

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 85

Review paper on Coupling and Cohesion

Neelima Saini & Sunita Mandal
Dronacharya college of Engineering, Gurgaon

neelimasaini1994@gmail.com, coolsunitamandal@gmail.com

1. Introduction

software engineering (SE) has attempted to use

software measures and models to reduce

complexity, and thereby achieve other goals, such

as greater productivity. However, complexity

cannot always be reduced Coupling is usually

contrasted with cohesion. Low coupling often

correlates with high cohesion, and vice versa.

Low coupling is often a sign of a well-

structured computer system and a good design,

and when combined with high cohesion, supports

the general goals of high readability and

maintainability.Cohesion is an ordinal type of

measurement and is usually described as “high

cohesion” or “low cohesion”. Modules with high

cohesion tend to be preferable because high

cohesion is associated with several desirable

traits of software including robustness,

reliability, reusability, and understandability

whereas low cohesion is associated with

undesirable traits such as being difficult to

maintain, test, reuse, and even understand. The

objective of this paper is to understand how

software design decisions affect the structural

complexity of software. This is important because

variations in the structural complexity of software

can cause changes in managerial factors of

interest, such as effort and quality.

This paper makes a number of research and

practical contributions. The critical role of the

concepts of coupling and cohesion in structuring

software is theoretically established. This assists

in moving from a general notion of software

structure to an understanding of specific factors

of structural complexity. Complexity analysis

typically proceeds by considering coupling and

cohesion independently. Based on theoretical and

empirical evidence, this research argues that they

must be considered together when designing

software in order to effectively control its

structural complexity.By studying software at

higher levels the effect of design decisions across

the entire life cycle can be more easily recognized

and rectified.

2 Abstract

This research examines the structural complexity

of software, and specifically the potential

interaction of the two most important structural

complexities: coupling and cohesion .Coupling

and Cohesion are the two terms which very

frequently occur together. The coupling is an

important aspect in the evaluation of reusability

and maintainability of components or services.

The coupling metrics find complexity between

inheritance and interface programming.

in software engineering, coupling is the manner

and degree of interdependence between software

modules; a measure of how closely connected two

routines or modules are;
[1]

 the strength of the

relationships between modules. In computer

programming, cohesion refers to the degree to

which the elements of a module belong together.

Thus, it is a measure of how strongly related each

piece of functionality expressed by the source

code of a software module is. The theory-driven

approach taken in this research considers both

the task complexity model and cognition and

lends significant support to the developed model

for software complexity. Furthermore,

examination of the task complexity model steers

this paper towards considering complexity in the

holistic sense of an entire program, rather than of

a single program unit, as is conventionally done

Keywords-

Software complexity; software structure; task

complexity; coupling; cohesion

mailto:neelimasaini1994@gmail.com
http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Level_of_measurement#Ordinal_scale
http://en.wikipedia.org/wiki/Robustness_(computer_science)
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Coupling_%28computer_programming%29#cite_note-ISO_24765-1
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Module_(programming)

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 86

3 Conceptual Background

 It is widely believed that software complexity

cannot be described using a single dimension.

The search for a single, all encompassing

dimension has been likened to the “search for the

Holy Grail”. To find such a dimension would be

like trying to gauge the volume of a box by its

length, rather than a combination of length,

breadth, and height. Early attempts to determine

the key dimensions of software complexity have

included identifying factors in single or small

numbers based on observing programmers in the

field or adapting, refining, and/or improving

existing factors.

3.1 Performance using coupling

Whether loosely or tightly coupled, a system's

performance is often reduced by message and

parameter creation, transmission, translation (e.g.

marshaling) and message interpretation (which

might be a reference to a string, array or data

structure), which require less overhead than

creating a complicated message such as

a SOAP message. Longer messages require more

CPU and memory to produce. To optimize

runtime performance, message length must be

minimized and message meaning must be

maximized.

3.2 Message Transmission Overhead and

Performance

Since a message must be transmitted in

full to retain its complete meaning,

message transmission must be optimized.

Longer messages require more CPU and

memory to transmit and receive. Also,

when necessary, receivers must

reassemble a message into its original

state to completely receive it. Hence, to

optimize runtime performance, message

length must be minimized and message

meaning must be maximized.

Message Translation Overhead and

Performance

Message protocols and messages

themselves often contain extra

information (i.e., packet, structure,

definition and language information).

Hence, the receiver often needs to

translate a message into a more refined

form by removing extra characters and

structure information and/or by

converting values from one type to

another. Any sort of translation increases

CPU and/or memory overhead. To

optimize runtime performance, message

form and content must be reduced and

refined to maximize its meaning and

reduce translation.

Message Interpretation Overhead and

Performance

All messages must be interpreted by the

receiver. Simple messages such as

integers might not require additional

processing to be interpreted. However,

complex messages such

asSOAP messages require a parser and a

string transformer for them to exhibit

intended meanings. To optimize runtime

performance, messages must be refined

and reduced to minimize interpretation

overhead.

