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Abstract:  

While technological revolution has active role to the 

increase of computer information, growing computational 

capabilities of devices, and raise the level of knowledge 

abilities, and skills. Increase developments in science and 

technology. In city area traffic the shortest path finding is 

very difficult in a road network. Shortest path searching is 

very important in some special case as medical emergency, 

spying, theft catching, fire brigade etc. In this paper used 

the shortest path algorithms for solving the shortest path 

problem. The shortest path can be single pair shortest path 

problem or all pairs shortest path problem. Search 

problems can be classified by the amount of information 

that is available to the search process. This paper discuss 

briefly the shortest path algorithms such as Dijkstra's 

algorithm, Bellman-Ford algorithm, Floyd- Warshall 

algorithm, Johnson's algorithm, Greedy best first Search, 

A* Search algorithm, Memory-bounded heuristic search, 

Hill-climbing search, Simulated annealing search and Local 

beam search. 
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1. Introduction 

Today, we live in a rapid technological revolution and 

rapid development in the technical age. Technological 

revolution have active role to the increase of computer 

information. Raise the level of knowledge abilities, and 

skills. Increase developments in science and technology. 

Computer is considered one of the important elements that 

broke all barriers and develop many communication 

systems. Therefore, high speed routing has become more 

important in a process transferring packets from source node 

to destination node with minimum cost. Cost factors may be 

representing the distance of a router. Computing best 

possible routes in road networks from a given source to a 

given target location is an everyday problem. Many people 

frequently deal with this question when planning trips with 

their cars. There are also many applications like logistic 

planning or traffic simulation that need to solve a huge 

number of such route queries. Shortest path can be either 

inconvenient for the client if he has to wait for the response 

or experience for the service provider if he has to make a lot 

of computing power available. While algorithm is a 

procedure or formula for solve problem. Algorithm usually 

means a small procedure that solves a recurrent problem. 

2. Informed (Heuristic) Search Strategies 

Informed search strategy is one that user’s problems-

specific knowledge beyond the definition of problem itself 

can find solutions more efficiently than an uninformed 

strategy. 

The general approach we will consider is called best-

first search. Best-first search is an instance of the general 

TREE-SEARCH or GRAPH-SEARCH algorithm in which 

a node is selected for expansion based on an evaluation 

function, f (n). If we could really expand the best node first, 

it would not be a search at all. If the evaluation function is 

exactly accurate, then this will indeed able the best node; in 

reality, the evaluation function will sometimes be off, and 

can lead the search astray. A key component of these 

algorithm is a heuristic function, denote h(n):  

h(n) = estimated cost of the cheapest path from node n 

to goal node. [7] 

3. Shortest Path Algorithm 

The shortest path finding algorithms are used to find the 

minimum weighted or most efficient path in the network. 

The shortest paths from all vertices in the graph to a single 

destination vertex is called single shortest path problem. The 

shortest path between every pair of vertices is called all 

pairs shortest path problem. There are many algorithms for 

computing the shortest path such as: Dijkstra's algorithm, 

Bellman-Ford algorithm, Floyd- Warshall algorithm, 

Johnson's algorithm, Greedy best first Search, A* search, 

Memory-bounded heuristic search, Hill-climbing search, 

Simulated annealing search, Local beam search, etc. This 

paper used these shortest path algorithms for finding 

shortest path between source node and destination node. 
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This paper is analysis for the results from algorithms, and 

compare between them. Find the best algorithm according to 

the time, space complexity, efficiency and number of nodes. 

[2] 

 

3.1. Dijkstra's algorithm 
 

Conceived by Dutch computer scientist Edsger Dijkstra 

in 1956 and published in 1959[9]. Dijkstra's algorithm is 

used in search graph algorithm for solve the single-source 

shortest path problem for a weighted graph with non-

negative edge path costs, producing a shortest path tree [5]. 

