

Modeling And Manufacturing Of Air Collet Closer

Bandela Mallikarjuna¹, A vidyasagar² ^{1,2} P.G. Scholar, Guide, Head of the Department ^{1,2}Mechanical(cad/cam) ^{1,2}Geethanjali College Of Engineering and Technology Email:- ¹malliprasad318@gmail.com, ²sagaramadala1410@gmail.com

Abstract:

The main aim of any industry is to increase by satisfying their production rate The manufacturing process is customers. materials, components, to convert raw or parts into finished goods that meet a customer's expectations or specifications. Some parts require dimensional accuracy and some parts require high surface finish depends on the requirement part should be manufactured and this demands for manufacturing components on CNC machines.

This front mounted 5C air operated collet chuck may be used for rotary table and single station applications. The rotary gland remains in place while the air cylinder rotates. This unit comes complete with air valve hoses, fittings and a collet wrench. Note: for use on a DMNC rotary table, a collet chuck adapter plate is required.

The term "high torque" refers to an air mechanical collet closer which uses an air cylinder and mechanical advantage to collapse the collet. This cylinder uses air pressure to move the piston, which actuates a series of balls and incline planes to increase the force of air pressure against the collet sleeve. The air against the piston in this collet closer does not directly hold the part, but compresses the balls between the inclined planes. The movement of the balls between the inclined planes lifts the collet sleeve, collapsing the collet. This increases the holding power to well above that attained by simple air pressure. The diameter of the piston can be considerably smaller while achieving the same clamping force of a simple air cylinder with a much larger piston. The part to be machined is also held firmly against the base of the fixture and not on a cushion of air.

In this project 3D modeling of Air collet closer was explained by using Unigraphics NX CAD and manufacturing the Air collet closer by using NX CAM and generation of NC program for manufacturing of air collet closer were explained clearly.

Keywords:- CAD, Air Collet Closer, 3D Modelling.

INTRODUCTION

1.0 Introduction about Air collet closer:

The 5C pneumatic collet closer enables 5C collets to be used on any manual lathe or work head. This new model, has been designed for heavy use under the most demanding manufacturing conditions. Fast opening/closing action makes the Royal pneumatic collet closer a great choice for high production applications. Closer is very easy to actuate, resulting in minimal worker fatigue and maximum productivity. The air cylinder incorporates a large diameter piston, providing strong grip force on the work piece. Unlike other collet closers, there are no exposed rotating parts on the outboard side of the machine. Pneumatic collet closer assembly includes air cylinder, custom-machined rear end spindle adapter, drawtube, and cam-lock collet adapter. Air controls sold separately.

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 06 Issue 10 September 2019

Air Collet Chuck works with Hainbuch style clamping heads, providing a high accuracy 0.015mm and very large chucking force. No extra rotary cylinder is needed. air collet chuck is designed for use in both rotary and stationary applications, and will mount to any American Standard, Cam lock, Flat Face style Spindles or Rotary Tables with the use of a Dunham spindle mounting adapter. Internal stops eliminate length changes due to drawback. Foot or hand valves free hands for efficient part handling.

Our manual collet chucks are offered in four types: 5C, 16C, 3J & 22J. They are designed to be used either stand alone, in multiples or for use on an indexer or rotary table. The collet chucks feature "dead length" holding (with zero part movement), and no "pull back." The collet is closed by turning the cam approximately 90°, using the wrench provided. As the cam rotates, the collet sleeve is lifted closing the Collet. The collet remains stationary so that linear tolerances can be maintained. Six mounting holes are provided. This high torque stationary 5C air collet closer is designed for use on milling, drilling and tapping operations. It can be utilized as single units, or mounted to a plate for multiple operations.

1.1 Objectives of project:

The main objectives of this project are:

- 1. Modeling of air collet using Unigraphics NX CAD software.
- 2. Manufacturing of air collet using NX CAM.
- 3. Generate NC program of manufacturing air collet.

LITERATURE REVIEW

Dunham Tool manufactures high quality air collet closers. The precision air collet closer and collet actuator are used with lathes, grinders, and CNC rotary tables, and are rated for up to 6000 RPM maximum. **Dunham** lathe collet closers are designed to increase production and reduce operator fatigue on any lathe by activating collet closer.

