

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 06 Issue 12 November 2019

Impact of Soil Ambient Temperature on the Accuracy of Measured Thermal Resistivity

Collins C. Chiemeke

Physics Department, Federal University Otuoke, Bayelsa State, Nigeria. E-Mail: chiemekecc@fuotuoke.edu.ng Mobile phone +2348035780638 or +2348078907930.

Abstract:

Comprehensive knowledge of soil thermal resistivity is important for the design and installation of buried pipeline and cables, as build up of heat within the vicinity of the buried pipeline could cause it to crack and rust, or the cable becomes overheated and melts. Hence, the aim of this research work is to examine the effect of soil ambient temperature on the measured thermal resistivity values. To achieve this, six thermal resistivity measurements were carried out at the same point, at a depth of 0.5 m, within the space of 3 hours intervals between each measurement, for 15 hours. The ambient soil temperature was noted each time the thermal resistivity of the soil was determined by making use of heating element and a digital thermometer as the probe to monitor temperature increase with time. The range of the determined thermal resistivity is between 0.200030345 oCm/W to 0.404745201 oCm/W, with a significant difference of 0.204714856 oCm/W, that is comparable to the difference between thermal resistivity of sand and water. The results from the plotted graph of temperature against thermal resistivity with positive slope, gave a good indication that the thermal resistivity of the soil increase with increase in ambient soil temperature. The implications of this research work therefore is that the thermal resistivity values measured in the early hours, will be different from thermal resistivity values measured at noon, equally different from thermal resistivity value measured after sunset. Therefore the need for standardization becomes very paramount among the international scientific community for the purpose of harmonization. The notable difference between thermal resistivity measured in situ and thermal resistivity measured in the laboratory could be attributed to soil ambient *temperature difference.*

Keywords

Ambient Soil Temperature, Thermal Resistivity, Heat input. Pipeline, Cable

1. Introduction

Adequate and precise knowledge of the thermal property of soil is important for the design and installation of underground pipelines and transmission cables. A build up of heat around buried pipeline or transmission cable could cause the pipeline to crack and rust, or cause the cable to become overheated and melt. Soil thermal resistivity measures the ability of the soil to resist or dissipate heat. It is express mathematically as;

$$\sigma = \frac{4\pi}{Q} \left[\frac{T_2 - T_1}{\ln\left(\frac{t_2}{t_1}\right)} \right]$$

Where

 σ = Soil Thermal Resistivity °C m/W Q = Heat Input in W/m T_1 = Temperature at time t_1 T_2 = Temperature at time t_2

The aim of this research work therefore is to investigate the influence of soil ambient temperature on the result obtained from thermal resistivity measurement. The soil ambient temperature refers to the surrounding or background temperature of the soil at a given time. The soil ambient temperature is dynamic, meaning it can change with change in environmental temperature. To achieve a very precise and high fidelity result in thermal resistivity survey the effect of the ambient temperature on the thermal resistivity result has to be investigated and subsequently be put into consideration when carrying out a thermal resistivity test. Considering the previous work done by other researchers, Gaylon and Keith, 2014, has earlier Stated that "Soil and backfill thermal properties must be known for a safe power underground and successful cable installation". Soil thermal resistivity is one of the most important values that an engineer must know to calculate the amount of current any particular cable can be allowed to carry (Keith, 2014 et al). Accurate modelling of heat transfer from a pipeline to the ambient will impact all aspects of pipeline simulation; from capacity estimation and inventory modelled outlet temperatures. Accurate to

simulations rely on accurate measurements of fluid properties and on the pipeline flow model. (Filip et al, 2015).

The instruments used for this survey include high precision Digital thermometer with probe, 0.08 m heating element probe, 12 volts battery, multichannel Multimeter, digital stopwatch timer and a small drilling tool.

2. Location of the Study Area

The study area is located at Yenagoa Bayelsa State Nigeria, with latitude $4^{\circ}55'31.00''N$ and longitude $6^{\circ}17'56.00''E$, with an average elevation of 15 m, above sea level, after Collins 2014. The imagery map indicating the sampled point is shown in figure 1.

