

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 163

Study of Informed Searching Algorithm for Finding the

Shortest Path
Wint Aye Khaing1, Kyi Zar Nyunt2, Thida Win2, Ei Ei Moe3

1Faculty of Information Science, University of Computer Studies (Taungoo), Myanmar
2 Faculty of Information Science, University of Computer Studies (Taungoo), Myanmar

3 Faculty of Computer Science, University of Computer Studies (Taungoo), Myanmar

wintayekhaing5@gmail.com,wintayekaing@ucstaungoo.edu.mm

kyizar81@gmail.com, thidawin01@gmail.com,

eieimoe.ms@gmail.com, eieimoe@ucstaungoo.edu.mm

Abstract:

While technological revolution has active role to the

increase of computer information, growing computational

capabilities of devices, and raise the level of knowledge

abilities, and skills. Increase developments in science and

technology. In city area traffic the shortest path finding is

very difficult in a road network. Shortest path searching is

very important in some special case as medical emergency,

spying, theft catching, fire brigade etc. In this paper used

the shortest path algorithms for solving the shortest path

problem. The shortest path can be single pair shortest path

problem or all pairs shortest path problem. Search

problems can be classified by the amount of information

that is available to the search process. This paper discuss

briefly the shortest path algorithms such as Dijkstra's

algorithm, Bellman-Ford algorithm, Floyd- Warshall

algorithm, Johnson's algorithm, Greedy best first Search,

A* Search algorithm, Memory-bounded heuristic search,

Hill-climbing search, Simulated annealing search and Local

beam search.

Keywords:

Shortest path, Diskstra’s,Bellman-ford, Johnson’s, Floyd-

Warshall, A* search, RBFS, RBFS, hill climbing, heuristic

search, best-first search.

1. Introduction

Today, we live in a rapid technological revolution and

rapid development in the technical age. Technological

revolution have active role to the increase of computer

information. Raise the level of knowledge abilities, and

skills. Increase developments in science and technology.

Computer is considered one of the important elements that

broke all barriers and develop many communication

systems. Therefore, high speed routing has become more

important in a process transferring packets from source node

to destination node with minimum cost. Cost factors may be

representing the distance of a router. Computing best

possible routes in road networks from a given source to a

given target location is an everyday problem. Many people

frequently deal with this question when planning trips with

their cars. There are also many applications like logistic

planning or traffic simulation that need to solve a huge

number of such route queries. Shortest path can be either

inconvenient for the client if he has to wait for the response

or experience for the service provider if he has to make a lot

of computing power available. While algorithm is a

procedure or formula for solve problem. Algorithm usually

means a small procedure that solves a recurrent problem.

2. Informed (Heuristic) Search Strategies

Informed search strategy is one that user’s problems-

specific knowledge beyond the definition of problem itself

can find solutions more efficiently than an uninformed

strategy.

The general approach we will consider is called best-

first search. Best-first search is an instance of the general

TREE-SEARCH or GRAPH-SEARCH algorithm in which

a node is selected for expansion based on an evaluation

function, f (n). If we could really expand the best node first,

it would not be a search at all. If the evaluation function is

exactly accurate, then this will indeed able the best node; in

reality, the evaluation function will sometimes be off, and

can lead the search astray. A key component of these

algorithm is a heuristic function, denote h(n):

h(n) = estimated cost of the cheapest path from node n

to goal node. [7]

3. Shortest Path Algorithm

The shortest path finding algorithms are used to find the

minimum weighted or most efficient path in the network.

The shortest paths from all vertices in the graph to a single

destination vertex is called single shortest path problem. The

shortest path between every pair of vertices is called all

pairs shortest path problem. There are many algorithms for

computing the shortest path such as: Dijkstra's algorithm,

Bellman-Ford algorithm, Floyd- Warshall algorithm,

Johnson's algorithm, Greedy best first Search, A* search,

Memory-bounded heuristic search, Hill-climbing search,

Simulated annealing search, Local beam search, etc. This

paper used these shortest path algorithms for finding

shortest path between source node and destination node.

