

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 649

Software Testing Fundamentals: Levels, Types And Methods

Mithelesh Parihar

Research Scholar

Sun Rise University Alwar (Rajasthan)

&

Dr. Anu Bharti

Associates Professor

Department of Computer Science & Engineering

Sun Rise University Alwar (Rajasthan)

ABSTRACT

Software testing is an integral part of the software development life cycle (SDLC).Software

testing fundaments is an important for assessing the quality of software products which includes

software testing techniques. In this paper the methodology, levels and types of software testing

are discussed.The methodologies approach for testing techniques and the strategies of writing

fewer test plans, test cases areusing possible templates for writing repeatable and defined test

cases. In this Paper I will explain the basics of software testing, a verification and validation

practice, throughout the entire software development lifecycle. The aim and objectives of the

research work is to investigate software testing for support which is provided to the test plans,

test design and test cases for software testing fundamentals.

Keywords: Software Testing, Software Testing Fundamentals, SDLC, Verification,

Validation, Bug Life Cycle, Test Plans, Test Cases.

I. INTRODUCTION TO SOFTWARE TESTING

Software testing is an investigation conducted to provide stakeholders with information about the

quality of the product or service under test.Software testing can also provide an objective,

independent view of the software to allow the business to appreciate and understand the risks of

software implementation. Test techniques include the process of executing a program or

application with the intent of finding software bugs (errors or other defects). Software testing can

provide objective, independent information about the quality of software and risk of its failure to

users and/or sponsors. Software testing can be conducted as soon as executable software (even if

partially complete) exists: Pressman (2001). The overall approach to software development

determines when and how testing is conducted. For example, in a phased process, most testing

occurs after system requirements have been defined and then implemented in testable programs.

In contrast, under an Agile approach, requirements, programming, and testing are often done

concurrently. Software testing is the process of analyzing a software item to detect the

differences between existing and required conditions i.e. bugs. Software testing is an activity that

should be done throughout the whole development process Software testing is one of the

verification and validation.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 650

Verification is the process of evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that phase.

Validation is the process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements.Software

Development Life Cycle (SDLC) is a procedural process in the development of a software

product. This process is carried out in a series of steps, which explains the whole idea behind the

development of a software product for the testing fundamental concepts.

II. RESEARCH METHODOLGY

This chapter focuses on software testing fundamentals. Software testing can applied to all types

of methods and levels for testing purpose.Software testing is a process that should be done

during the development process. In other words software testing is a verification and validation

process:Myers (2004). Testing is the process of evaluating a system or its components with the

intent to find whether it satisfies the specified requirements or not. Software testing is a vast area

that consists various technical and non-technical areas such as requirement specifications,

maintenance, process, design and implementation, and management issues in software

engineering:Hayes and Offutt (1999). Testing is executing a system in order to identify any

gaps, errors, or missing requirements in contrary to the actual requirements. Software testing

fundamentals will give us a basic understanding on software testing, its types, methods, levels,

and other related terminologies.

III. SOFTWARE TESTING LEVELS

There are different levels during the process of testing. Levels of testing include different

methodologies that can be used while conducting software testing. The main levels of software

testing are as follows:

 Functional Testing

 Non-functional Testing

(a) Functional Testing

This is a type of black-box testing that is based on the specifications of the software that is to be

tested: Beizer(1995).The application is tested by providing input and then the results are

examined that need to conform to the functionality it was intended for. Functional testing of a

software is conducted on a complete, integrated system to evaluate the system's compliance

with its specified requirements.

Unit Testing: In this testing level, individual sections or parts of software or product to being

tested. The idea of this is to confirm every parts or unit of the product after the test: Jorgensen

(2002).

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 651

Integration Testing: In this software testing level, individual parts need to combine as well as

a test as a single cluster. The main idea of this testing level is for exposing the faults while

interacting between integrated units of the project: Jorgensen (2002).

System Testing: In this software testing level, the whole, integrated software or project is

tested. The principle for this testing is to assess the system's conformity with its intended

requirements: Jorgensen (2002).

Acceptance Testing: At this software testing level, a system needs to be tested for adequacy.

This test is purposefully done for evaluating the compliance of the system with business its

requirements: Jorgensen (2002).

Fig. 1 Testing Levels

As a result, most organizations have independent testing groups to perform software testing

levels. There are four main levels involved while testing an application for functional testing of

software as shown in Fig.1 and summary of software testing levels as shown in Table 1.

