color images in 10 different classes. we can import 

CIFAR10 dataset in keras by using following line.   

from keras.datasets import cifar10 

PROPOSED GAN BASED MODEL: 

GAN (Generative Adversarial Networks): GANs or 

Generative Adversarial Networks are Deep Neural 

Networks that are generative models of data. Given a 

set of training data, GANs can learn to estimate the 

underlying probability distribution of the data. This is 

very useful, because apart from other things, we can 

now generate samples from the learnt probability 

distribution that may not be present in the original 

training set. 

Given a training set X (say a few thousand images 

of cats), The Generator Network, G(x), takes as input a 

random vector and tries to produce images similar to 

those in the training set. A Discriminator network, D(x), 

is a binary classifier that tries to distinguish between the 

real images according the training set X and the fake 

images generated by the Generator. As such, the job of 

the Generator network is to learn the distribution of the 

data in X, so that it can produce real looking images & 

make sure the Discriminator cannot distinguish between 

images from the training set and images from the 

Generator. The Discriminator needs to learn to keep up 

with the Generator trying new tricks all the time to 
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generate fake images and fool the Discriminator. 

Ultimately, the Generator learns the true distribution of 

the training data and becomes really good at generating 

real-looking images. The Discriminator can no longer 

distinguish between training set of images and 

generated images. In this way, two networks are 

continuously trying to make sure the other does not do a 

good job at their task. 

 

 figure 3 : GAN concept: D tries to correctly 

detect, if images came from real world  examples 

or G. G as the adversary tries to improve its image 

generation to fool D.   

Generative Adversarial Network for Image 

Inpainting: 

We introduce a generative model and a 

training procedure for the arbitrary and large hole 

filling problem. The generator network takes the 

corrupted image and tries to reconstruct the repaired 

image. We utilized the CNN architecture as our 

generator model with a few alterations. During the 

training, we employ the adversarial loss to obtain 

realistic looking outputs. The key point of our work is 

the following: we design model that uses discriminator 

to label the images that are generated by generator .The 

proposed System architecture is shown in Figure .   

Here we are using algorithm as GAN Model to train 

our dataset It compose of two networks: 

1. Generator 

2. Discriminator 

 

 figure 4: System Architecture  

Generator network: The generative network G takes 

the masked image from the user and forwards to the 

Discriminator to label the images. In our Project we 

have taken CIFAR10 dataset and categorize the images 

to cats and dogs and then labeling the images by 

passing through Discriminator which in turn undergoes 

Pool of Convolution layers ,after that model gets 

switched off for every 0.5% probability to not getting 

overfitting by using Drop-out layer. Here we have 

designed our generator to pass through  4 convolution 

layers and return the result to activation function which 

in turn returns to the model which generates the 

missing patch of the image and output gets returned to 

the Discriminator for labeling. 

Discriminator network: Discriminator network D 

takes the generated real images and aims to distinguish 

them while the generator network G makes an effort to 

fool it. As long as D successfully classifies its input, G 

benefits from the gradient provided by the D network 

via its adversarial loss. We achieve our goal of 

obtaining an objective value that measures the quality 

of the image as a whole as well as the consistency in 

local details through our GAN approach depicted in 

Figure.  

 Rather than training two separate networks 

simultaneously, we design a weight sharing 

architecture at the first few layers so that they learn 
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common low level visual features. After a certain layer, 

they are split into two pathways. The first path ends up 

with a binary output which decides whether the whole 

image is real or not. The second path evaluates the 

local texture details similar to the GAN. Fully 

connected layers are added at the end of the second 

path of our discriminator network to reveal full 

dependency across the local patches. 

 

figure 5 : Applying GAN model to inpainting 

The overall architecture hence provides an objective 

evaluation of the naturalness of the whole image as 

well as the coherence of the local texture. We evaluate 

our model by calculating two different losses known as 

L2 Loss with respect to generator as well as  

Discriminator point of view. In order to view the 

similarity between the images we use Structural 

Similarity Index of image  as well as Mean Square 

Error. 