Figure 1: Imagery map indicating the sampled point, where the six reading were obtained

3. Geology of the area

The Formation of the present Niger Delta started during Early Paleocene as a result of the built up of fine grained sediments eroded and transported to the area by the River Niger and its tributaries. The regional geology of the Niger Delta consists of three lithostratigraphic units; Akata, Agbada and Benin Formations, overlain by various types of Quaternary Deposits (Short and Stauble, 1967), (Wright et al 1985), (Kogbe, 1989). These Quaternary Sediments, according to Osakuni, and Abam (2004) are largely alluvial and hydromorphic soils and lacustrine sediments of Pleistocene age.

4. Data Acquisition

Data acquisition started with location of appropriate point for the survey made up of undisturbed soil. The top soil majorly composed of humus organic material was removed by excavation. The soil was dug up to a depth of 0.5 m with a shovel, followed by drilling of a hole of about 0.10 m deep. The probe made up of the thermocouple digital thermometer and heating element was inserted into the hole, and good contact between the hole and the probe was ensured. The current flowing in the circuit and voltage of the battery was measured and

recorded with the help of the Multimeter. The ambient temperature of the soil was recorded when the reading on the digital thermometer was steady. The circuit was completed by connecting the terminals of the heating element to the battery, at the same time the stop watch was started simultaneously. The readings on the digital thermometer after 0, 5, 10, 15, 30, 45 and 60 s were noted and recorded; subsequently readings were taken every 30 s up to 30 minutes. The readings were carried out for T1, T2, T3, T4, T5 and T6, at 3 hours interval and different ambient temperatures. The same hole was used to acquire the six different readings without removing the probe at any time or alteration of its position and depth. The recorded values were taken to the laboratory for processing.

5. Data Processing

The recorded temperature increase with time were entered in a spreadsheet and used to plot a graph of temperature increase versus time for the six different readings shown in figure 2-7. The measured resistance and current flowing in the circuit were used to calculate the heat input. The heat input was used to calculate the thermal resistivity of the earth by determining the slope of temperature versus the natural log of time graph, that falls within the steady state portion of the graph. The various thermal resistivity values determined at different ambient temperature were plotted against the various ambient temperatures, figure 8, to ascertain their relationship.

6. Results

Tables containing the heat input and recording parameters, in addition to tables of recorded temperature with time at various points T1, T2, T3, T4, T5 and T6 are shown from table 1 to 11. The corresponding graphs of temperature versus time are shown in figure 2 to figure 7. Each graph started with a very steep slope which represent the period the probe was heating up, and later attain the steady state that tapered out at a later time and high temperature. The data were recorded at time range of 0 to 1800 s. The ambient temperature range of 27.1 °C to 29.2 °C recorded within an interval of 3 hours for 15 hours, along with the thermal resistivity values measured at the six points are shown in table 12. The range of measured Thermal Resistivity is between 0.200030345°Cm/W to 0.404745201 °Cm/W, with a difference of 0.204714856 °Cm/W between these extreme values, which is a quite significant value comparable to the thermal resistivity difference between sand and water. (Gavlon and Keith, 2014). A close examination of figure 8 which is a graph of Thermal Resistivity versus Ambient Temperature showed that thermal resistivity increases with

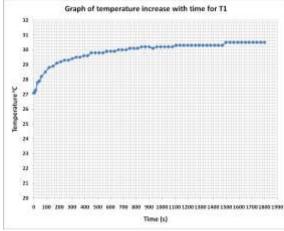

increase in the same soil ambient temperature. Base on the plotted graph the expression relating thermal resistivity to ambient temperature was determined to be; T=0.095A-2.367, where T stand for thermal resistivity and A stand for ambient soil temperature. From the expression the slope of the graph which indicated the rate at which thermal resistivity increases with temperature was determined to be 0.095. Being a positive slope, it gave a clear confirmation that measured thermal resistivity of a given soil increases with increase in soil ambient temperature.

Table 1. Data Acquisition Parameters for T1

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1723
Resistance (Ohms)	73.3
Voltage (V)	12.83
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calculated using Current and Resistance	27.20097946
Date	10/04/2019
Ambient Soil Temperature	27.1 °C
Time of Recording	6am