Table 1: Summary of Software Testing Levels

Level Summary

Unit Testing

 A level of the software testing process where individual units/components of a

software/system are tested. The purpose is to validate that each unit of the

software performs as designed.

Integration

Testing

A level of the software testing process where individual units are combined and

tested as a group. The purpose of this level of testing is to expose faults in the

interaction between integrated units.

System

Testing

A level of the software testing process where a complete, integrated

system/software is tested. The purpose of this test is to evaluate the system‟s

compliance with the specified requirements.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 652

Acceptance

Testing

A level of the software testing process where a system is tested for acceptability.

The purpose of this test is to evaluate the system‟s compliance with the business

requirements and assess whether it is acceptable for delivery.

(b) Non-Functional Testing

This section is based upon testing an application from its non-functional attributes. Non-

functional testing involves testing a software from the requirements which are nonfunctional in

nature but important such as performance, security, user interface, etc.

Some of the important and commonly used non-functional testing types are discussed below.

Performance Testing:It is mostly used to identify any bottlenecks or performance issues rather

than finding bugs in a software. Performance testing can be either qualitative or quantitative and

can be divided into different sub-types such as Load testing and Stress testing.

Load Testing:It is a process of testing the behavior of a software by applying maximum load in

terms of software accessing and manipulating large input data. It can be done at both normal

and peak load conditions. This type of testing identifies the maximum capacity of software and

its behavior at peak time. Most of the time, load testing is performed with the help of automated

tools such as Load Runner, AppLoader, IBM Rational Performance Tester, Apache JMeter, Silk

Performer, Visual Studio Load Test, etc.

Stress Testing:Stress testing includes testing the behavior of a software under abnormal

conditions. For example, it may include taking away some resources or applying a load beyond

the actual load limit.The aim of stress testing is to test the software by applying the load to the

system and taking over the resources used by the software to identify the breaking point.

Usability Testing: Usability testing is a black-box technique and is used to identify any error(s)

and improvements in the software by observing the users through their usage and operation.

According to usability can be defined in terms of five factors, i.e. efficiency of use, learn-ability,

memory-ability, errors/safety, and satisfaction.

Security Testing: Security testing involves testing a software in order to identify any flaws and

gaps from security and vulnerability point of view.

Portability Testing: Portability testing includes testing a software with the aim to ensure its

reusability and that it can be moved from another software as well. The strategies that can be

used for portability testing as follows below:

 Transferring an installed software from one computer to another.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 653

 Building executable (.exe) to run the software on different platforms.

Portability testing can be considered as one of the sub-parts of system testing, as this testing

type includes overall testing of a software with respect to its usage over different environments.

Computer hardware, operating systems, and browsers are the major focus of portability testing.

Some of the pre-conditions for portability testing are as follows:

 Software should be designed and coded, keeping in mind the portability requirements.

 Unit testing has been performed on the associated components.

 Integration testing has been performed.

 Test environment has been established.

Compatibility Testing: It is testing type in which it validates how software behaves and runs in

a different environment, web servers, hardware and network environment. Compatibility testing

ensures that software can run on a different configuration, different database, different browsers,

and their versions. Compatibility testing is performed by the testing team.

IV. SOFTWARE TESTING TYPES

Software testing type is a classification of different testing activities into categories, each

having:Myers (2004), a defined test objective, test strategy, and test deliverables. The goal of

having a testing type is to validate the Application Under Test (AUT) for the defined test

objective of quality software product shown in Table 2.

Table 2: Summary of Software Testing Types

Type Summary

Smoke Testing Smoke Testing, also known as “Build Verification Testing”, is a type of

software testing that comprises of a non-exhaustive set of tests that aim

at ensuring that the most important functions work.

Functional Testing Functional Testing is a type of software testing whereby the system is

tested against the functional requirements/specifications.

Usability Testing Usability testing is a type of testing done from an end-user‟s

perspective to determine if the system is easily usable.

Security Testing Security testing is a type of software testing that intends to uncover

vulnerabilities of the system and determine that its data and resources

are protected from possible intruders.

Performance Testing Performance testing is a type of software testing that intends to

determine how a system performs in terms of responsiveness and

stability under a certain load.

Regression Testing Regression testing is a type of software testing that intends to ensure

that changes (enhancements or defect fixes) to the software have not

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 654

adversely affected it.