 

Algorithm: Image Inpainting using GAN 

Input: Supplying images from dataset  

for number of training iterations do 

Sample half batch of images x  

Generating random mask m for x; 

Construct inputs x • m ; 

Passing through pool of convolution layers  

  returns bottle neck features 

 Passing   through deconvolution layer 

  returns vector of 1*1*n  

 Generator G generates images of n*n*n  

 Discriminator D takes vector from Generator 

Categorize generated images -> valid and fake images; 

tries to reconstruct mask m that is missing of size 

n*n*n; 

Terminates :  By passing through Drop-out layer 

Output: Mask generated  

Experimental Setup 

Jupyter Notebook Setup in Google Cloud Platform: 

Step 1  : Creating Account: Create a free account in 

Google Cloud with 300$ credit. For this step, you will 

have to put your payment (Credit card) information and 

verify your account.

 

 

Step 2: Create a new project 
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 To use Jupyter Notebook on the instance, we 

need to create an instance first. Log into the 

Google Cloud Console. Create a new Project 

using the "+" sign as shown in the image. 

 

Step 3 : Create VM Instance 

 Once the project is created, select the project 

and click on the Products and icons and 

navigate to the Compute Engine label and 

click on VM Instances. 

 Click Create an instance Name your 

instance, choose a zone that you want. Click 

on Customize and look for the appropriate 

memory, CPUs ,etc as per your need. Change 

Boot Disk accordingly and the SSD size. 

 

 

Step 4: Configure the Virtual Machine 

 GCP provides various types of VM, with 

various CPU type, operating system and memory 

.Inorder to choose this Click on "Customize" to 

Customize as per   your requirement   As you can 

see on the picture, I’m using 8vCPUs with 30 GB 

Ram and the OS is Ubuntu 16.04 with 100 GB 

standard disk . As a note, the Zone choices is 

crucial because every different has different 

capability. Here we are Running this Project on 

GPU so Here we are choosing 1 GPU i.e. NVIDIA 

Tesla P100. 



 

International Journal of Research 
Available at https://journals.pen2print.org/index.php/ijr/  

 

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 06 Issue 09 

August 2019 

 

 

Available online: https://journals.pen2print.org/index.php/ijr/  P a g e  | 437   

 

 

 You will need to check off the HTTP traffic it 

will needed when we access the instance for 

Jupyter Notebook. You may un-check “Delete 

boot disk when instance is deleted” to ensure 

the data is available even after the instance 

dies. 

 

And click on Create. You are done!! The instance will 

be up and running in a few minutes. 
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Step 7: Start your VM instance 

Now start your VM instance. When you see the green 

tick  click on SSH. This will open a command window 

and now you are inside the VM. 

 

 Let us move in to the shell of the instance we 

just created. To do that, it is very simple in 

google cloud. They have a shell which can be 

accessed over the browser. This saves us from 

the hassle of accessing the SSH(Secure Shell) 

keys. 

 Let us go back to the instance page and Select 

the instance and against the SSH value, there is 

a drop down list with 4 options. We will use 

the first one. As soon you login to the shell, 

run password and make a note of your user 

directory. That will be needed for the rest of 

the steps. 

 

 Then, the terminal pops-up like as shown in 

below figure. 

 

Step 8 : Install Jupyter notebook and other packages 

In your SSH terminal, enter: 

wget  http://repo.continuum.io/archive/Anaconda3-4.0.0-

Linux-x86_64.sh 

This  will install anaconda and all the dependencies on the 

Linux environment. 

source ~/.bashrc 

Now, install other softwares : 

pip install keras 

 

 

Step 10 : Launching Jupyter Notebook 

To run the Jupyter notebook, just type the following 

command in the ssh window you are in : 

Jupyter-notebook --no-browser --port=<PORT-NUMBER> 

Once you run the command, it should show something 

like this: 

Here the port number is 5000  which we have given in 

step 5. 
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In order to launch your Jupyter notebook, just type the 

following in your browser: 

http://<External Static IP Address>:<Port Number> 

where, external ip address is the ip address 

which we made static and port number is the one which 

we allowed firewall access to. 