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/
mailto:wintayekhaing5@gmail.com,wintayekaing@ucstaungoo.edu.mm
mailto:kyizar81@gmail.com
mailto:thidawin01@gmail.com
mailto:eieimoe.ms@gmail.com
mailto:eieimoe@ucstaungoo.edu.mm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 164

This paper is analysis for the results from algorithms, and

compare between them. Find the best algorithm according to

the time, space complexity, efficiency and number of nodes.

[2]

3.1. Dijkstra's algorithm

Conceived by Dutch computer scientist Edsger Dijkstra

in 1956 and published in 1959[9]. Dijkstra's algorithm is

used in search graph algorithm for solve the single-source

shortest path problem for a weighted graph with non-

negative edge path costs, producing a shortest path tree [5].

This algorithm is often used in routing and as a subroutine

in other graph algorithms. The Dijkstra’s Algorithm finds

the shortest path between two nodes on a network by use the

greedy strategy where an algorithm that always takes the

best immediate solution when finding an answer. Greedy

algorithms find the overall optimal solution for some

optimization problems, but may find less-than-optimal

solutions for some instances of other problems. In Dijkstra's

algorithm firstly, no path is known. Dijkstra's algorithm

divides the nodes into two subset groups: temporary set (t)

and permanently set (p). Then this algorithm assigns the

zero distance value to source node s, and label it as

permanent [The state of node s is (0, p)], and Assign to the

remaining nodes a distance value of (∞) and label them as

temporary. [The state of every other node is (∞, t)]. At each

iteration, updates its distance label, and puts the node into a

permanently set as permanently labeled nodes p. The

permanently labeled distance associated with each examined

node is the shortest path distance from the source node to

the destination node. The source node is node s and

neighbor's nodes are v. At each iteration the node s is

selected and marked, then update distance and label for each

node. Selected nodes neighbors for node s and update

distance values for these node v by formula the following.

 Dv = min {dv, ds + (s,v)} (1)

During the above formula, if the labeled distance of

node u plus the weight of link (s, v) is shorter than the

labeled distance of node v, then the estimated shortest

distance from the source node to node v is updated with a

value equal to. The algorithm continues the node

examination process and takes the next node as source node.

The algorithm terminates when is reached to the destination.

This is process is clearly in a Figure1.

The computational complexity of the implementation of

the Dijkstra's algorithm big-O notation is where n = number

of vertices [4]. Big-O notation is frequently used in the

computer science and mathematics domain to describe an

upper bound on the growth rate of the algorithm. [1]

Figure 1. Dijkstra’s algorithm

3.2. Bellman-ford algorithm

Is an algorithm that computes shortest paths from a

single source node to all of the other nodes in a weighted

graph? It was conceived by two developers Richard

Bellman and Lester Ford. Who published it in 1958 and

1956, respectively; however, Edward F. Moore also

published the same algorithm in 1957, and for this reason it

is also sometimes called the Bellman–Ford–Moore

algorithm [9]. Bellman-Ford algorithm solves the single-

source problem where some of the edge weights may be

negative [9]. Dijkstra's algorithm cannot be used to solve the

graphs with negative edge weights. The Bellman-Ford

Algorithm finds the shortest path between two nodes on a

network. This algorithm returns a Boolean value

representing whether or not there is a negative weight cycle

that is reachable from the source, If there is no such a cycle,

the algorithm returns the shortest path, if there is negative

cycle then the algorithms tells that no shortest path. A

solution exist the Bellman–Ford algorithm can detect

negative cycles and report their existence. The algorithm

reducing an estimate d (v) on the weight of a shortest path

from the source S to each vertex v ∈ V until it obtains the

best the shortest path weight. The algorithm returns true if

and only when the graph contains no negative weight cycles

that are reachable from the source. The bellman-Ford

algorithm is executed in the simple example for 6 nodes as

shown in figure 2. In step 1, Bellman-ford algorithm assigns

every vertex distance to infinity, except the source vertex

that gets distance 0. The step 2 relax each edge for (n − 1)

times where n are the number of nodes. Relaxing an edge

means checking to see if the path to the node to which the

edge is pointing can be shortened, and if so, replace the path

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 165

to the node with the found path. Relax the edge with only 2

nodes starting from the source node; the E (1, 2) of cost 7,

the cost of the source node plus 7 is less than infinity. So,

we replace the cost of the node 2 d (2) = 7. As well the E (1,

6) of cost 6 which is also less than infinity, then d (6) = 6 as

figure 3. So relax edges for 5 times since n are 6. The step 3,

consider the path with 3 nodes and relax the edge E (1,3)

through 1→2→3, relax E (1,4) through 1→2→4 or

1→6→4 etc. The step 4, consider the path with 4 nodes.