The **Royal** air collet closer enables collets to be used on any manual lathe or work head. This new model, based upon Royal's 65 years of collet closer experience, has been designed for heavy use under the most demanding manufacturing conditions. Fast opening/closing action makes the Royal pneumatic collet closer a great choice for high production applications.

MODELING OF AIR COLLET CLOSER

Input for air collet closer

A 2D drawing is used to design a 3D model for our component using Unigraphics NX 7.5 CAD software.

Below shows the 2D drawings of the air collet with all the required dimensions representations the suits the best for manufacturing the component without any errors.

Fig: 2D drawing of air collet

3.2 DEVELOPMENT OF 3D MODELING

Below is the sketch required to obtain the 3D model of the air collet from the above 2D drawing input.

Fig: 2d sketch of air collet closer Below image shows 2d sketch of air collet closer

 $\label{eq:procedure} Procedure \, to \, draw \, the \, above \, sketch$

Below image shows revolving of air collet closer

Fig: Revolving of air collet closer **Revolve option**

Insert → design features → revolve.

Select curve -- specify vector -> Boolean operation (None) -> ok.

Below image shows sketch on face of air collet closer

Fig: Sketch on face of air collet closer **SKETCH**

Procedure to draw the above sketch

_	•	-	• -	•
Insert	sketch i	n task environment	select plane	ok.
-	- <	•		
Insert	curve	profile.		

Below image shows extrude of above sketch on air collect closer

Fig: Extrude of above sketch on air collet closer **EXTRUDE**

Extrude command is used to create a body by sweeping a 2D or 3D section of curves, Edges, sketches in a specified Direction.

Insert \rightarrow design features \rightarrow extrude.

Select curve \rightarrow specify vector \rightarrow Boolean operation (unite) ok.

Insert \longrightarrow sketch in task environment \longrightarrow select plane \longrightarrow ok.

Insert curve profile.

Below image shows extrude of above sketch on face of air collet closer

Fig: Extrude of above sketch on face of air collet closer

EXTRUDE

Extrude command is used to create a body by sweeping a 2D or 3D section of curves, Edges, sketches in a specified Direction.

Insert \rightarrow design features \rightarrow extrude.

Select curve→ specify vector→ Boolean operation (subtract) ok.

Below image shows sketch on air collet closer

Below image shows sketch on face of air collet closer

Fig: Sketch on face of air collet closer

SKETCH

Procedure to draw the above sketch

Insert --> curve -> profile.

Below image shows subtract of above sketch on air collet closer

Fig: Subtract of above sketch on air collet closer

Insert -> design features-> extrude.

Select curve \rightarrow specify vector \rightarrow Boolean operation (subtract) \rightarrow ok. Below image shows sketch on face of air collet

Fig: Sketch on face of air collet

Below image shows subtract of above sketch on air collet

Fig: Subtract of above sketch on air collet

Insert -> design features-> extrude.

Select curve --- specify vector --- Boolean operation (subtract) --- ok. holes on air collet closer

Fig: Creation of threads in existing holes on air collet closer

Below image shows final 3D model of air collet

Fig: Final 3D model of air collet

COMPUTER AIDED MANUFACTURING OF AIR COLLET CLOSER

The generation of tool path on 3D model of air collet closer will be done using NX-CAM software. By generating tool path NC program will be generated. This NC program is given input to the CNC machine to run operations.

The main objective of the project is to obtain to reduce machining errors and collision of tools and rotary table by developing virtual kit.

Methodology of manufacturing Steering knuckle

- Identify suitable machine.
- Selecting suitable tools for manufacturing Steering knuckle component.
- Selection of fixture.
- Listing down the Sequence of operation performed on Steering knuckle component.
 - Generating tool path at specified cutting speed.

- Retrieving virtual machine in NX-CAM and simulating machine.
- Verification of machining process in virtual machine simulation.

Generating NC program using NX-CAM software.

4.1 Selection of machine:

MORI SEIKI 4-AXIS CNC turning machine is used for machining missile piston. MORI SEIKI offers the industry's best lineup of high-performance lathes with better precision and rigidity, greater multiaxis compatibility and smaller footprints.