The degree of coupling and its relation to

efficiency of energy conversion in multiple-

flow systems

The description of systems of two coupled flows

in terms of their “degree of coupling” (Kedem &

Caplan, 1965) is extended to systems in which

more than two coupled flows occur. The degree

of coupling between any pair of flows is defined,

and related to a generalized overall degree of

coupling between sets of flows. As in two-flow

systems, it is uniquely related to the maximum

efficiency of energy conversion; this is by virtue

of the fact that the overall degree of coupling,

although not in general independent of the forces

or the flows, reaches a maximum value defined

by the phenomenological matrix in a particular

series of stationary states. These “maximum

coupling states” are states of minimal entropy

production under conditions of energy

conversion, and include as limiting cases the

states previously described as static head and

level flow

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/SOAP

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 87

3.3 Coupling And Cohesion

Given two lines of code, A and B, they

are coupled when B must change behavior only

because A changed.

They are cohesive when a change to A allows B

to change so that both add new value.

The difference between CouplingAndCohesion is

a distinction on a process of change, not a static

analysis of code's quality

 Does "must change behavior" refer to

source code changes, or run-time results?

 It refers to explicit modification of

behavior - i.e. the source code.

Automatically adapting run-time results

in a value-added way more closely

matches the concept of cohesion, below.

'Coupling' is more readily identified by

the way things break. Consider: the only

reason your B "must" change behavior as

cause of A changing is that the change to

A broke the behavior of B.

It's my summary judgement that "change" is too

open-ended to make this a rigorous concept, a

discussed below. There's an effectively infinite

way any given module can "change". One has to

first "tame" and classify "change" as a

prerequisite to rigor-tizing C-and-C if it's tied to

the term "change". --top

The rubric is chosen to give the term the most

value in an AgileSoftwareDevelopment context;

hardening code against bugs by pushing C1 down

& C2 up.

These are some of the better-defined qualities that

separate good software from bad software.

Although they were formalized during the

invention of StructuredProgramming, they apply

exactly as well toObjectOrientedProgramming as

to any other kind.

Cohesion of a single module/component is the

degree to which its responsibilities form a

meaningful unit; higher cohesion is better.

 Someone had vague reference to

decomposability here. Clarification?

 How about: 'Cohesion is inversely

proportional to the number of

responsibilities a module/component has.'

Coupling between modules/components is their

degree of mutual interdependence; lower

coupling is better.

 size: number of connections between

routines

 intimacy: the directness of the connection

between routines

 visibility: the prominence of the

connection between routines

 flexibility: the ease of changing the

connections between routines

A first-order principle of software architecture is

to increase cohesion and reduce coupling.

4 Conclusion

Low Coupling and High Cohesion are as you

may see very related to each other. Both leads to

a better and less fragile systems where the

maintainability, testing and good reuse are

favoured. Separation of Concerns is a principle or

mechanism that would help us achieving this

goal.

5 References

[1] Shikha Gautam et al, Int.J.Computer

Technology & Applications,Vol 4 (1),155-161

[2] Journal of Software Engineering and

Applications, 2012, 5, 671-676

http://dx.doi.org/10.4236/jsea.2012.59079

Published Online September 2012

(http://www.SciRP.org/journal/jsea)

[3] I. Vanderfeesten, H. A. Reijers and W. M. P.

van der Aalst, “Evaluating Workflow Process

Designs Using Cohesion and Coupling Metrics,”

http://c2.com/cgi/fullSearch
http://c2.com/cgi/wiki?CouplingAndCohesion
http://c2.com/cgi/wiki?AgileSoftwareDevelopment
http://c2.com/cgi/wiki?StructuredProgramming
http://c2.com/cgi/wiki?ObjectOrientedProgramming
http://www.scirp.org/journal/jsea

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 88

Computers in Industry, Vol. 59, No. 5, 2008, pp.

420-437. doi:10.1016/j.compind.2007.12.007

[4] T. M. Meyers and D. Binkley, “An Empirical

Study of Slice-Based Cohesion and Coupling

Metrics,” ACM Transactions on Software

Engineering and Methodology, Vol. 17, No. 1,

2007, Article No. 2.

[5]ISO/IEC/IEEE 24765:2010 Systems and

software engineering — Vocabulary

[6] ISO/IEC TR 19759:2005, Software

Engineering — Guide to the Software

Engineering Body of Knowledge (SWEBOK)

[7] F. Beck, S. Diehl. On the Congruence of

Modularity and Code Coupling. In Proceedings

of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of

Software Engineering (SIGSOFT/FSE '11),

Szeged, Hungary, September

2011. doi:10.1145/2025113.2025162

[8] Pressman, Roger S. Ph.D. (1982). Software

Engineering - A Practitioner's Approach - Fourth

Edition. ISBN 0-07-052182-4

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F2025113.2025162
http://en.wikipedia.org/wiki/Special:BookSources/0070521824