Compliance Testing Compliance testing [also known as conformance testing, regulation

testing, standards testing] is a type of testing to determine the

compliance of a system with internal or external standards.

V. METHOLOGIES OF SOFTWARE TESTING

There are different methods that can be used for software testing. These methods are briefly

described in Table 3 as shown below:

Table 3: Methods of Software Testing

Methods Summary

Black Box Testing A software testing method in which the internal

structure/design/implementation of the item being tested is not known

to the tester. These tests can be functional or non-functional, though

usually functional. Test design techniques include: Equivalence

partitioning, Boundary Value Analysis, Cause Effect Graphing.

White Box Testing A software testing method in which the internal

structure/design/implementation of the item being tested is known to

the tester. Test design techniques include: Control flow testing, Data

flow testing, Branch testing, Path testing.

Grey Box Testing A software testing method which is a combination of Black Box

Testing method and White Box Testing method.

Agile Testing A method of software testing that follows the principles of agile

software development.

Ad-Hoc Testing A method of software testing without any planning and documentation.

(A)Black-Box Testing

(i) Black-Box Testing Fundamentals

Black Box Testing, also known as Functional Testing or Behavioral Testing, is a software

testing method in which the internal structure/ design/ implementation of the item being tested is

not known to the tester:Beizer (1995). These tests can be functional or non-functional, though

usually functional testing as shown in Fig. 2.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 655

Fig.2 Black Box Testing

(ii) Example

A tester, without knowledge of the internal structures of a website, tests the web pages by using a

browser; providing inputs and verifying the outputs against the expected outcome.

(iii) Levels Applicable to Black-Box Testing Methods

Black Box Testing method is applicable to the following levels of software testing:

 Integration Testing

 System Testing

 Acceptance Testing

The higher the level, and hence the bigger and more complex the box, the more black box testing

method comes into use.

(iv) Black-Box Testing Techniques

Following are some techniques that can be used for designing black box tests.

 Equivalence partitioning: It is a software test design technique that involves dividing

input values into valid and invalid partitions and selecting representative values from

each partition as test data.

 Boundary Value Analysis: It is a software test design technique that involves

determination of boundaries for input values and selecting values that are at the

boundaries and just inside/ outside of the boundaries as test data.

 Cause Effect Graphing: It is a software test design technique that involves identifying

the cases (input conditions) and effects (output conditions), producing a Cause-Effect

Graph, and generating test cases accordingly.

 (v)Black-Box Testing Advantages

Tests are done from a user‟s point of view and will help in exposing discrepancies in the

specifications.

 Tester need not know programming languages or how the software has been

implemented.

 Tests can be conducted by a body independent from the developers, allowing for an

objective perspective and the avoidance of developer-bias.

 Test cases can be designed as soon as the specifications are complete.

(B) White-Box Testing

(i) White-Box Testing Fundamentals

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 656

White Box Testing (also known as Clear Box Testing, Open Box Testing, Glass Box Testing,

Transparent Box Testing, Code-Based Testing or Structural Testing) is a software testing

methods in which the internal structure/ design/ implementation of the item being tested is

known to the tester. The tester chooses inputs to exercise paths through the code and determines

the appropriate outputs. Programming know-how and the implementation knowledge is essential.

White box testing is testing beyond the user interface and into the nitty-gritty of a system. This

method is named so because the software program, in the eyes of the tester, is like a white/

transparent boxinside which one clearly sees.

(ii)Example

A tester, usually a developer as well, studies the implementation code of a certain field on a

webpage, determines all legal (valid and invalid) AND illegal inputs and verifies the outputs

against the expected outcomes, which is also determined by studying the implementation

code.White Box Testing is like the work of a mechanic who examines the engine to see why the

car is not moving.

(iii)Levels Applicable to White-Box Testing Methods

White Box Testing method is applicable to the following levels of software testing:

 Unit Testing: For testing paths within a unit.

 Integration Testing: For testing paths between units.

 System Testing: For testing paths between subsystems.

Levels applicable for the white box testing is mainly unit testing.

(iv)White-Box Testing Advantages

 Testing can be commenced at an earlier stage. One need not wait for the GUI to be

available.

 Testing is more thorough, with the possibility of covering most paths.

(v)White-Box Testing Disadvantages

 Since tests can be very complex, highly skilled resources are required, with thorough

knowledge of programming and implementation.