Table 2. Measured temperature increase with time for T1

5,M.	tive (s)	Temperature "C	\$/10	Time (s)	Temperature *C	\$/N	Tires (s)	Temperature "C
1	.0	27.3	22	540	20.8	- 45	1,100	30.3
1	5	27.1	24	570	20.8	40	1,110	10.3
. 2	38	27.2	25	600	25.9	- 47	1200	30.3
- 4	15	27.A	26	102	29.9	- 48	1290	3P.3
-5	30	27.5	27	660	30	49	1920	30.3
-06	45	27.9	28	890	30	50	1050	30.3
- 2	- 48	38.2	- 29	228	30	51	1380	30.3
- 8	. 60	26.5	- 30	250	80.1	N.	1410	80.3
. 0	320	20.0	31	200	10.1	53	1440	30,3
10	150	18.9	- 32	010	20.1	54	1470	30.3
- 11	110	19.1	33	\$47	10.2	55	1500	10.5
12	330	29.1	34	470	30.2	36	1530	30.5
11	240	29.1	35	900	30.2	- 57	1560	30.5
- 14	270	293	38	990	30.1	58	1990	10.5
15	300		- 87	960	30.7	59	1620	30.5
- 16	350	. 29.5	34	990	30.2	80	1/250	30.5
17	560	25.5	39	3920	30.2	61	1650	30.5
18	390		40	2050	30.2	67	1710	30.5
19	420	29.6	-41	3080	30.1	63	1746	30.5
20	450	29.6	42	3330	30.3	64	1770	30.5
21,	480	29.8	43	1140	30.9	68	1800	30.5
-22	\$30	29.8	-144	1170	3D.8	There	nal Resistia	vity 8.200030345 "City/W

Table 3: Data Acquisition Parameters for T2

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1716
Resistance (Ohms)	73.3
Voltage (V)	12.91
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calc using Current and Resistance	26.9804106
Date	10/04/2019
Ambient Soil Temperature	28.1°C
Time of Recording	9am

Table 4: Measured temperature increase with time for T2

S/W	Time (1)	Temperature "C	S/M	Time (s)	Tengerature T	\$/04	Time (id	Temperature *C
- 1	D	20.1	-23	5-60	11.3	- 45	1200	11
1	5	20.1	24	570	31,3	-46	11100	32
- 1	- 30	28.2	-25	-600	33.4	-47	1260	87
- 4	15	28.4	:26	830	35.4	- 41	1290	12.1
1.2	- 50	28.8	-27	880	31.5	- 43	1320	32,1
	45	25.2	.28	690	31.5	50	1350	32.1
. 7	60	29.3	29	7,20	31.6	- 51	1180	32.1
1	90	29.8	.50	.750	31.6	.57	1430	32.3
. *	120	29.2	- 31	780	31.6	51	3440	32.1
30	150	30.1	- 32	810	31.7	- 54	1470	33.
11	180	30.3	.53	840	31.7	- 55	-1500	32.1
32	210	30.5	- 34	870	31.8	56	1590	32.1
14	240	30.5	- 25	900	91.8	\$7	1560	81.
:14	270	30.7	.35	950	31.8	58	1990	32.3
18	. 800.	30.8	:87	960	31.8	59	3620	32.3
36	300	90.6	-38	990	31.9	62	3650	32.3
17	360	30.5	59	1020	31.9	. 61	3660	52.3
18	380	31.1	40	1050	- 31.皮	82	3730	32.2
19	410	31.3	41	1090	31.0	61	3740	32.0
10	450	31.2	-42	1110	31.0	64	1770	32.3
11	480	31.2	-43	1140	- 52	. 19	1800	32.3
22	540	31.2	. (64	1170	12	There	nal Resistiv	Aty 0.336506971 *Cm/W

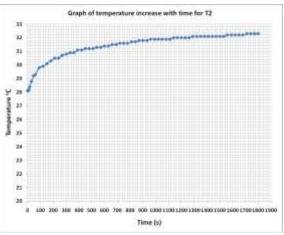


Figure 3: Graph of Temperature oC versus Time (s) for T2. Calculated Thermal Resistivity value of 0.336109371 °Cm/W.

Table 4: Data Acquisition Pa	arameters for T3
------------------------------	------------------

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1715
Resistance (Ohms)	73.3
Voltage (V)	12.89
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calc using Current and Resistance	26.94897406
Date	10/04/2019
Ambient Soil Temperature	28.2°C
Time of Recording	12noon