High rigidity with Integrated Turning Spindle. Spindle is directly coupled with motor. Rigid Turret with BIM (Built In Motor) Technology. Directly coupled Integrated driven tools. Is a patent technology. Y-axis machining, Up to 100mm (+/- 50). 4-axes simultaneous machining, C-axis with 360 deg and Y-axis, Machine accuracies, Positional Accuracy +/- 0.005mm, Repeatability +/- 0.003mm. In 4-axis turning machine, Axis represents as work piece rotation and spindle movement in x, y, z directions.

Fig: 4-axis CNC MORI SIEKI turning machine

4.2 SELECTION OF TOOLS

Selection of tools plays an important role in manufacturing any component. Proper tools must be selected otherwise in manufacturing process improper tools results in damage of work piece or damage to the tools, tool holders. Suitable tools for manufacturing missile piston are listed below

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 06 Issue 10 September 2019

OD_80_L facing

Facing in the context of turning work involves moving the cutting tool at right angles to the axis of rotation of the rotating work piece. This can be performed by the operation of the cross-slide, if one is fitted, as distinct from the longitudinal feed (turning). It is frequently the first operation performed in the production of the work piece

OD_80_L rough

This process, also called rough or cutoff, is used to create deep grooves which will remove a completed or part-complete component from its parent stock.

OD_55_L finish

Finish tool remove the left over stock after roughing process. It is the last process which gives surface finish.

ID 80 L rough

Grooving tool remove the stock on v-shape of material.

FACE_MILLING tool

FACE_MILLING is the main Face Milling operation subtype. A milling cutter that cuts metal with its face. Face milling creates large flat surfaces.

SEQUENCE OF OPERATIONS PERFORMED **ON AIR COLLET CLOSER** TURNING OPERATIONS

Face_Turn_OD Face_Turn_OD_1 Rough_Turn_OD Centerline_Drilling Face_Turn_OD_2 Groove OD Rough BORE ID MILLING OPERATIONS Face_Milling_Area Mill_Drilling Thread_Milling

Specify machine coordinate system

Machine Coordina	te System	^
Y Specify MCS		2/2-
Details		۸
Purpose	Local	
Special Output	Fixture Offset	
Fixture Offset		1
Save MCS		
Reference Coordir	ate System	^
Link RCS to MCS		
Specify RCS		
Lathe Work Plane		^
		Cancel

Specify part and blank

Part: The final component to be obtained Blank: Initial raw material to be machined

4.6 Manufacturing process planning Below image shows blank and part of air collet closer

Fig: Blank and part of air collet closer Below image shows coordinate system given to blank

Fig: Coordinate system given to blank

Below image shows selection of blank and part for turning operation

Fig: Selection of blank and part for turning operation

Below image shows generation of spun for turning operation

Fig: Generation of spun for turning operation

Below image shows given outer avoidance for turning operation

Fig: Outer avoidance for turning operation

Below image shows given outer containment for turning operation

Fig: Outer containment for turning operation

Below image shows tool path visualization of facing operation

Fig: Tool path visualization of facing operation

Below image shows tool path visualization of facing operation

Fig: Tool path visualization of facing operation

Below image shows tool path visualization of roughing operation

Fig: Tool path visualization of roughing operation

Below image shows given inner avoidance for turning operation

Fig: Inner avoidance for turning operation

Below image shows given inner containment for turning operation

Fig: Inner containment for turning operation

Below image shows tool path visualization of drilling operation

Fig: Tool path visualization of drilling operation

Below image shows coordinate system given to remaining blank

Fig: Coordinate system given to remaining blank

Below image shows selection of blank and part for turning operation

Fig: Selection of blank and part for turning operation

Below image shows generation of spun for turning operation

Fig: Generation of spun for turning operation

Available online: https://journals.pen2print.org/index.php/ijr/

Below image shows given outer avoidance for turning operation

Fig: Outer avoidance for turning operation

Below image shows given outer containment for turning operation

Fig: Outer containment for turning operation

Below image shows tool path visualization for facing operation

Fig: Tool path visualization for facing operation

Below image shows tool path verification for grooving operation

Fig: Tool path verification for grooving operation

Below image shows given inner avoidance for turning operation

Fig: Inner avoidance for turning operation

Below image shows given inner containment for turning operation

Fig: Inner containment for turning operation

Below image shows tool path visualization of inner roughing operation

Fig: Tool path visualization of inner roughing operation Below image shows coordinate system given to remaining blank for milling