This algorithm is often used in routing and as a subroutine 

in other graph algorithms. The Dijkstra’s Algorithm finds 

the shortest path between two nodes on a network by use the 

greedy strategy where an algorithm that always takes the 

best immediate solution when finding an answer. Greedy 

algorithms find the overall optimal solution for some 

optimization problems, but may find less-than-optimal 

solutions for some instances of other problems. In Dijkstra's 

algorithm firstly, no path is known. Dijkstra's algorithm 

divides the nodes into two subset groups: temporary set (t) 

and permanently set (p). Then this algorithm assigns the 

zero distance value to source node s, and label it as 

permanent [The state of node s is (0, p)], and Assign to the 

remaining nodes a distance value of (∞) and label them as 

temporary. [The state of every other node is (∞, t)]. At each 

iteration, updates its distance label, and puts the node into a 

permanently set as permanently labeled nodes p. The 

permanently labeled distance associated with each examined 

node is the shortest path distance from the source node to 

the destination node. The source node is node s and 

neighbor's nodes are v. At each iteration  the node s is 

selected and marked, then update distance and label for each 

node. Selected nodes neighbors for node s and update 

distance values for these node v by formula the following.  

 Dv = min {dv, ds + (s,v)}   (1) 

During the above formula, if the labeled distance of 

node u plus the weight of link (s, v) is shorter than the 

labeled distance of node v, then the estimated shortest 

distance from the source node to node v is updated with a 

value equal to. The algorithm continues the node 

examination process and takes the next node as source node. 

The algorithm terminates when is reached to the destination. 

This is process is clearly in a Figure1.  

The computational complexity of the implementation of 

the Dijkstra's algorithm big-O notation is where n = number 

of vertices [4]. Big-O notation is frequently used in the 

computer science and mathematics domain to describe an 

upper bound on the growth rate of the algorithm. [1]  

 
Figure 1. Dijkstra’s algorithm 

 

3.2. Bellman-ford algorithm 

  

Is an algorithm that computes shortest paths from a 

single source node to all of the other nodes in a weighted 

graph? It was conceived by two developers Richard 

Bellman and Lester Ford. Who published it in 1958 and 

1956, respectively; however, Edward F. Moore also 

published the same algorithm in 1957, and for this reason it 

is also sometimes called the Bellman–Ford–Moore 

algorithm [9]. Bellman-Ford algorithm solves the single-

source problem where some of the edge weights may be 

negative [9]. Dijkstra's algorithm cannot be used to solve the 

graphs with negative edge weights. The Bellman-Ford 

Algorithm finds the shortest path between two nodes on a 

network. This algorithm returns a Boolean value 

representing whether or not there is a negative weight cycle 

that is reachable from the source, If there is no such a cycle, 

the algorithm returns the shortest path, if there is negative 

cycle then the algorithms tells that no shortest path. A 

solution exist the Bellman–Ford algorithm can detect 

negative cycles and report their existence. The algorithm 

reducing an estimate d (v) on the weight of a shortest path 

from the source S to each vertex v ∈ V until it obtains the 

best the shortest path weight. The algorithm returns true if 

and only when the graph contains no negative weight cycles 

that are reachable from the source. The bellman-Ford 

algorithm is executed in the simple example for 6 nodes as 

shown in figure 2. In step 1, Bellman-ford algorithm assigns 

every vertex distance to infinity, except the source vertex 

that gets distance 0. The step 2 relax each edge for (n − 1) 

times where n are the number of nodes. Relaxing an edge 

means checking to see if the path to the node to which the 

edge is pointing can be shortened, and if so, replace the path 
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to the node with the found path. Relax the edge with only 2 

nodes starting from the source node; the E (1, 2) of cost 7, 

the cost of the source node plus 7 is less than infinity. So, 

we replace the cost of the node 2 d (2) = 7. As well the E (1, 

6) of cost 6 which is also less than infinity, then d (6) = 6 as 

figure 3. So relax edges for 5 times since n are 6. The step 3, 

consider the path with 3 nodes and relax the edge E (1,3) 

through 1→2→3, relax E (1,4) through 1→2→4 or 

1→6→4 etc. The step 4, consider the path with 4 nodes. 

