

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 824

Constructing University Timetable using CSP Model
Nwe Nwe Hlaing, Mya Thet Nyo

nwe2hlaing@gmail.com, myatthetnyo05@gmail.com

Abstract:

Timetable problem is a well-known

multidimensional, constraint assignment problem

that focuses in the assignment of courses to faculty

members in classrooms within limited time slots.

Hence, it is a challenging time-consuming problem

facing universities and it belongs to the NP-hard

class of problems. In particular, universities

regularly need an optimal solution for the course

timetable problem. However, a manual solution to

this problem by considering all constraints usually

requires a long time and hard work to offer proper,

optimized solution. Specifically, timetabling problem

scan be modeled as Constraint satisfaction problems

(CSPs), which are combinatorial in nature. This

paper introduces a model that applies the

timetabling as a CSP model. The system is able to

produce a time table for UCS(Mandalay). The

proposed model is tested against real data obtained

from UCS (Mandalay) that has a so sophisticated

timetable with much interlaced, limited resources

and limited time slots.

Keywords

Constraint Satisfaction Problem (CSP) , university

timetabling (UTT) ,course timetabling (CTT),

Introduction

The timetabling problem consists of a set of

subjects to be scheduled in different timeslots, a set

of rooms in which the subjects can take place, a set

of students who attend the subjects, and a set of

subjects satisfied by rooms and required by timeslots.

The heart of the problem is the constraints that exist

as regulations within each resource and between

resources. There are various solution approaches to

solve the timetabling problem. This paper focuses on

developing a constraint satisfaction problem model

for a university timetabling problem. A solution of a

constraint satisfaction problem is a consistent

assignment of all variables to values in such a way

that all constraints are satisfied.

Indeed, timetabling is a multidimensional

assignment problem, which needs to be solved

regularly at educational institutions. It is the

assignment of courses to faculty members and the

assignment of these courses to classroom and time

slots [1] in a way that makes optimal use of the

available resources [2]. Such a timetable must satisfy

certain constraints such as no single teacher teaches

more than one class at the same time, no single room

is allocated for more than one class at the same time,

and so on. Further, it may try to achieve certain

objectives such as maximum utilization of

classrooms, assigning teachers to his or her preferred

courses, etc. Practically, a typical university

timetabling problem may comprise thousands of

courses, thousands of students, hundreds of

instructors, hundreds of classrooms and other

resources.

Moreover, timetabling problem has been

classified as NP-hard optimization problem (i.e., no

polynomial time algorithm is known to solve the

problem) [3], meaning that if all combinations were

to be examined, the time to solution for reasonable

problems would rise dramatically. Therefore, in

order to find optimal solutions to such problem, it is

necessary to consider all possible solutions to choose

the best one that satisfy a wide range of constraints,

preferences, and participants and it must be solved in

reasonable time.

Although, the university timetabling (UTT) is a

major, regular and complex administrative activity in

most academic institutions [3], only a few

organizations possess reliable automated timetable

solvers, and fewer still possess solvers that require

no manual intervention. However, most institutions

employ the knowledge and experience of expert

personnel with regard to the production of good

timetable that satisfy all given requirements.

Categorically, UTT problems can be classified into

two main categories: course timetabling (CTT)

problems and examination timetabling (ETT)

problems, each with its own sets of constraints and

requirements. The focus of this paper is on the CTT.

Therefore, lots of research has been invested in order

to provide automated support for solving a real-

world timetabling problem. Contributions come from

the fields of operations research (e.g., graph coloring,

network flow techniques) and artificial intelligence

(e.g., simulated annealing, tabu search, genetic

algorithms and constraint satisfaction [4]). Barták et

al. [5] surveyed the main definitions and techniques

of constraint satisfaction, planning and scheduling

from the Artificial Intelligence point of view.

Related Work

Regarding timetabling problems, many works

have been done to accomplish a good solution to

their using different operation research (OR) and

artificial intelligence (AI) approaches since fiftieth.