 Test script maintenance can be a burden if the implementation changes too frequently.

 Since this method of testing it closely tied with the application being testing, tools to

cater to every kind of implementation/platform may not be readily available.

(C)Gray Box Testing

(i)Gray-Box Testing Fundamentals

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 657

Gray Box Testing is a software testing method which is a combination of Black-Box testing

method and white-Box testing method. In Black-Box testing, the internal structure of the item

being tested is unknown to the tester and in White-Box testing the internal structure in known. In

Gray-Box testing, the internal structure is partially known. This involves having access tointernal

data structures and algorithms for purposes of designing the test cases, but testing at the user, or

black-box level.Mathur (2008). Gray Box Testing is named so because the software program, in

the eyes of the tester is like a gray or semi-transparent box inside which one can partially in this

testing.

(ii)Example

An example of Gray Box Testing would be when the codes for two units/ modules are studied

(White Box Testing method) for designing test cases and actual tests are conducted using the

exposed interfaces (Black Box Testing method).

(iii) Levels Applicable to Grey-Box Testing Methods

Though Gray Box Testing method may be used in other levels of testing, it is primarily useful

in integration testing.

(D)Agile Testing

(i)Agile Testing Fundamentals

This article on Agile Testing assumes that you already understand Agile software development

methodology (Scrum, Extreme Programming, or other flavors of Agile). Also, it discusses the

idea at a high level and does not give you the specifics.Agile Testing is method of software

testing that follows the principles of agile software development:Ghazali (2011).

(ii) Manifesto For Agile Software Testing

This is adapted from agilemanifesto.org and it might look a little silly to copy everything from

there and just replace the term development with testing but here it is for your refreshment. We

need to however realize that the term development means coding, testing and all other activities

that are necessary in building a valuablesoftware:Martin (2003).

(iii)Agile Testing Values Explained

 Individuals and interactions over processes and tools: This means that flexible people

and communication are valued over rigid processes and tools. This does not mean that

agile testing ignores processes and tools. In fact, agile testing is built upon very simple,

strong and reasonable processes like the process of conducting the daily meeting or

preparing the daily build. Similarly, agile testing attempts to leverage tools, especially for

test automation, as much as possible.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 658

 Working software over comprehensive documentation: This means that functional

and usable software is valued over comprehensive but unusable documentation. Though

this is more directed to upfront requirement specifications and design specifications, this

can be true for test plans and test cases as well. It is always best to have necessary

documentation in place so that the picture is clear and the „picture‟ remains with the team

if/ when a member leaves.

 Customer collaboration over contract negotiation: This means that the client is

engaged frequently and closely in touch with the progress of the project (not through

complicated progress reports but through working pieces of software). This does put

some extra burden on the customer who has to collaborate with the team at regular

intervals instead of just waiting till the end of the contract, hoping that deliveries will be

made as promised.

 Responding to change over following a plan: This means accepting changes as being

natural and responding to them without being afraid of them. It is always nice to have a

plan beforehand but it is not very nice to stick to a plan, at whatever the cost, even when

situations have changed. We write a test case, which is our plan, assuming a certain

requirement. Now, if the requirement changes, you do not lament over the wastage of our

time and effort. Instead, you promptly adjust our test case to validate the changed

requirement.

(iv)Principles Behind Agile Manifesto

Behind the Agile Manifesto are the following principles which some agile practitioners

unfortunately fail to understand or implement:Lisa and Janet (2009). We urge you to go

through each principle and digest them thoroughly if you intend to embrace Agile Testing. On

the right column, the original principles have been re-written in Table 4. specifically for software

testers.

Table 4: Principles Behind Agile Manifesto

We follow these principles: What it means for Software Testers:

Our highest priority is to satisfy the

customer through early and continuous

delivery of valuable software.

Our highest priority is to satisfy the customer

through early and continuous delivery of high-

quality software.

Welcome changing requirements, even

late in development. Agile processes

harness change for the customer‟s

competitive advantage.

Welcome changing requirements, even late

in testing. Agile processes harness change for the

customer‟s competitive advantage.

Deliver working software frequently, from Deliver high-quality software frequently, from a

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 659

a couple of weeks to a couple of months,

with a preference to the shorter timescale.

couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must

work together daily throughout the

project.

Business people, developers, and testers must work

together daily throughout the project.