Thus, the process will continue. Hence, the final step gives 

the shortest path between each node and the source node. 

Thus all edges are relaxed, checked the negative cost cycle, 

and the appropriate boolean value is returned. Hence it is 

called the single-source shortest path algorithm. Bellman–

Ford runs in time O (V,E) time,  where V and E are the 

number of vertices and edges respectively. [2] 

  
 
Algorithm1. Bellman-Ford   Figure 2.Representation step1 

 

 
Figure 3. Presentation the steps from 2 to 5 
3.3 Floyd-Warshall Algorithm 

 
Is an algorithm using to computing of the shortest paths 

between all pairs of vertices in a weighted graph with 

positive or negative edge weights. The Floyd–Warshall 

algorithm also known as Floyd's algorithm, Roy–Warshall 

algorithm, Roy–Floyd algorithm or the WFI algorithm [5]. 

The Floyd–Warshall algorithm was published in its 

currently recognized form by Robert Floyd in 1962 [5]. 

Floyd-Warshall algorithm uses a matrix (n*n) of lengths as 

its input. This matrix represents lengths of all paths between 

nodes that do not contain any intermediate node is called 

distance matrix. If there is an edge between nodes i and j, 

than the matrix contains its length at the matrix. The 

diagonal of the matrix contains only zeros. If there is no 

edge between edges i and j, than the position (i,j) contains 

positive infinity [2]. This matrix recalculate at every 

iteration of the Floyd-Warshall algorithm. So, it's keep track 

of the shortest path between any two vertices, using only 

some subset of the entire collection of vertices as 

intermediate steps along the path. The matrix, which is 

created by the first iteration of the procedure, contains paths 

among all nodes using exactly one (predefined) intermediate 

node. Contain lengths using two predefined intermediate 

nodes. Finally the matrix uses n intermediate nodes. This 

process can be described using the following recurrent 

formula [2]:  

 

            (2) 

The above formula is the heart of the Floyd–Warshall 

algorithm. The algorithm works by first computing shortest 

path (i, j, k) for all (i, j) pairs for k = 1, then k = 2, etc. This 

process continues until k = n, Then find the shortest path for 

all (i, j) pairs using any intermediate vertices. The 

pseudocode as shown in algorithm 2: 

 

 
Algorithm 2. Floyd-Warshall Algorithm. 

 

In order to return shortest paths among all pairs of 

nodes, must build another matrix during work of matrix, this 

matrix is called Sequences matrix (P). In firstly must built 

initial matrix (n*n) is called A, which that columns equal i. 

For example, in column 1 all the rows are equal 1, column 2 

all the rows are equal 2 etc, and the diagonal of the matrix 

contains only zeros. The matrix P, initially is equal for 

matrix A. Update P matrix as algorithm 2. Can be read P 

matrix as follows: if we want to reconstruct the SP between 

nodes i and j, we look at the element. If its value is 0, than 

there is no path between these nodes. Otherwise, the value 

of the element in of j on the path from i to j. So we repeat 

this procedure, while the preceding node is not equal to i as 
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Algorithm 2.1. The Floyd-Warshall algorithm runs in where 

N is number of nodes of the graph [1]. 

 

 
Algorithm 2.1 Floyed-warshall for finding 

the shortest path. 

 

3.4. Johnson's algorithm 

 
Is a way to find the shortest paths between all pairs of 

vertices in a graph, whose edges may have positive or 

negative weights? But no negative-weight cycles may exist. 