A large number of problems in AI and other areas of

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 825

computer science can be viewed as special cases of

the CSP [10]. In addition, many problems in OR fall

within the general framework of CSP [8]. The

development of effective solution techniques for

CSPs is an important research problem. Timetabling

problems are considered as combinatorial problems

in OR, which can be modeled as CSPs. Researchers

in AI usually assume constraint satisfaction

approaches as their preferred methods when

undertaking such problems [8].A variety of

approaches can be used to process the CSPs. For

instance, LP techniques can be applied to find an

exact solution. On the other hand, there are various

approaches provide an approximate solution,

including local search methods and neural networks

as a special purpose technique used for solving

CSPs.

There are many research works provide the usage

of constraint-based approaches. In these methods, the

events of a timetabling problem are modeled by a set

of variables to which values have to be assigned

subject to a number of constraints[11]. When the

propagation of the assigned values leads to an

infeasible solution, abacktracking process enables the

reassignment of value(s) until a solution is found that

satisfies all of the constraints. To begin with,

Abdennadher and Marte [12]showed how to model

the timetabling problem as a partial constraint

satisfaction problem and gave a concise finite

domain solver implemented with Constraint

Handling Rules that allows for making soft

constraints an active part of the problem solving

process. They improved efficiency by reusing parts

of the previous year’s timetable. Zhang and Lau [13]

developed a CSP model for a university timetabling

problem. They investigated a sample case study

problem and implemented an approach for constraint

satisfaction programming using ILOG Scheduler and

ILOG Solver. They used various goals in ILOG to

investigate the performance of the CSP approach.

Further, Ojugo et al. [14]build constraint satisfaction

models to search the space for the timetable

scheduling state and satisfies all constraints and

criteria that guarantee the reasoning process through

an explicit structure that conveys data about the

problem. They aimed to find a complete assignment

that satisfies certain constraints to yield a valid

schedule. In addition, they provided a study that

surveyed NP-complete task of academic timetabling

at the University of Benin, Nigeria and they adopted

a rule-based expert system to yield an initial solution

for the models. They showed that their models

yielded a valid schedule for the University of Benin

in Nigeria considering student preference, medium

constraints of high priority.

At the same time, there are various approaches

applied to the CTT problem including Linear

Programming (LP). LP is widely used for the

solution of timetabling problems, like Ribi and

Konjicija[15], Wattanamano, Thongsanit and

Hongsuwan[1] and Czibula et al. [16]. Other

approaches have been recently applied to solve the

CTT problem including heuristics and meta-

heuristic, graph coloring, network flows, genetic

algorithms and other OR and/or AI methods [17].

The approaches to solve timetabling

problem

The timetabling problem as a special case of

scheduling: “Timetabling is the allocation, subject to

constraints, of given resources to objects being

placed in space time, in such a way as to satisfy as

nearly as possible a set of desirable objectives.”

Timetabling problem is generally considered as a

resource allocation problem in Operations Research,

where resources of lecturers, students, classrooms

and subjects are to be allocated into timeslots of a

weekly timetable to achieve an objective function

subject to constraints among resources [18].

Timetabling problems is a type of assignment

problems with large amount of complex constraints,

thus usually can be easily modeled as constraint

satisfaction problems (CSP) [17]. The application for

solving the timetabling problem using constraint

satisfaction programming approach allows the

formulation of all the constraints of the problem in a

more declarative way than other approaches [13, 14].

Thus the CSP is particularly well suited for

timetabling problems, since it allows the formulation

of all constraints of the problem in a more

declarative way than other approaches. Constraint

satisfaction problem (CSP) deals with assignment of

values from its domains to each variable such that no

constraint is violated [18, 19]. CSP has three

components: variables, values and constraints. In

general, CSP consists of: a finite set of variable X =

{x1,…,xn} with respective domains D = {D1,…, n}

which list the possible values for each variable Di =

{vi,…,vk} and a set of constraints C = {C1, …, Ct}

[19, p.31]. The constraints limit the possible values

that a variable can have. A solution of a CSP is a

consistent assignment of all variables to values in

such a way that all the constraints are satisfied.