Build projects around motivated

individuals. Give them the environment

and support they need, and trust them to

get the job done.

Build test projects around motivated individuals.

Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of

conveying information to and within a

development team is face-to-face

conversation.

The most efficient and effective method of

conveying information to and within a test team is

face-to-face conversation.

Working software is the primary measure

of progress.

Working high-quality software is the primary

measure of progress.

Agile processes promote sustainable

development. The sponsors, developers,

and users should be able to maintain a

constant pace indefinitely.

Agile processes promote sustainable development

and testing. The sponsors, developers, testers, and

users should be able to maintain a constant pace

indefinitely.

Continuous attention to technical

excellence and good design enhances

agility.

Continuous attention to technical excellence and

good test design enhances agility.

Simplicity–the art of maximizing the

amount of work not done–is essential.

Simplicity–the art of maximizing the amount of

work not done–is essential.

The best architectures, requirements, and

designs emerge from self-organizing

teams.

The best architectures, requirements, and designs

emerge from self-organizing teams.

At regular intervals, the team reflects on

how to become more effective, then tunes

and adjusts its behavior accordingly.

At regular intervals, the test team reflects on how

to become more effective, then tunes and adjusts

its behavior accordingly.

(E)Ad-hoc Testing

(i)Ad-hocTesting Fundamentals

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 660

Ad-hoc Testing, also known as Random Testing or Monkey Testing, is a method of software

testing without any planning and documentation. The tests are conducted informally and

randomly without any formal expected results.Though defects found using this method are more

difficult to reproduce written test cases. The success of Ad- hoc testing depends on the creativity

and tenacity of the tester.

(ii)Test Case

a. Test case Fundamentals

A test case is a set of conditions or variables under which a tester will determine whether a

system under test satisfies requirements or works correctly.The process of developing test cases

can also help find problems in the requirements or design of an application.

b. Test Case Template

A test case can have the following elements. Note, however, that normally a test management

tool is used by companies and the format is determined by the tool used in Table 5.

Table 5: Test Case Format

Test Suite ID The ID of the test suite to which this test case belongs.

Test Case ID The ID of the test case.

Test Case

Summary
The summary / objective of the test case.

Related

Requirement
The ID of the requirement this test case relates/traces to.

Prerequisites
Any prerequisites or preconditions that must be fulfilled prior to executing

the test.

Test Procedure Step-by-step procedure to execute the test.

Test Data
The test data, or links to the test data, that are to be used while conducting

the test.

Expected Result The expected result of the test.

Actual Result The actual result of the test; to be filled after executing the test.

Status
Pass or Fail. Other statuses can be „Not Executed‟ if testing is not performed

and „Blocked‟ if testing is blocked.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 661

Remarks Any comments on the test case or test execution.

Created By The name of the author of the test case.

Date of Creation The date of creation of the test case.

Executed By The name of the person who executed the test.

Date of

Execution
The date of execution of the test.

Test

Environment

The environment (Hardware/Software/Network) in which the test was

executed.

Note, however, that normally a test management tool is used by companies and the format is determined

by the tool used and test case samples shown in Table 6.

(c). Test Case Samples

Table 6: Test Case Samples

Test Suite ID TS001

Test Case ID TC001

Test Case

Summary
To verify that clicking the Generate Coin button generates coins.

Related

Requirement
RS001

Prerequisites

1. User is authorized.

2. Coin balance is available.

Test Procedure

1. Select the coin denomination in the Denomination field.

2. Enter the number of coins in the Quantity field.

3. Click Generate Coin.

Test Data 1. Denominations: 0.05, 0.10, 0.25, 0.50, 1, 2, 5

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 662

2. Quantities: 0, 1, 5, 10, 20

Expected Result

1. Coin of the specified denomination should be produced if the

specified Quantity is valid (1, 5)

2. A message „Please enter a valid quantity between 1 and 10 should be

displayed if the specified quantity is invalid.

Actual Result

1. If the specified quantity is valid, the result is as expected.

2. If the specified quantity is invalid, nothing happens; the expected

message is not displayed

Status Fail

Remarks This is a sample test case.

Created By John Doe

Date of Creation 01/14/2020

Executed By Jane Roe

Date of

Execution
02/16/2020

Test

Environment

 OS: Windows 7

 Browser: Chrome

(d). Writing Good Test Cases

 As far as possible, write test cases in such a way that you test only one thing at a time. Do

not overlap or complicate test cases..