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 06 Issue 12 November 2019

Table 5: Measured temperature increase with time for T3

s/N	Time (c)	Temperature %	3/N	Time (s)	Tamperature *C	5/N	Time (s)	Temperature 'C
1	0	28 J	25	540	11.2	-41	1100	21.0
1	3	28.2	24	37D	31.2	-40	1210	11.1
. 8	10 DQ	20.8	25	600	31.3	47	1360	14.8
. 4	13	28.5	26	830	31.3	48	1290	31,9
5	- 80	28.9	27	660	91.9	-49	1520	31.9
6	-45	29.2	28	690	81.4	90	1350	83.9
T	- 90	29.3	29	720	31.4	1.11	1380	11.0
. 8	90	29.8	30	150	91.5	. 92	1410	81.9
. 9	120	30	31	780	31.5	52	1440	21.9
10	150	30.3	32	#10	31.5	54	1470	31.9
11	180	30.3	35	840	31.5	1.55	1900	31.8
17	210	30.4	- 24	\$79.	31.5	56	1510	34.9
13	240	10.5	35	800	83.5	57	1560.	32.1
14	270	90,6	55	950	91.6	58	1550	\$2.1
45	300	30.8	-37	960	34.7	59	1630	32.1
16	330	10.8	35	300	31.7	- 43	1650	32.1
17	360	90.8	- 22	3020	31.8	81	1680	52.1
18	990	93.6	40	1050	13.8	- 42	1710	38.1
-19	420	32.	41	1000	31.0	-61	1740	32.1
10	-450-	31	42	1330	31.6	- 84	1770	52.1
34	480.	46.4	-48	1340	41.0	- 65	1800	A2.1
22	510	31.3	-44	1170	33.8	There	nal Aminth	vity 0.336503449 "Cm/W

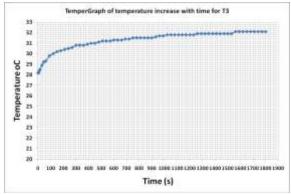
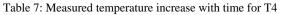
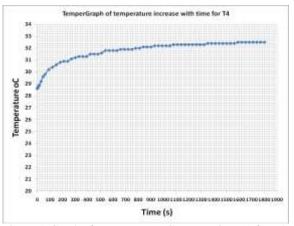



Figure 4: Graph of Temperature oC versus Time (s) for T3. Calculated Thermal Resistivity value of 0.336501449 °Cm/W.

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1714
Resistance (Ohms)	73.3
Voltage (V)	12.9
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calculation using Current and Resistance	26.91755585
Date	10/04/2019
Ambient Soil Temperature	28.6°C
Time of Recording	3pm

s/N	Tire (1)	Temperature *C	5,W	Time (u)	Temperature "C	S/N	Tirre (s)	Temperature "C
. 1		18.6	29	\$40	31.8	-45	1,306	12.9
1	5	10.7	24	\$70	31.8	- 86	1230	12.5
1	30	8.31	25	600	31.0	- 47.	1200	12.3
- 4	35	18.9	28	630	31.8	-48	1299	32.3
5	30	79.2	27	660	31.9	ं स	±320	31.0
	- 45	29.6	- 28	690	31.9	50	4358	12.4
- 2		- 25.4	29	720	\$1.5	. 51	1587	12.4
1	- 80	10.2	30	750	31.8	- 51	1410	12.6
1.1	320	10.4	31	780	12	51	1440	12.4
-39	350	50.6	- 92	810	11	54	1470	12 A 12 A
-11	380	10.5	- 33	640	92.4	- 55	1500	82.4
12	210	10.9	34	670	32.1	- 54	4550	12.4
- 15	240	10.9	- 55	500	32.1	37	1550	32.A
- 34	276	34.1	- 36	990	32.3	- 59	1590	32.5
- 15	500	31.2	- 57	960	32.2	.59	1620	12.5
25	550	81.8	58	990	32.2	61	1450	32.3
- 17	360	84.8	39	1050	82.2	- 165	1690	32.5
28	390	11.8	60	1050	32,2	- 62	1718	12.5
125	420	51.5	41	1080	52,3	03	1740	32.5
22	450	31.5	42	1110	52.5	64	1770	82.5
21	480	11.8	43	1140	32.5	61	1,500	32.5
22	520	\$1.8	44	1170	52.5	There	nel Resisti	vity 0.335854234 "On/W



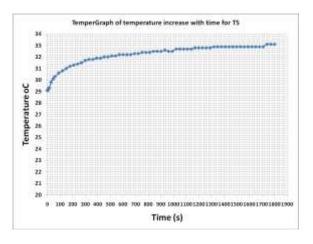

Figure 5: Graph of Temperature oC versus Time (s) for T4. Calculated Thermal Resistivity value of 0.336894214 °Cm/W