There are two approaches to solving CSP. One is

using the search algorithms and the other is using the

consistency technique. Consistency techniques have

been widely studied to simplify constraint network

before or during the search of solutions. Dechter [19]

defines arc-consistency as a process that ensures any

valid value in the domain of a single variable has a

valid match in the domain of any other variables in

the problem. Arc (Vi,Vj)is arc consistent if for every

value x in the current domain of Vi there is some

value y in the domain of Vj such that Vi=x and Vj=y

is permitted by the binary constraint between Vi and

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 826

Vj. The concept of arc-consistency is directional. If

the process involves three variables then it is known

as path consistency. In general a graph is k-

consistent if there exists (k-1) variables that satisfy

all the constraints among these variables and there

also exists a value for this kth variable that satisfies

all the constraints among these k variables [19].

Most algorithms for solving the CSP search

systematically through the possible assignments of

values to variables. Such algorithms are guaranteed

to find a solution if one exists or to prove that the

problem has no solution, but this process may take a

very long time. Backtracking is the most common

method for performing systematic search. In the

backtracking algorithm, the current variable is

assigned a value from its domain. This assignment is

then checked against the current partial solution. If

any of the constraints between this variable and the

last variables is violated, the assignment is

abandoned and another value for the current variable

is selected [19].

There are three disadvantages of backtracking

approach: thrashing, redundant work and late

detection of conflict [10]. Thus look-ahead scheme is

proposed to overcome some or all of these problems.

The look ahead scheme is invoked whenever the

algorithm is preparing to assign a value to the next

variable [19].

There are two approaches in the look ahead

scheme. The first approach is called forward

checking. This approach checks only the constraints

between the current variable and the future variables.

When a value is assigned to the current variable, any

value in the domain of a future variable, which

results in conflicts with this assignment, is removed

from the domain. This means if the domain of the

future variable is empty, it infers that the current

partial solution is inconsistent and another value

should be tried or it should backtrack to the previous

variable [20]. The second approach is called (full)

look ahead or maintaining arc-consistency. This is an

approach that uses full arc-consistency during the

look ahead scheme. It allows branches of the search

tree that will lead to failure to be pruned earlier [20].

Look back schemes are invoked when the

algorithm encounters a dead-end and prepares for the

backtracking step [19]. All look back schemas share

the disadvantage of late detection of the conflict. It

solves the inconsistency when it occurs but does not

prevent the inconsistency from occurring. There are

two approaches to look back scheme: backjumping

and backmarking. Backjumping works the same way

as backtracking. The difference is during the

backtracking step. In backjumping, it analyses the

situation in order to identify the source of

inconsistency. Backjumping backtracks to the most

recent conflicting variable, whereas backtracking

backtracks to the immediate past variable [20]. In

backmarking, it avoids redundant constraint checking

by recording the highest level that is last backtracked

to. This helps to reduce repetitive consistency

checking by remembering the success and failure of

compatibility checks, which have already been

performed [19].

CSP model for timetabling problem

Concerning CSP, it is defined (in [10, 8,]) by a finite

set of variables, each of which has a finite domain of

values, and a set of constraints. Each constraint is

defined over some subset of the original set of

variables and restricts the values these variables can

simultaneously take. We develop our model with the

most common definition and syntax of CSP. A CSP

is defined as three sets: X, D, and C, where:

 X = {x1, … ,xn} is the set of variables called

domain variables;

 D = {D1, … ,Dn} is the set of domains(the

possible values for the corresponding variable);

 C = {C1, … ,Cc} is the set of constraints

(relations defined on a subset of all variables).

A simple backtracking algorithm for constraint

satisfaction problems is shown in figure 1. The term

backtracking search BACKTRACKING is used for a

depth-first search that chooses values for SEARCH.

one variable at a time and backtracks when a variable

has no legal values left to assign. The algorithm is

modeled on the recursive depth-first search. By

varying the functions SELECT-UNASSIGNED-

VARIABLE and ORDER-DOMAIN-VALUES, we

can implement the general-purpose heuristics. The

function INFERENCE can optionally be used to

impose arc-, path-, or k-consistency, as desired. If a

value choice leads to failure (noticed either by

INFERENCE or by BACKTRACK), then value

assignments (including those made by INFERENCE)

are removed from the current assignment and a new

value is tried.