It combines the Bellman-Ford algorithm and Dijkstra’s 

algorithm to quickly find shortest paths. It is named after 

Donald B. Johnson, who first published the technique in 

1977. The algorithm either returns (n*n) matrix of shortest-

path weights for all pairs of vertices, or reports that the input 

graph contains a negative-weight cycle. The below 

algorithm is simply perform the actions for the Johnson's 

algorithm. Johnson's algorithm works as follows; firstly, 

produce s G' contains new vertex s with zero weight edges 

from it to all other nodes as algorithm 4. Then runs the 

Bellman-Ford algorithm on G' with source vertex s as line 2 

at algorithm 4. The Bellman-Ford algorithm used to check 

for negative weight cycles. If this step detects a negative 

cycle, the algorithm reports the problem and terminated as 

line 3 at algorithms 4. Lines 4–12 at algorithm 4 assume that 

G' contains no negative-weight cycles. Line 4-5 The 

bellman algorithm find the minimum weight h(v)=p(s,v) for 

each vertex v of a path from s to v. Line 6-7 compute the 

new weights by the formula following:  

 W'(u,v) = W(u,v) + h(u)-h(v)  (2) 

The for loop in line 9-12 compute the shortest paths 

weight p'(u,v) by using the Dijkstra's algorithm from vertex 

in v. Line 12 The correct shortest path stores in matrix as 

shown the formula 3.The final line is return the completed D 

matrix. 

duv = P'(u,v) + h(u) – h(v)  (3) 

If we implement the min-priority queue in Dijkstra’s 

algorithm by a Fibonacci heap, Johnson’s algorithm runs in 

O (V2log V+VE) time. The simpler binary min-heap 

implementation yields a running time of O (VE log V). [2] 

 

 
             Algorithm 3. Johnson’s Algorithm  

 

3.5. Greedy best-first Search 
 

Greedy best-first search3 tries to expand the node that 

is closest to the goal, on the: grounds that this is likely to 

lead to a solution quickly. Thus, it evaluates nodes by using 

just the heuristic function:  

f (n) = h(n). 

The straight line distance heuristic, which we will call 

hSLD. Greedy best-first search using hSLD finds a solution 

without ever expanding a node that is not on the solution 

path; hence, its search cost is minimal. The heuristic causes 

unnecessary nodes to be expanded. Furthermore, if we are 

not careful to detect repeated states, the solution will never 

be found. Greedy best-first search resembles depth-first 

search in the way it prefers to follow a single path all the 

way to the goal, but will back up when it hits a dead end. It 

is not optimal, and it is incomplete. The worst-case time and 

space complexity is O(bm), where m is the maximum depth 

of the search space.[7] 

 

 

 

3.6. A* search: Minimizing the total estimated 

solution cost 
 

The most widely-known form of best-first search is 

called A* search (pronounced "A-star search"). It evaluates 

nodes by combining g(n),the cost to reach the node, and 

h(n.),the cost to get from the node to the goal: 

f(n) = g(n) + h(n)                                     Since g(n) 

gives the path cost from the start node to  node n, and h(n) is 

the estimated cost of the cheapest path from n to the goal, 

we have: 

f(n) = estimated cost of the cheapest solution through n 

Thus, if we are trying to find the cheapest solution, a 

reasonable thing to try first is the node with the lowest value 

of g(n) + h(n). It turns out that this strategy is more than just 

reasonable: provided that the heuristic function h(n) 

satisfies certain conditions, A* search is both complete and 
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optimal. The optimality of A* is straightforward to analyze 

if it is used with TREE-SEARCH. In this case, A* is 

optimal if h(n) is an admissible heuristic. A general proof 

that A* using TREE-SEARCH is optimal if h(n) is 

admissible. Suboptimal goal node G2   appears on the 

fringe, and let the cost of the optimal solution be C*. 

Then, because G2 is suboptimal and because h(G2=) 0 

(true for any goal node), we know 

f (G2) = g(G2) + h(G2) = g(G2) > C* . 

If h(n) does not overestimate the cost of completing the 

solution path, then we know that 

f (n) = g(n) + h(n) <=  C* . 

Now we have shown that f (n) <= C* < f (G2) so G2 

will not be expanded anti A* must return an optimal 

solution. 

There are two ways to fix this problem. The first 

solution is to extend GRAPH-SEARCH so that it discards 

the more expensive of any two paths found to the same 

node. The second solution is to ensure that the optimal path 

to any repeated state is always the first one followed-as is 

the case with uniform-cost search. A heuristic h(n) is 

consistent if, for every node n and every successor n' of n 

generated by any action a, the estimated cost of reaching the 

goal from n is no greater than the step cost of getting to n' 

plus the estimated cost of reaching the goal from n': 

h(n)<= c(n,a , n') t h(nf). 