Thus, the process will continue. Hence, the final step gives

the shortest path between each node and the source node.

Thus all edges are relaxed, checked the negative cost cycle,

and the appropriate boolean value is returned. Hence it is

called the single-source shortest path algorithm. Bellman–

Ford runs in time O (V,E) time, where V and E are the

number of vertices and edges respectively. [2]

Algorithm1. Bellman-Ford Figure 2.Representation step1

Figure 3. Presentation the steps from 2 to 5
3.3 Floyd-Warshall Algorithm

Is an algorithm using to computing of the shortest paths

between all pairs of vertices in a weighted graph with

positive or negative edge weights. The Floyd–Warshall

algorithm also known as Floyd's algorithm, Roy–Warshall

algorithm, Roy–Floyd algorithm or the WFI algorithm [5].

The Floyd–Warshall algorithm was published in its

currently recognized form by Robert Floyd in 1962 [5].

Floyd-Warshall algorithm uses a matrix (n*n) of lengths as

its input. This matrix represents lengths of all paths between

nodes that do not contain any intermediate node is called

distance matrix. If there is an edge between nodes i and j,

than the matrix contains its length at the matrix. The

diagonal of the matrix contains only zeros. If there is no

edge between edges i and j, than the position (i,j) contains

positive infinity [2]. This matrix recalculate at every

iteration of the Floyd-Warshall algorithm. So, it's keep track

of the shortest path between any two vertices, using only

some subset of the entire collection of vertices as

intermediate steps along the path. The matrix, which is

created by the first iteration of the procedure, contains paths

among all nodes using exactly one (predefined) intermediate

node. Contain lengths using two predefined intermediate

nodes. Finally the matrix uses n intermediate nodes. This

process can be described using the following recurrent

formula [2]:

 (2)

The above formula is the heart of the Floyd–Warshall

algorithm. The algorithm works by first computing shortest

path (i, j, k) for all (i, j) pairs for k = 1, then k = 2, etc. This

process continues until k = n, Then find the shortest path for

all (i, j) pairs using any intermediate vertices. The

pseudocode as shown in algorithm 2:

Algorithm 2. Floyd-Warshall Algorithm.

In order to return shortest paths among all pairs of

nodes, must build another matrix during work of matrix, this

matrix is called Sequences matrix (P). In firstly must built

initial matrix (n*n) is called A, which that columns equal i.

For example, in column 1 all the rows are equal 1, column 2

all the rows are equal 2 etc, and the diagonal of the matrix

contains only zeros. The matrix P, initially is equal for

matrix A. Update P matrix as algorithm 2. Can be read P

matrix as follows: if we want to reconstruct the SP between

nodes i and j, we look at the element. If its value is 0, than

there is no path between these nodes. Otherwise, the value

of the element in of j on the path from i to j. So we repeat

this procedure, while the preceding node is not equal to i as

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 166

Algorithm 2.1. The Floyd-Warshall algorithm runs in where

N is number of nodes of the graph [1].

Algorithm 2.1 Floyed-warshall for finding

the shortest path.

3.4. Johnson's algorithm

Is a way to find the shortest paths between all pairs of

vertices in a graph, whose edges may have positive or

negative weights? But no negative-weight cycles may exist.