Fig: Coordinate system given to remaining blank for milling operation

Below image shows selection of blank and part for milling operation

Fig: Selection of blank and part for milling operation

Below image shows tool path visualization of face milling operation

Fig: Tool path visualization of face milling operation

Below image shows tool path visualization of drilling operation

Fig: Tool path visualization of drilling operation

4.4 FLOW CHART FOR GENERATION OF NC PART PROGRAMS

OPERATION LIST BY PROGRAM PROGRAM NAME: TURNING

TOOL NAME	DESCRIPTION	NOSE RAD	TOOL ORIENT	ADJ REG
OD_80_L	Turning Tool-Standard	0.3000	5.0025	0
OD_GROOVE_L	Grooving Tool-Standard	0.3000	90.0456	0
OD_55_L	Turning Tool-Standard	0.3000	17.5089	0
ID_80_L	Turning Tool-Standard	0.3000	275.1395	0
ID_GROOVE_L	Grooving Tool-Standard	0.3000	270.1369	0

4.8 CONVERT TO NC CODE

Using the post processor we have to convert CL file data into machine specified NC part program

- 1. In the Project Manager, select the first operation on the Operations page, then hold down the Shift key and select the last operation. All the cutting operations are selected.
- 2. Press the right mouse button and select NC Code from the menu.
- 3. Select a Machine Format file from the pull down list (3-Axis/5-Axis).
- 4. Select Apply.

RESULTS

RESULTS:

- 1. 3D model of air collet closer is done using NX-CAD software by considering tolerances given in 2D input.
- 2. Generated 3D model is drafted and cross checked with 2D inputs for verification.
- 3. Tool path is generated on 3D model of air collet closer using NX-CAM software
- 4. NC program is generated for air collet closer component and this program is given to 4-axis TURN-MILL CNC machine through DNC line