Here ip address is: 104.196.48.190 

 

Step 12 : Creating Project folder in Jupyter Notebook 

Inorder to create folder in Jupyter notebook 

on the right corner of the notebook there is “new” 

button on clicking on “new “ list is pop up on the 

screen with four options , among them select  Folder to 

create a folder. 

 

 

Here we are naming Project folder as inpaint_keras as 

shown in below. 

 

After uploading the project files to the Project folder 

inpainting_keras, it looks like as shown in below 

figure: 

 

In the above figure  image_inp_keras. ipynb is a python 

file in which project code is written, saved_model is sub 

folder in project folder where images are stored during the 

execution of code at respective epochs. (iterations). 

Step 13 : Running Project in Jupyter Notebook: 

In order to run the Project in Jupyter Notebook go to Cell-

>Run All to run the Project. 

 

After running the Project each cell gets executed at an 

equal number of epochs. Following is the figure which 

shows each and every epoch and their loss and accuracy 

levels of inpainting the image. 
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CONCLUSION: 

  Image inpainting using Generative 

Adversarial Networks uses generator and discriminator 

as two networks to fill the missing parts of the images, 

instead of  using only the CNN independently which 

increase computation time more and it passes through 

several CNN layers to get the resemble output, we have 

defined a model with four convolution layers and a 

pool and dropout layer, after series of convolutional 

layers we appplied deconvolution 

layers(autoencoder),then we apply activation function 

to get the model as an output, which passes through 

discriminator which is used to build the patch(64*64) 

that is missing in the image with the help of Generator. 

In this way we have inpainted the region of an 

images(128*128 in size) of dataset i.e CIFAR10 

References: 

[1] Marcelo Bertalmio, Luminita Vese, Guillermo 

Sapiro (2003), “Simultaneous Structure and Texture 

Image In painting”, IEEE transactions on image 

processing, vol. 12 

[2] K. Sangeetha, Dr. P. Sengottuvelan, E. 

Balamurugan,”Combined Structure and Texture Image 

Inpainting Algorithm for Natural Scene Image 

Completion.” - Journal of Information Engineering and 

Applications. ISSN 2224-5758 (print) ISSN 2224-

896X Vol 1, No.1, 2011.  

[3] Antonio Criminisi, Patrick Pérez, and Kentaro 

Toyama. Region filling and object removal by 

exemplar-based image inpainting. Image Processing, 

IEEETransactions on, 13(9):1200–1212, 2004. 

[4] N.Neelima1, M.Arulvan,”Object Removal by 

Region Based Filling Inpainting”,978-1-4673-5301-

4/13,IEEE,2013.  

[5] Kohler, R., Schuler, C., Scholkopf, B., Harmeling, 

S.: Mask-specific inpainting with deep neural 

networks. In: German Conference on Pattern 

Recognition, Springer(2014) 523-534 

[6] Xie, J., Xu, L., Chen, E.: Image denoising and 

inpainting with deep neural networks. 

In: Advances in Neural Information Processing 

Systems. (2012) 341-349 

[7] N.Neelima1, M.Arulvan,”Object Removal by 

Region Based Filling Inpainting”,978-1-4673-5301-

4/13,IEEE,2013.  

 

Mounika Yamani is pursuing his 

Masters of Technology in CVR 

College of Engineering 

Hyderabad, India in Computer 

Science and Engineering 

specialization. she will complete 



 

International Journal of Research 
Available at https://journals.pen2print.org/index.php/ijr/  

 

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 
Volume 06 Issue 09 

August 2019 

 

 

Available online: https://journals.pen2print.org/index.php/ijr/  P a g e  | 441   

       her PG in 2019. 

M.Raghava is working as  Associate  Professor in 

Department of Computer Science and Engineering  at 

CVR College of Engineering, Hyderabad.   