It combines the Bellman-Ford algorithm and Dijkstra’s

algorithm to quickly find shortest paths. It is named after

Donald B. Johnson, who first published the technique in

1977. The algorithm either returns (n*n) matrix of shortest-

path weights for all pairs of vertices, or reports that the input

graph contains a negative-weight cycle. The below

algorithm is simply perform the actions for the Johnson's

algorithm. Johnson's algorithm works as follows; firstly,

produce s G' contains new vertex s with zero weight edges

from it to all other nodes as algorithm 4. Then runs the

Bellman-Ford algorithm on G' with source vertex s as line 2

at algorithm 4. The Bellman-Ford algorithm used to check

for negative weight cycles. If this step detects a negative

cycle, the algorithm reports the problem and terminated as

line 3 at algorithms 4. Lines 4–12 at algorithm 4 assume that

G' contains no negative-weight cycles. Line 4-5 The

bellman algorithm find the minimum weight h(v)=p(s,v) for

each vertex v of a path from s to v. Line 6-7 compute the

new weights by the formula following:

 W'(u,v) = W(u,v) + h(u)-h(v) (2)

The for loop in line 9-12 compute the shortest paths

weight p'(u,v) by using the Dijkstra's algorithm from vertex

in v. Line 12 The correct shortest path stores in matrix as

shown the formula 3.The final line is return the completed D

matrix.

duv = P'(u,v) + h(u) – h(v) (3)

If we implement the min-priority queue in Dijkstra’s

algorithm by a Fibonacci heap, Johnson’s algorithm runs in

O (V2log V+VE) time. The simpler binary min-heap

implementation yields a running time of O (VE log V). [2]

 Algorithm 3. Johnson’s Algorithm

3.5. Greedy best-first Search

Greedy best-first search3 tries to expand the node that

is closest to the goal, on the: grounds that this is likely to

lead to a solution quickly. Thus, it evaluates nodes by using

just the heuristic function:

f (n) = h(n).

The straight line distance heuristic, which we will call

hSLD. Greedy best-first search using hSLD finds a solution

without ever expanding a node that is not on the solution

path; hence, its search cost is minimal. The heuristic causes

unnecessary nodes to be expanded. Furthermore, if we are

not careful to detect repeated states, the solution will never

be found. Greedy best-first search resembles depth-first

search in the way it prefers to follow a single path all the

way to the goal, but will back up when it hits a dead end. It

is not optimal, and it is incomplete. The worst-case time and

space complexity is O(bm), where m is the maximum depth

of the search space.[7]

3.6. A* search: Minimizing the total estimated

solution cost

The most widely-known form of best-first search is

called A* search (pronounced "A-star search"). It evaluates

nodes by combining g(n),the cost to reach the node, and

h(n.),the cost to get from the node to the goal:

f(n) = g(n) + h(n) Since g(n)

gives the path cost from the start node to node n, and h(n) is

the estimated cost of the cheapest path from n to the goal,

we have:

f(n) = estimated cost of the cheapest solution through n

Thus, if we are trying to find the cheapest solution, a

reasonable thing to try first is the node with the lowest value

of g(n) + h(n). It turns out that this strategy is more than just

reasonable: provided that the heuristic function h(n)

satisfies certain conditions, A* search is both complete and

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 167

optimal. The optimality of A* is straightforward to analyze

if it is used with TREE-SEARCH. In this case, A* is

optimal if h(n) is an admissible heuristic. A general proof

that A* using TREE-SEARCH is optimal if h(n) is

admissible. Suboptimal goal node G2 appears on the

fringe, and let the cost of the optimal solution be C*.

Then, because G2 is suboptimal and because h(G2=) 0

(true for any goal node), we know

f (G2) = g(G2) + h(G2) = g(G2) > C* .

If h(n) does not overestimate the cost of completing the

solution path, then we know that

f (n) = g(n) + h(n) <= C* .

Now we have shown that f (n) <= C* < f (G2) so G2

will not be expanded anti A* must return an optimal

solution.

There are two ways to fix this problem. The first

solution is to extend GRAPH-SEARCH so that it discards

the more expensive of any two paths found to the same

node. The second solution is to ensure that the optimal path

to any repeated state is always the first one followed-as is

the case with uniform-cost search. A heuristic h(n) is

consistent if, for every node n and every successor n' of n

generated by any action a, the estimated cost of reaching the

goal from n is no greater than the step cost of getting to n'

plus the estimated cost of reaching the goal from n':

h(n)<= c(n,a , n') t h(nf).