NC PROGRAM

Available at https://journals.pen2print.org/index.php/ijr/

Oliformation		? _ 8 X	Giónaía ?.5
🛚 🕹 📌 🖕 🖏 X	€ * <mark>-</mark> -		
		*	
Information listing created by	LEIDIO 15 Cov. 1010 11 55 40	-	10770 7 10201
Current work part	El college projecto lo cavine El college projecto lo texticad camicad camiZeir colletimodel1 pri		NTR X-2.901
Node name	ennept		M0799 680 1-2.9626
			M000 Z.5961
1 10010 C/0 C17 C04 C08 C78			M028 Y-2,5374
N8818 648 617 694 698 678 N8828 658 X8.8 28.8			M020 7.607
:0030 T00 H00 N05			Net 8 60 1.7.142
N8850 694 680 690 X-2.8681			NOR 2.1492
N8860 X-J8892 Z.8565 N8878 692 58			WEDD // 2.711
18888 595 184			NECCO UN Nº. 7120 NECTO Y. 2 DOOT 70 A
N8890 G81 X0315 Z.0787 F9 N8100 X-2 9311	3		Martin N. 2000 Cont
N8110 G80 X-2.9625			NEW 67 50 NA
N8120 Z0394 N8130 X0097			N0990 X-2.0601 20.0
N0140 Z.1352			NESO X-2.504 24.5557
N8150 G81 X0315 Z.1575 N8160 X-2.9311			N4920 692 50
N0170 G00 X-2.9626			NE59 666 W4
N8180 Z.8394 N8190 X8892			NR940 601 H-2.0917 74.5134
NR200 Z.2139			N0550 Z.7492
N8210 G81 X0315 Z.2362 N8220 X-2 9311			N8960 600 2.7127
M8230 G80 X-2.9625			NETO X-2.5511
10240 Z.1181 10250 X0097			NE980 24,5251
10260 2.2195			
10270 601 X0315 Z.2417 10280 X-2.9311			1000 001 Pr.0324 (F.515) 1000 7 7007
N8290 G80 X-2.9625			NEED C. (PRC
N0300 X-2.8681 20.0 N0310 X-3.9385 7-3.5082			NEED 000 LATAT
N8320 G97 S0 M84			1040 74 5057
N8330 X-2.8681 20.0 N8340 X-1.126 Z.2102			1999 7-2,455
© Information	1.5X		NUER 601 V-2.013 04.5134
			KURTO 2.7492
🛯 🕹 👉 🖻 🕄 🖣			K1888 660 Z.7127
			1099 X-2.0514
18368 696 184	,		10100 74.5357
18570 681 2.2417 18739 7 3868			NLI10 X-2.7999
18390 X-2.863	n		N1120 601 N-2.7736 74.5134
18488 2.3285			10130 2.7492
10410 X-2.9311			11,149 600 12,71,27
18438 2,2824			1050 X-2.05
10440 X-2.063			1280 (4.55)
10450 Z.289			NLT 0 1-2,700
18468 681 2.3285 18479 7 3000			NLL00 001 (PL: 1790 14-1129 N100 7 7007
18488 X-2.9511			
10490 600 X-2.9626			Q iteration ? _ S X
18588 7.2811			
10520 X-2.005 10520 7.3677			
18530 681 7.3992			1039 X-2,6949 A
18548 Z.478			10250 X-2.6304
10550 X-2.9311			NC380 601 F-1.6161 24.5124
18578 2,3588			NUT C-77A
18588 X-2.863			NC390 X-2.6555 NNA97 7 XXX7
18590 2.4465			1048 2.599
NEXER 541 2.478			10409 600 17-2.5160 24.5134 10439 7.7452
10620 X-2.9311			10,449 680 2.7177
10630 600 II-2.9626			1049 7-2.001 1049 24.557
10540 Z.4385			NU470 X-2.5597
Hercold X-2,000 10660 2,5252			10489 600 1-2.53/4 (4-5154 1069 2.7482
10670 601 2.5567			NU590 680 2.7177
10680 2.6354			NE20 7-2.5% NE20 74.557
10590 X-2.9311 10700 Geo V.1 4414			NU550 X-2.5477
NET10 2.5173			ND-94 (NUL IV-1-225) (F-5124 ND559 X-2.5374 Z4.0859
10720 X-2.063			NESSO 606 N-2.5597 74.3001
NET30 2.6839			NESIX A-2.4002 (AVV NESIX X-3.9355 7-3.5002
NEVAR DEL 2.0054 NRTSR 7.6845			NC590 650 1-1.3365 2-3.5802
10760 X-2.5374			1000 Feb mer Hes NG218 654 XR.8 20.8
10770 2.7142			NDER 7.1256
N8780 X-2.9311			Naciona 1997 de 1963 Nacional de la 125-1295 196-8
			10,690 690 7.1236
			NUDRY CO.W NUERY X-3.272 7-6680
			NUSER X-3.272 7-6680
			1859 186 HW P85
			10709 694 10.4641 20.0
			NUT28 X2.7E57 2-XE57 NUT28 620 58
			102749 656 /894
			10,758 680, 12, 5744 19,8