A* is optimally efficient for any given heuristic 

function. That is, no other optimal algorithm is guaranteed 

to expand fewer nodes than A* (except possibly through tie-

breaking among nodes with        f (n) = C* A*'s main 

drawback. Because it keeps all generated nodes in memory 

(as do all GRAPH-SEARCH algorithms), A* usually runs 

out of space long before it runs out of time. For this reason, 

A* is not practical for many large-scale problems. Recently 

developed algorithms have overcome the space problem 

without sacrificing optimality or completeness, at a small 

cost in execution time. [5] 

1.  Pseudo code  
(1) At initialization add the starting location to the open list and 

empty the closed list  

(2) While there are still more possible next steps in the open list 

and we haven’t found the target:  

(A) Select the most likely next step (based on both the heuristic 

and path costs)  

(B) Remove it from the open list and add it to the closed 

(C) Consider each neighbor of the step. For each neighbor: 

(i) Calculate the path cost of reaching the neighbor  

(ii) If the cost is less than the cost known for this location 

then remove it from the  open or closed lists (since we’ve 

now found a better route)  

(iii) If the location isn’t in either the open or closed list 

then record the costs for the location and add it to the 

open list (this means it’ll be considered in the next 

search). Record how we got to this location. [6] 

The loop ends when we either find a route to the destination 

or we run out of steps. If a route is found we back track up 

the record of how we reached each location to determine the 

path. [6] 

 

3.7. Memory-bounded heuristic search 
 

The simplest way to reduce memory requirements for 

A* is to adapt the idea of iterative deepening to the heuristic 

search context, resulting in the iterative-deepening A* 

(IDA*) algorithm. 

The main difference between IDA* and standard iterative 

deepening is that the cutoff used is the f-cost (g+ h) rather 

than the depth; at each iteration, the cutoff value is the 

smallest     f -cost of any node that exceeded the cutoff on 

the previous iteration. Two more recent memory-bounded 

algorithms called RBFS and MA*. 

Recursive best-first search (RBFS) is a simple 

recursive algorithm that attempts to mimic the operation of 

standard best-first search, but using only linear space. Its 

structure is similar to that of a recursive depth-first search, 

but rather than continuing indefinitely down the current 

path, it keeps track of the f-value of the best alternative path 

available from any ancestor of the current node. If the 

current node exceeds this limit, the recursion unwinds back 

to the alternative path. As the recursion unwinds, RBFS 

replaces the     f -value of each node along the path with the 

best f -value of its children. In this way, RBFS remembers 

the f -value of the best leaf in the forgotten sub tree and can 

therefore decide whether it's worth re-expanding the sub tree 

at some later time. RBFS is somewhat more efficient than 

IDA*, but still suffers from excessive node regeneration. 

Like A*, RBFS is an optimal algorithm if the heuristic 

function h(n) is admissible. Its space complexity is linear in 

the depth of the deepest optimal solution, but its time 

complexity is rather difficult to characterize: it depends both 

on the accuracy of the heuristic function and on how often 

the best path changes as nodes are expanded.  

IDA* and RBFS suffer from using too little memory. 

Between iterations, IDA* retains only a single number: the 

current f -cost limit. RBFS retains more information in 

memory, but it uses only linear space: even if more memory 

were available, RBFS has no way to make use of it. 