A* is optimally efficient for any given heuristic

function. That is, no other optimal algorithm is guaranteed

to expand fewer nodes than A* (except possibly through tie-

breaking among nodes with f (n) = C* A*'s main

drawback. Because it keeps all generated nodes in memory

(as do all GRAPH-SEARCH algorithms), A* usually runs

out of space long before it runs out of time. For this reason,

A* is not practical for many large-scale problems. Recently

developed algorithms have overcome the space problem

without sacrificing optimality or completeness, at a small

cost in execution time. [5]

1. Pseudo code
(1) At initialization add the starting location to the open list and

empty the closed list

(2) While there are still more possible next steps in the open list

and we haven’t found the target:

(A) Select the most likely next step (based on both the heuristic

and path costs)

(B) Remove it from the open list and add it to the closed

(C) Consider each neighbor of the step. For each neighbor:

(i) Calculate the path cost of reaching the neighbor

(ii) If the cost is less than the cost known for this location

then remove it from the open or closed lists (since we’ve

now found a better route)

(iii) If the location isn’t in either the open or closed list

then record the costs for the location and add it to the

open list (this means it’ll be considered in the next

search). Record how we got to this location. [6]

The loop ends when we either find a route to the destination

or we run out of steps. If a route is found we back track up

the record of how we reached each location to determine the

path. [6]

3.7. Memory-bounded heuristic search

The simplest way to reduce memory requirements for

A* is to adapt the idea of iterative deepening to the heuristic

search context, resulting in the iterative-deepening A*

(IDA*) algorithm.

The main difference between IDA* and standard iterative

deepening is that the cutoff used is the f-cost (g+ h) rather

than the depth; at each iteration, the cutoff value is the

smallest f -cost of any node that exceeded the cutoff on

the previous iteration. Two more recent memory-bounded

algorithms called RBFS and MA*.

Recursive best-first search (RBFS) is a simple

recursive algorithm that attempts to mimic the operation of

standard best-first search, but using only linear space. Its

structure is similar to that of a recursive depth-first search,

but rather than continuing indefinitely down the current

path, it keeps track of the f-value of the best alternative path

available from any ancestor of the current node. If the

current node exceeds this limit, the recursion unwinds back

to the alternative path. As the recursion unwinds, RBFS

replaces the f -value of each node along the path with the

best f -value of its children. In this way, RBFS remembers

the f -value of the best leaf in the forgotten sub tree and can

therefore decide whether it's worth re-expanding the sub tree

at some later time. RBFS is somewhat more efficient than

IDA*, but still suffers from excessive node regeneration.

Like A*, RBFS is an optimal algorithm if the heuristic

function h(n) is admissible. Its space complexity is linear in

the depth of the deepest optimal solution, but its time

complexity is rather difficult to characterize: it depends both

on the accuracy of the heuristic function and on how often

the best path changes as nodes are expanded.

IDA* and RBFS suffer from using too little memory.

Between iterations, IDA* retains only a single number: the

current f -cost limit. RBFS retains more information in

memory, but it uses only linear space: even if more memory

were available, RBFS has no way to make use of it.

Two algorithms that do this are MA* (memory-

bounded A*) and SMA* (simplified MA*). SMA* expands

the best leaf and deletes the worst leaf. What if all the leaf

nodes have the same f -value? Then the algorithm might

select the same node for deletion and expansion. SMA*

solves this problem by expanding the newest best leaf and

deleting the oldest worst leaf. These can be the same node

only if there is only one leaf; in that case, the current search

tree must be a single path from root to leaf that fills all of

memory. If the leaf is not a goal node, then even if it is on

an optimal solution path, that solution is not reachable with

the available memory. [7]

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 168

Algorithm 4. Recursive Best First Search

3.8. Hill-climbing search

The hill-climbing search algorithm is shown in Figure

4. It is simply a loop that continually moves in the direction

of increasing value-that is, uphill. It terminates when it

reaches a "peak" where no neighbor has a higher value. Hill-

climbing does not look ahead beyond the immediate

neighbors of the current state.

Hill climbing is sometimes called greedy local search

because it grabs a good neighbor state without thinking

ahead about where to go next.

Local maxima: a local maximum is a peak that is higher

than each of its neighboring states, but lower than the global

maximum.

Ridges: Ridges result in a sequence of local maxima that is

very difficult for greedy algorithms to navigate.