 Ensure that all positive scenarios and negative scenarios are covered.

 Language:

 Write in simple and easy to understand language.

 Use active voice: Do this, do that.

 Use exact and consistent names (of forms, fields, etc.).

 Characteristics of a good test case:

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 663

 Accurate: Exacts the purpose.

 Economical: No unnecessary steps or words.

 Traceable: Capable of being traced to requirements.

 Repeatable: Can be used to perform the test over and over.

 Reusable: Can be reused if necessary.

(e)Typical Structure of a Test case:

A formal written test case can be divided into three main parts:

 Information:Information consists of general information about the test case such

as a case identifier, case creator info, test case version, formal name of the test

case, purpose or brief description of the test case and test case dependencies. It

should also include specific hardware and software requirements and setup or

configuration requirements.

 Activities: This part consists of the actual test case activities such as the

environment that should exist during testing, activities to be done at the

initialization of the test, activities to be done after test case is performed, step-by-

step actions to be done while testing and the input data that is to be supplied for

testing.

 Results:Results are the outcomes of a performed test case. Result data consists of

information about expected results, which is the criteria necessary for the

program to pass the test and the actual recorded results.

VI. BUG LIFE CYCLE OF A SOFTWARE TESTING

Bug Life Cycle (Defect Life cycle) is the journey of a defect from its identification to its

closure. The Life Cycle varies from organization to organization and is governed by the

software testing process the organization or project follows and/or the Defect tracking tool

being used: Craig and Jaskiel (2002).The bug should go through the life cycle to be closed.

Bug life cycle varies depends upon the tools (QC, Bugzilla, JIRA etc.) used and the process

followed in the organization. A software bug is an error, flaw, failure or fault in a computer

program or system that causes it to produce an incorrect or unexpected result, or to behave in

unintended ways. Most bugs are due to human errors in source code or its design.The flow

chart for the bug life cycle is shown in Fig.3.

(i) Bug: Actually bugs are faults in system or application which impact on software

functionality and performance. Usually bugs are found in unit testing by testers.

(ii) Defect: It is found when the application does not conform to the requirement

specification. A defect can also be found when the client or user is testing.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 664

Fig. 3 Bug Life Cycle

Table 7: Review of Bug Life Cycle

Status Alternative Status

NEW

ASSIGNED OPEN

DEFERRED

DROPPED REJECTED

COMPLETED FIXED, RESOLVED, TEST

REASSIGNED REOPENED

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 665

CLOSED VERIFIED

(i) Defect Status Explanation

 NEW: Tester finds a defect and posts it with the status NEW. This defect is yet to be

studied/approved. The fate of a NEW defect is one of ASSIGNED, DROPPED and

DEFERRED.

 ASSIGNED / OPEN: Test / Development / Project lead studies the NEW defect and if it

is found to be valid it is assigned to a member of the Development Team. The assigned

Developer‟s responsibility is now to fix the defect and have it COMPLETED.

Sometimes, ASSIGNED and OPEN can be different statuses. In that case, a defect can be

open yet unassigned.

 DEFERRED: If a valid NEW or ASSIGNED defect is decided to be fixed in upcoming

releases instead of the current release it is DEFERRED. This defect is ASSIGNED when

the time comes.

 DROPPED / REJECTED: Test / Development/ Project lead studies the NEW defect and

if it is found to be invalid, it is DROPPED / REJECTED. Note that the specific reason for

this action needs to be given.

 COMPLETED / FIXED / RESOLVED / TEST: Developer „fixes‟ the defect that is

ASSIGNED to him or her. Now, the „fixed‟ defect needs to be verified by the Test Team

and the Development Team „assigns‟ the defect back to the Test Team. A COMPLETED

defect is either CLOSED, if fine, or REASSIGNED, if still not fine.

 If a Developer cannot fix a defect, some organizations may offer the following statuses:

 Won‟t Fix / Can‟t Fix: The Developer will not or cannot fix the defect due to

some reason.

 Can‟t Reproduce: The Developer is unable to reproduce the defect.

 Need More Information: The Developer needs more information on the defect

from the Tester.

 REASSIGNED / REOPENED: If the Tester finds that the „fixed‟ defect is in fact not

fixed or only partially fixed, it is reassigned to the Developer who „fixed‟ it. A

REASSIGNED defect needs to be COMPLETED again.