function BACKTRACKING-SEARCH(csp) returns

a solution, or failure

return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a

solution, or failure

if assignment is complete then return assignment

var←SELECT-UNASSIGNED-VARIABLE(csp)

for each value in ORDER-DOMAIN-VALUES(var,

assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

inferences ←INFERENCE(csp, var , value)

if inferences = failure then

add inferences to assignment

result ←BACKTRACK(assignment, csp)

if result = failure then return result

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 827

remove {var = value} and inferences from

assignment

return failure

Figure 1. Backtracking Algorithm

Proposed Model of CTT

The problem consists of scheduling a set of

classes in different timeslots subject to satisfying the

following constraint: no student attends more than

one class at the same time, the room must be big

enough for all the attending students, and only one

class is scheduled in one room at any one timeslot.

Let S = {s1, s2,…sn} be the set of sections(1cst-

A,1cst-B,2cs,3cs,…etc);

L= {l1, l2,…lo} be the set of subjects taught ;

Ts= {ts1, ts2,…, tsm } be the available teaching

periods(time slot) ;

T={t1,t2,…..,tp} be the set of teacher;

R = {r1, r2, …, rq} be the set of rooms available.

A feasible timetable is one in which all events have

been assigned a timeslot and a room so that the

following constraints are satisfied:

C1: A teacher cannot be taught in two classes at the

same time, so avoid clashing the course of teacher.

C2: One room should not be assigned to more than

one subject for the same timeslot.

C3: Certain timeslots are reserved for lab hours and

activities.

C4: Subject cannot be assigned more than 4 timeslots

(including lab time).

The model we propose for a timetabling problem

as a CSP is as follows: a timetable is a constrained

variable the value of which is a function associating

a value to each slot in time t. The timetable item is

given by the set of subjects. Note that the subject

can be offered as a lecture or a tutorial, which is

considered as a timetable item. Basically our task

consists in instantiation of the set of four tuples CSP

(section, lecture, timeslot, teacher), i.e., each lecture

or subject taught by teacher has assigned its set of

section and time.

Implementation

In solving UTT problem, we define each section

timetable variables and values. Time slots as

variables and assigning subjects as values. The

backtracking algorithm is applied for scheduling

timetable. Whenever variables(time slot) is assigned

to order domain value subject heuristic function is

applied for checking constraint violations. If the

failure is detected, the assigning process backtracks

again.

The solution for a feasible timetable for the

proposed model is resulted in the two-dimensional

array that is one dimension (row) for days and

another dimension (column) for time slots. The result

time table would be saved as Excel file shown in

figure 2.

Second Year(2CST-A)

Days TS1 TS2 TS3 TS4 TS5 TS6 TS7

Mon Tutorial 201 204 203 205 202 Eng

Tue Tutorial 205 204 205 Eng 206 202

Wed 203 202 205 Lab(201) Lab(201) 206 Library

Thurs 203 204 205 201 206 205 Eng

Fri Activity Activity 202 206 Lab(203) 204 Eng

Figure 2. Exported excel file for Second Year

Time table

Conclusion

 The proposed model for the university timetable is

based on finite domain technique for CSP. Our

system solves the problem efficiently. The

development time for the program is much shorter

than time spending on the manual approach. Our

experience shows that CSP model is a practically

viable means for timetable scheduling in a university.

The results from running our model of the CTT

problem conclude and prove that all the required

constraints are successfully verified. Moreover, an

important issue is appeared in the result timetable,

our model balance the teaching load for teachers that

the college faculties For further work, we are able to

enrich this model at the UCS(Mandalay) to build the

university CTT.

Acknowledgements

I would like to greatly thank Daw Aye Aye

Khaing, Associate Professor and Head of English

Department and Daw Yu Yu Hlaing, Associate

Professor of English Department for checking

language. Contribution of others who might have

given suggestions or review comments.

References

[1] R. Wattanamano, K. Thongsanit and P.