Plateaux: a plateau is an area of the state space landscape

where the evaluation function is flat. It can be a flat local

maximum, from which no uphill exit exists, or a shoulder.

(1) Stochastic hill climbing: chooses at random from

among the uphill moves; the probability of selection can

vary with the steepness of the uphill move.

(2) First-choice hill climbing: implements stochastic hill

climbing by generating successors randomly until one is

generated that is better than the current state.

(3) Random-restart hill climbing: adopts the well-known

adage, "If at first you don't succeed, try, and try again." It

conducts a series of hill-climbing searches from randomly

generated initial states, stopping when a goal is found. [7]

Figure 4. A one-dimensional state space landscape in which

elevation corresponds to objective function. The aim is to find

the global maximum. Hill-climbing search modifies the current

state to try to improve it, as shown by the arrow. The various

topographic features are defined in the text.

 Algorithm 5. Hill Climbing Search

3.9. Simulated annealing search

A hill-climbing algorithm that never makes "downhill"

moves towards states with lower value (or higher cost) is

guaranteed to be incomplete, because it can get stuck on a

local maximum.

In contrast, a purely random walk-that is, moving to a

successor chosen uniformly at random from the set of

successors-is complete, but extremely inefficient.

Simulated annealing is such an algorithm. In metallurgy,

annealing is the process used to temper or harden metals

and glass by heating them to a high temperature and then

gradually cooling them, thus allowing the material to

coalesce into a low-energy crystalline state. The simulated

annealing solution is to start by shaking hard (i.e., at a high

temperature) and then gradually reduce the intensity of the

shaking (i.e., lower the temperature). Simulated annealing

was first used extensively to solve VLSI layout problems in

the early 1980s. It has been applied widely to factory

scheduling and other large-scale optimization tasks. [7]

Algorithm 6. Simulated annealing search

3.10. Local beam search

The local beam search algorithm keeps track of k

states rather than just one. It begins with k randomly

generated states. At each step, all the successors of all k

states are generated. If anyone is a goal, the algorithm halts.

Otherwise, it selects the k best successors from the complete

list and repeats.

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 169

In a local beam search, useful information is passed among

the k parallel search threads. In its simplest form, local

beam search can suffer from a lack of diversity among the k

states-they can quickly become concentrated in a small

region of the state space, making the search little more than

an expensive version of hill climbing. A variant called

stochastic beam search. Stochastic beam search chooses k

successors at random, with the probability of choosing a

given successor being an increasing function of its value. [5]

4. Related Work

In A* Search a technique from the field of Artificial

Intelligence, is a goal-directed approach, i.e., it adds a sense

of direction to the search process. For each vertex, a lower

bound on the distance to the target is required. In each step

of the search process, the node v is selected that minimizes

the tentative distance from the source s plus the lower bound

on the distance to the target t. The performance of the A*

search depends on a good choice of the lower bounds. If the

geographic coordinates of the nodes are given and we are

interested in the shortest (and not in the fastest) path, the

Euclidean distance from v to t can be used as lower bound.

This leads to a simple, fast, and space-efficient method,

which, however, gives only small speedups. It gets even

worse if we want to compute fastest paths. Then, we have to

use the Euclidean distance divided by the fastest speed

possible on any road of the network as lower bound.

Obviously, this is a very conservative estimation. Goldberg

et al. Even report a slow-down of more than a factor of two

in this case since the search space is not significantly

reduced but a considerable overhead is added [6]. Shortest

Path Algorithm is an important problem in graph theory,

geographic information system, Path searching for road

network and has applications in communications,

transportation, finding shortest path in network and

electronics problems. In graph theory, used many algorithm

that solve the shortest path algorithms. [7]

5. Conclusion

Shortest Path Algorithm is an important problem in

graph theory and has applications in communications,

transportation, and electronics problems. In graph theory,

used many algorithm that solve the shortest path algorithms.

Dijkstra’s algorithm finds solution in the single-pair, single-

source, and single-destination shortest path problem.

Johnsons’s algorithm identifies the solution in all pairs

shortest path problem. The Floyd Warshall algorithm is

assigned the shortest path between all pairs of vertices by a

graph analysis algorithm. It's an example of dynamic

programming. Bellman Ford algorithm obtains solution in

the single-source problem if the edge weights are negative

too.