 CLOSED / VERIFIED: If the Tester / Test Lead finds that the defect is indeed fixed and

is no more of any concern, it is CLOSED / VERIFIED.

(ii) Summary of Bug life Cycle for Software Testing

In the end the software products bug free and ready for release after all issues are fixed by the

testing team using tools in defect life cycle. Finally when code freeze done by project managers

through collaborative team members and meet goals on time while managing resources and

cost:Pressman (2001). Functions may include task distribution, time tracking, budgeting,

resource planning, team collaboration, and many more resource tools and develop resource

estimates. The project manager has the capacity to help in making plan, organize, and manage

resource tools and develop resource estimates and ready for release products.This is the happy

ending.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 666

(iii) Guidelines for Defect/ Bug Life cycle of a Software Testing are as follows:

 Make sure the entire team understands what each defect status exactly means. Also, make

sure the defect life cycle is documented.

 Ensure that each individual clearly understands his/her responsibility as regards each

defect.

 Ensure that enough detail is entered in each status change. For example, do not simply

DROP a defect but provide a reason for doing so in testing process.

 If a defect tracking tool is being used, avoid entertaining any defect related requests

without an appropriate change in the status of the defect in the tool:Pressman (2001). Do

not let anybody take shortcuts. Or else, we will never be able to get up-to-date and

reliable defect metrics for analysis.

VII. CONCLUSIONS

In this chapter, we learned that complete, exhaustive Software testing fundamentals and

techniques. Software testing is an important step in a product's life cycle, as it will determine

whether a product works correctly and efficiently according to the requirements of customers.

Software testing is a process used to identify the correctness, completeness and quality

developed computer software. There are good software engineering strategies, such as

equivalence class partitioning and boundary value analysis, for writing test cases that will

maximize our chance of uncovering as many defects as possible with a reasonable amount of

testing. It is most prudent to plan your test cases as early in the development cycle as possible, as

a beneficial extension of the requirements gathering process. Several practical tips for methods,

types and levels of testing were presented throughout this chapter. Methodologies testing has

been automation for developer as well for tester who has knowledge of the inner workings of the

software testing. Software testing is any activity. Good testing also requires a tester's creativity,

experience and intuition, together with proper techniques.Lastly, we learned the benefits of

partnering with a customer to write the acceptance test cases and to automate the execution of

these (and other test cases) to form compileable and executable documentation of the system

REFERENCES

1. Beizer, B. (1995), “Black-Box Testing: Techniques for Functional Testing of

Software and Systems”, New York: John Wiley & Sons, Inc., 2
nd

 Edition,Vol.2, Issue

1, pp .16-20.

2. Craig, R. D and Jaskiel, S. P. (2002),”Systematic Software Testing”. Norwood, MA:

Artech House Publishers.

3. Ghazali, Umer. W. (2011), “ Software Testing: Essential Skills for First Time Tests:

Software Quality Assurance: From scratch to end”, 2
nd

 Edition Vol. 3, No.1, pp. 25-

35.

4. Hayes, J. H and Offutt, A. J. (1999), “Increased software reliability through input

validation analysis and testing”. In Proceedings of Tenth IEEE International

Symposium on Software Reliability Engineering, Boca Raton, Florida, pp. 199 –209.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 06

May 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 667

5. Jorgensen, P. (2002), “Software testing: A Craftsman‟s Approach”, 2
nd

 Edition,

Auerbach Publications Boston, MA, USA, CRC Press, Volume 32, No.1, p. 167-171.

6. Lisa, Crispin and Janet Gregory. (2009), Agile Testing: A Practical Guide for Testers

and Agile Teams 1st Edition. Pearson Education Inc., Boston, MA, USA.

7. Mathur, A.P. (2008), “Foundation of Software Testing”, 1
st
 Edition, Published by

John Wiley & Sons, Inc., Hoboken, New Jersey, Pearson Education Inc.

8. Martin, R. C. (2003), Agile Software Development: Principles, Patterns, and

Practices. Upper Saddle River,1
st
 Edition, Prentice Hall, New Jersey

9. Myers, G. J. (2004), “The Art of Software Testing”, Second Edition” Published by

John Wiley & Sons, Inc., Hoboken, New Jersey.

10. Pressman, Roger S. (2001),“Software Engineering: A Practitioner's Approach”, 5
th

Edition, Boston: McGraw-Hill.