Available at https://journals.pen2print.org/index.php/ijr/

¥ 4 ≠ 1 € X € 7 5 -	
10/70 698 M. 1553	*
NUT99 X2.7281 NUT99 X2.728	
NUCCE EXTERNI NUCCE EXTERNI NUCCE EXTERNI	
NULER A. FEES	
NLING (2-1703) NLING X2.7308	
NG188 7.1814 NG179 681 X2.5846	
NUDB0 X.9655 NUDB0 600 N.8533	=
NC980 X2.4541 20.0	
NEED 650 12, 1456 2-1,0000	
1204 (67 54 193	
NESK 64 AZ-441 NESK 28.4	
NESTR X2.4141 NESRR 21.5256	
N1299 692 50 N1298 696 N83	
NI2006 601 X2.6883 F9.8 NI2028 X2.4057	
NDER 604 NI IIINAN 604 NI	
ILLEB V.2.40	
Naron 21,5-913 IN2878 661 102,4982	
Names Ber 12.4469 12.520 1-1029 18.0 Names Ber 12.5453	
NE200 X2.4161 NE210 Z1.3465	
N2120 601 X2.6883 N2139 X2.657	
10244 660 02.4236 10259 12.4260	
NC169 (21.1693 INTER GR 11 6483	
N2108 V2.4057	
NEEDER DER ALL ALLES	-
	1.07
R S + 6 2 X € * <mark>8</mark> -	
107/19 (2) 5215	
N2730 71.1446	
102281 X2,498	
K1246 G01 K2.4802	
H2150 602 H2.4705 Z1.1693	
12299 690 112.476 721.1749	
1229 23.8	
N200 A2494	
12389 X2.755	
N2100 650 X2,7455 2-1,0000	
:2220 T00 H00 H06	
N2390 697 59 NM4	
N2340 694 X.0023 Z4323	ļ
N259 K/100 C1811	Ū
N2707 696 194	
M2380 601 X.011 F9.0	
N2391 X.0514	
12460 7.183	
NAMA 600 7.4550	
1049 X.881	
New Class	
NUMA VALUATION	
10469 7.1004	
NA47A 600 1.4551	
10480 X.645	
12497 2.1011	
NEW WIT AND	
IKUR AJOL 1858 7.181	
NUSH 69 7.651	
NISAN X.8019	
N2559 Z.1011	
N2560 601 X.9291	
N2577 X.9805	
NEW CIRC	
1000 L001	
1000 A-31-3	
1850 7.1011	
NEW 7.001 NEW 67.1505	

	? _ & X
S 4 1 S × 1 1 1 S	
VICEA 656 7 8551	
NEED OF LEASE	
1070 7 121	
17578 GH 11 A75	
10558 V1 8277	
1/789 7 1814	
NZ719 688 Z.4551	
12739 11.	
10759 7.1611	
102749 681 11.4472	
10759 X1,4666	
10769 7.1804	
1(2770 680 2.4551	
12789 XL-894	
10799 7.1811	
12398 681 11.4855	
NOR10 X1.125	-
10528 7,1814	1
1019 GH 2.4551	
1019 11.607	
10559 7.1811	
12568 681 11.125	
10270 x1.1654	
10389 7.1814	
K0899 680 Z.4551	
N2580 X1.1181	
12919 7.1811	
10230 681 X1.1654	
1(2950 X1.2047	
10340 2.3824	
12550 680 2.8551	
1/2960 X1.1575	
12970 2.1811	
12588 681 11.2847	
12990 X1.2441	
18000 7.1824	
18010 GH Z.4551	
1809 X1.1969	
18889 2.1811	
18949 681 11.2441	
18850 X1.2805	
16660 7.11614	
18970 680 2.4551	-

REFERENCES

- 1) Cheng Zhou, Huayong Yang, and Likui Yang -"Real Time Monitoring of Input Force for High Speed Power Chucks Used in CNC Lathe"IEEE,year2010,pp387-391.
- 2)YKonda:- "Chacteristic pattern of air flow around lathe chuck flow visualisation by means of tuft and smoke Wire method" IEEE, year1997,pp212-217.
- 3)Y. Prado, -"Models for Stiffness Characterization of the Spindle-chuck System in a CNC Lathe for Prediction of Deflections in CAPP"IEEE, year 2010, pp1-7
- 4) Shuyan Zhao3 -" Numerical Simulation of the Static Interference Fit for the Spindle and Chuck of High Speed Horizontal Lathe"2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Year 2011, pp 1574-1577.
- 5) Jan Vojna "Fatigue Analysis Of Clamping Jaw For Horizontal Centre Lathe".
- 6) S. Selvakumar "Clamping Force Optimization for Minimum Deformation of Workpiece by Dynamic Analysis of Workpiece-fixture System"

e-ISSN: 2348-6848 p-ISSN: 2348-795X Volume 06 Issue 10 September 2019

7)A.Senkus,2012".Investigation of vibroacoustics properties of modern lathe collet chuck". 8) S.K. HAJRA CHOUDHURY,S. K. BOSE,A.K. HAJRA CHOUDHURY.Elements of workshop technology media promoters and publisher pvt. L