Two algorithms that do this are MA* (memory-

bounded A*) and SMA* (simplified MA*). SMA* expands 

the best leaf and deletes the worst leaf. What if all the leaf 

nodes have the same f -value? Then the algorithm might 

select the same node for deletion and expansion. SMA* 

solves this problem by expanding the newest best leaf and 

deleting the oldest worst leaf. These can be the same node 

only if there is only one leaf; in that case, the current search 

tree must be a single path from root to leaf that fills all of 

memory. If the leaf is not a goal node, then even if it is on 

an optimal solution path, that solution is not reachable with 

the available memory. [7] 
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Algorithm 4. Recursive Best First Search 

 

3.8. Hill-climbing search 

The hill-climbing search algorithm is shown in Figure 

4. It is simply a loop that continually moves in the direction 

of increasing value-that is, uphill. It terminates when it 

reaches a "peak" where no neighbor has a higher value. Hill-

climbing does not look ahead beyond the immediate 

neighbors of the current state. 

Hill climbing is sometimes called greedy local search 

because it grabs a good neighbor state without thinking 

ahead about where to go next. 

Local maxima: a local maximum is a peak that is higher 

than each of its neighboring states, but lower than the global 

maximum. 

Ridges:  Ridges result in a sequence of local maxima that is 

very difficult for greedy algorithms to navigate. 

Plateaux: a plateau is an area of the state space landscape 

where the evaluation function is flat. It can be a flat local 

maximum, from which no uphill exit exists, or a shoulder. 

(1) Stochastic hill climbing: chooses at random from 

among the uphill moves; the probability of selection can 

vary with the steepness of the uphill move. 

(2) First-choice hill climbing: implements stochastic hill 

climbing by generating successors randomly until one is 

generated that is better than the current state. 

(3) Random-restart hill climbing: adopts the well-known 

adage, "If at first you don't succeed, try, and try again." It 

conducts a series of hill-climbing searches from randomly 

generated initial states, stopping when a goal is found. [7] 

 

 
Figure 4. A one-dimensional state space landscape in which 

elevation corresponds to objective function. The aim is to find 

the global maximum. Hill-climbing search modifies the current 

state to try to improve it, as shown by the arrow. The various 

topographic features are defined in the text. 

 

 
 Algorithm 5. Hill Climbing Search  

 

3.9. Simulated annealing search 

A hill-climbing algorithm that never makes "downhill" 

moves towards states with lower value (or higher cost) is 

guaranteed to be incomplete, because it can get stuck on a 

local maximum. 

In contrast, a purely random walk-that is, moving to a 

successor chosen uniformly at random from the set of 

successors-is complete, but extremely inefficient. 

Simulated annealing is such an algorithm. In metallurgy, 

annealing is the process used to temper or harden metals 

and glass by heating them to a high temperature and then 

gradually cooling them, thus allowing the material to 

coalesce into a low-energy crystalline state. The simulated 

annealing solution is to start by shaking hard (i.e., at a high 

temperature) and then gradually reduce the intensity of the 

shaking (i.e., lower the temperature). Simulated annealing 

was first used extensively to solve VLSI layout problems in 

the early 1980s. It has been applied widely to factory 

scheduling and other large-scale optimization tasks. [7] 

 

 
Algorithm 6. Simulated annealing search  
 

3.10. Local beam search 

The local beam search algorithm keeps track of k 

states rather than just one. It begins with k randomly 

generated states. At each step, all the successors of all k 

states are generated. If anyone is a goal, the algorithm halts. 

Otherwise, it selects the k best successors from the complete 

list and repeats.  

https://journals.pen2print.org/index.php/ijr/
https://journals.pen2print.org/index.php/ijr/


 

International Journal of Research 
Available at https://journals.pen2print.org/index.php/ijr/  

 

e-ISSN: 2348-6848 

p-ISSN: 2348-795X 

Volume 06 Issue 10 

September 2019 

 

Available online: https://journals.pen2print.org/index.php/ijr/                                                    P a g e  | 169    

 

In a local beam search, useful information is passed among 

the k parallel search threads. In its simplest form, local 

beam search can suffer from a lack of diversity among the k 

states-they can quickly become concentrated in a small 

region of the state space, making the search little more than 

an expensive version of hill climbing. A variant called 

stochastic beam search. Stochastic beam search chooses k 

successors at random, with the probability of choosing a 

given successor being an increasing function of its value. [5] 

 

4. Related Work 
 

In A* Search a technique from the field of Artificial 

Intelligence, is a goal-directed approach, i.e., it adds a sense 

of direction to the search process. For each vertex, a lower 

bound on the distance to the target is required. In each step 

of the search process, the node v is selected that minimizes 

the tentative distance from the source s plus the lower bound 

on the distance to the target t. The performance of the A* 

search depends on a good choice of the lower bounds. If the 

geographic coordinates of the nodes are given and we are 

interested in the shortest (and not in the fastest) path, the 

Euclidean distance from v to t can be used as lower bound. 