Hongsuwan, "The Development of Mathematical

Model for a University Course Timetabling

Problem," Silpakorn University Science and

Technology Journal, vol. 5, no. 2, pp. 46-52, 2011.

[2] K. Kumar, Sikander, R. Sharma and Kaushal,

"Genetic Algorithm Approach to Automate

University Timetable," International Journal of

Technical Research(IJTR), vol. 1, no. 1, 2012.

[3] A. O. Adewumi, B. A. Sawyerr and M. M. Ali,

"A heuristic solution to the university timetabling

problem," Engineering Computations: International

Journal for Computer-Aided Engineering and

Software, vol. 26, no. 8, pp. 972-984, 2009.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 06 Issue 09

August 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 828

[4] S. Abdennadher and M. Marte, "University

Course Timetabling using Constraint Handling

Rules," Journal of Applied Artificial Intelligence,

vol. 14, no. 4, pp. 311-325, 2000.

[5] R. Barták, M. A. Salido and F. Rossi, "Constraint

satisfaction techniques in planning and scheduling,"

Intelligent Manufacturing, vol. 21, no. 1, pp. 5-15,

2010.

[6] F. Rossi, P. van Beek and T. Walsh, Handbook

of Constraint Programming, 1 ed., Elsevier Science,

2006, p. 978.

[7] A. Schaerf, "A Survey of Automated

Timetabling," Artificial Intelligence Review,

vol. 13, no. 2, pp. 87-127, 1999.

[8] S. C. Brailsford, C. N. Potts and B. M.

Smith, "Constraint satisfaction problems:

Algorithms and applications," European

Journal of Operational Research, vol. 119,

pp. 557-581, 1999.

[9] S. Abdennadher and M. Marte, "University

Course Timetabling using Constraint

Handling Rules," Journal of Applied

Artificial Intelligence, vol. 14, no. 4, pp.

311-325, 2000.

[10] V. Kumar, "Algorithms for Constraint-

Satisfaction Problems: A Survey," AI

Magazine, vol. 13, no. 1, pp. 32-44, 1992.

[11] S. Petrovic and E. Burke, "University

timetabling," in Handbook of scheduling:

algorithms, models, and performance

analysis, Chapman and Hall/CRC, 2004, pp.

1-23.

[12] S. Abdennadher and M. Marte, "University

timetabling using constraint handling rules,"

JFPLC, pp. 39-50, 1998.

[13] L. Zhang and S. K. Lau, "onstructing

university timetable using constraint

satisfaction programming approach,"

Computational Intelligence for Modelling,

Control and Automation, vol. 2, pp. 55-60,

2005.

[14] A. Ojugo, I. Iyawa., F. Aghware., M.

Yerokun and E. Ugboh, "Comparative

Study of the Timetable Constraint

Satisfaction Problem," in 5th International

Conference on Cir-cuits, Systems, Control,

Signals (CSCS '14), Salerno, Italy, 2014.

[15] S. Ribi and S. Konjicija, "A Two Phase

Integer Linear Programming Approach to

Solving the School Timetable Problem," in

32nd International Conference on

Information Technology Interfaces, Cavtat,

Croatia, June 21-24, 2010.

[16] O. Czibula, H. Gu, A. Russell and Y.

Zinder, "A Multi-Stage IP-Based Heuristic

for Class Timetabling and Trainer

Rostering," in 10th International Conference

of the Practice and Theory of Automated

Timetabling, York, United Kingdom, 2014.

[17] K. Zervoudakis and P. Stamatopoulos, "A

Generic Object-Oriented Constraint-Based

Model for University Course Timetabling,"

in Practice and Theory of Automated

Timetabling III, vol. 2079, Springer Berlin

Heidelberg, 2001, pp. 28-47.

[18] Nadel, B. A., 1989, Constraint Satisfaction

Algorithms, Computational Intelligence,

vol.5, pp.188-224.

[19] Dechter, R., 2003, Constraint Processing,

Morgan Kaufmann.

 [20] Barták, R., 1998, On-line Guide to

Constraint Programming,

http://kti.ms.mff.cuni.cz/~bartak/constraints

/ (Access: 25 March, 2004).