Tabel 1. Differences of Shortest Path Algorithm

Johnson's algorithm may be faster than Floyd–Warshall

on sparse graphs. , but the Floyd–Warshall algorithm is

faster when the graph is dense. Floyd-Warshall algorithm

has better cache performance than the sparse matrix

implementation because dense matrix computations

typically have a higher ratio of floating-point operations to

memory. The Dijkstra algorithm does not require the

distance matrix to be represented as a dense matrix, thus

making the algorithm more memory efficient for sparse

graphs. Dijkstra's algorithm time complexity is faster than

Bellman-Ford algorithm, but Dijkstra's algorithm can't be

used to solve the graphs with negative edge weights. It is

not optimal, and it is incomplete. The worst-case time and

space complexity is O(bm), where m is the maximum depth

of the search space. A* algorithm are very well suitable

when gold node cannot be reached from all nodes. A*

search is best-know form of best-first search because avoid

expanding paths that are already expensive, heuristic is

admissible if it never overestimates the cost to reach the

goal and it is optimal and also completeness since bands of

increasing. The weak point is A* keeps all generated nodes

in memory that is the major problem of this search. RBFS is

a bit more efficient than IDA* it still excessive node

generation. If h(n) is admissible, it is optimal like as A*.

Space complexity takes O (bd) and takes too little memory.

So it is more efficient than the A*. The time complexity is

depends on accuracy if h (n) and how often path changes.

SMA* is complete if solution is reachable, optimal if

optimal solution is reachable. Hill climbing algorithms are

not suitable for problems such as shortest path finding. This

is due to the fact that there is no assurance of getting final

optimal solution for all cases. The advantages of simulated

Annealing search can find near optimal solutions escapes

local maxima. Disadvantages are takes long time to find

near optimal solution, very sensitive to input parameters

must be configured well to get good result. Local beam

search is use single current state and move to neighboring

states. This advantages are use very little memory, can find

reasonable solutions in lager or infinite state spaces and also

useful for pure optimization problems. AI 1

 References

[1] Anu Pradhan, and Kumar, G. 2013. "Finding All-Pairs

Shortest Path for a Large-Scale Transportation Network

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 06 Issue 10

September 2019

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 170

Using Parallel Floyd-Warshall and Parallel Dijkstra

Algorithm". Journal of Computing in Civil Engineering

ASCE. 263-273.

[2] Hanaa M. Abu-Ryash, Dr.Abdelfatah A. Tamimi

Department of Computer Science Faculty of Science and

Information technology, Al-Zaytoonah University of Jordan,

"Comparison Studies for Different Shortest path

Algorithms", International Journal of Computer &

Technology, May 29, 2015, pp. 5979-5986

[3] Mr. Girish P Potdar, Dr. R C Thool "Optimal Solution

for Shortest Path Problem Using Heuristic Search

Technique", International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET) Volume 3

Issue 9, September 2014, pp. 3247-3256

[4] Nizami Gasilov, Mustafa Doğan, and Volkan Arici.

2011. "Two-stage Shortest Path Algorithm for Solving

Optimal Obstacle Avoidance Problem" JOURNAL OF

RESEARCH (IETE). VOL 57. ISSUE 3, 278-185.

[5] Peter Hofner, and Bernhard Moller. 2012." Dijkstra,

Floyd and Warshall meet Kleene". Formal Aspects of

Computing, 459–476.

[6] Shrawan Kr. Sharma, B.L.Pal, " Shortest Path Searching

for Road Network using A* Algorithm

[7] Stuart Russell, Peter Norving, Artificial Intelligence A

Modern Approach, Second Edition

[8] Tom Lenaerts,"Artifical intelligenence 1: informed

search" SWITCH, Vlaams Interuniversitair Instittuut voor

Biotechnologies, Vrije Universiteit Brussel.

[9] Wei Zhang , Hao Chen , Chong Jiang , Lin Zhu. 2013.

"Improvement And Experimental Evaluation Bellman-Ford

Algorithm". International Conference on Advanced

Information and Communication Technology for Education

ICAICTE, 150-153.

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/