This leads to a simple, fast, and space-efficient method, 

which, however, gives only small speedups. It gets even 

worse if we want to compute fastest paths. Then, we have to 

use the Euclidean distance divided by the fastest speed 

possible on any road of the network as lower bound. 

Obviously, this is a very conservative estimation. Goldberg 

et al. Even report a slow-down of more than a factor of two 

in this case since the search space is not significantly 

reduced but a considerable overhead is added [6]. Shortest 

Path Algorithm is an important problem in graph theory, 

geographic information system, Path searching for road 

network and has applications in communications, 

transportation, finding shortest path in network and 

electronics problems. In graph theory, used many algorithm 

that solve the shortest path algorithms. [7] 

 

5. Conclusion 
 

Shortest Path Algorithm is an important problem in 

graph theory and has applications in communications, 

transportation, and electronics problems. In graph theory, 

used many algorithm that solve the shortest path algorithms. 

Dijkstra’s algorithm finds solution in the single-pair, single-

source, and single-destination shortest path problem. 

Johnsons’s algorithm identifies the solution in all pairs 

shortest path problem. The Floyd Warshall algorithm is 

assigned the shortest path between all pairs of vertices by a 

graph analysis algorithm. It's an example of dynamic 

programming. Bellman Ford algorithm obtains solution in 

the single-source problem if the edge weights are negative 

too.  

 
Tabel 1. Differences of Shortest Path Algorithm 

 

 
  

Johnson's algorithm may be faster than Floyd–Warshall 

on sparse graphs. , but the Floyd–Warshall algorithm is 

faster when the graph is dense. Floyd-Warshall algorithm 

has better cache performance than the sparse matrix 

implementation because dense matrix computations 

typically have a higher ratio of floating-point operations to 

memory. The Dijkstra algorithm does not require the 

distance matrix to be represented as a dense matrix, thus 

making the algorithm more memory efficient for sparse 

graphs. Dijkstra's algorithm time complexity is faster than 

Bellman-Ford algorithm, but Dijkstra's algorithm can't be 

used to solve the graphs with negative edge weights. It is 

not optimal, and it is incomplete. The worst-case time and 

space complexity is O(bm), where m is the maximum depth 

of the search space. A* algorithm are very well suitable 

when gold node cannot be reached from all nodes. A* 

search is best-know form of best-first search because avoid 

expanding paths that are already expensive, heuristic is 

admissible if it never overestimates the cost to reach the 

goal and it is optimal and also completeness since bands of 

increasing. The weak point is A* keeps all generated nodes 

in memory that is the major problem of this search. RBFS is 

a bit more efficient than IDA* it still excessive node 

generation. If h(n) is admissible, it is optimal like as A*. 

Space complexity takes O (bd) and takes too little memory. 

So it is more efficient than the A*. The time complexity is 

depends on accuracy if h (n) and how often path changes. 

SMA* is complete if solution is reachable, optimal if 

optimal solution is reachable. Hill climbing algorithms are 

not suitable for problems such as shortest path finding. This 

is due to the fact that there is no assurance of getting final 

optimal solution for all cases. The advantages of simulated 

Annealing search can find near optimal solutions escapes 

local maxima. Disadvantages are takes long time to find 

near optimal solution, very sensitive to input parameters 

must be configured well to get good result. Local beam 

search is use single current state and move to neighboring 

states. This advantages are use very little memory, can find 

reasonable solutions in lager or infinite state spaces and also 

useful for pure optimization problems. AI 1 
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