Table 8: Data Acquisition Parameters for T5	quisition Parameters for T5
---	-----------------------------

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1713
Resistance (Ohms)	73.3
Voltage (V)	12.89
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calculation using Current and Resistance	26.88615596
Date	10/04/2019
Ambient Soil Temperature	29.1 °C
Time of Recording	6pm

Table 9: Measured temperature increase with time for T5

3/W	Time (s)	Temperature *C	5/N	Time (s)	Temperature *C	S/W	Time (u)	Temperature *C
- 1	0	29.1	33	-540	. 32.1	45	1200	31.0
1	5	29.1	24	390	32.2	46	1230	92.8
- 3	- 10	29.5	23	800	32.2	47	1,290	.32.8
1.4	15	29.3	26	640	32.2	46	1,290	32.8
5	- 92	29.8	27	660	32.2	49	1320	32.5
-16	45	30.1	28	680	32.6	50	1350	32.9
- ¥	90	50.5	2.9	730	32.8	51	1,890	82.8 52.5
8	.90	50.6	30	750	32,A	52	1410	52.5
1. P	120	30.0	-34	380	12.4	53	1440	32.9
10	197	85.0	32	810	32.4	54	1470	32.9
-11	100	31.3	3.1	140	82.5	55	1500	32.9
4.2	210	81.3	- 14	810	32.5	56	: 1530	82.9
13	240	31.4	188	100	32.5	57	1560	32.5
14	270	31.5	36	990	32.6	58	1590	32.9
1.15	300	81.7	- 37	860	82.8	5.6	1620	82.9
16	330	31.8	.34	.990	33.5	60	1655	32.9
17	960	31.0	39	1020	22.7	64	1680	32.0
.18	392	31.9		1050	32.7	62	1710	52.5
19	420	31.9	-41	3000	32.7	65	1740	11.4
- 20	492	32.0	42	1110	32.7	84	1770	. 99.1
21	450	52.0	43	3140	\$2.7	65	1808	55.1
22	510	32.1	-44	1170	32.0	There	wait Residently	4ty 0.404745201 "Cm/W

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 06 Issue 12 November 2019

Figure 6: Graph of Temperature oC versus Time (s) for T5. Calculated Thermal Resistivity value of 0.404745201 °Cm/W

Table	10:	Data	Aco	misition	Parameters	for T6	, i
1 uore	10.	Dutu	1100	ansition	1 urumeters	101 10	,

Heat Input Parameters	Heat Input Parameters Values
Current (A)	0.1709
Resistance (Ohms)	73.3
Voltage (V)	12.89
Length of probe (m)	0.08
	Heat Input q (W/m)
Heat input Calculation using Current and Resistance	26.76073966
Date	10/04/2019
Ambient Soil Temperature	29.2°C
Time of Recording	9 pm

Table 11: Measured temperature increase with time for T6

5/W	Time (4)	Temperature 'C	S/M	Time (s)	Temperature *C	\$/14	Time (c)	Teraperature *C
1	D	29,2	25	540	32.1	-41	1200	12.7
1	. 1	. 29.2	24	570	32.2	-40	1290	12.1
. 8	40	29.1	25	600	82.2	- 47	1290	32.5
4	15	29.5	26	630	32.3	- 44	\$390	82.9 82.0
:3	50	29.9	27	860	32.3	- 49	1320	12.8
	.45	50.1	28	690	32.8	. 90	1890	12.8
7	60	30.3	.29	720	22.3	.11	\$390	12.0
	10	30.7	30	750	52.3	32	3410	82.8
. 7	120	30.8	81	780	\$2.3	53	1440	12.5
30	150	31.1	22	010	32.4	54	\$470	32.6
11	100	11.2	.11	640	12.4	. 55	1500	12.5
.12	210	81.8	34	870	32.4	. 55	2599	12.5
18	240	\$1.4	35	900	32.5	52	1560	12.5 12.5
34	170	31.5	36	9.90	32.5	.55	1590	32,9
15	500	SL.7	37	960	32.5	- 59	1625	32.9 12.5
36	880	81.7	38	990	82.5	- iid	0450	12.9
17	160	31,0	39	1020	32.6	41	1880	32.9
18	390	51.9	40	1050	52.6	42	1710	32.9
1.5	420	31.9	41	1080	32.6	- 4)	6740	32.9
30	45.0	31.8	42	1110	32.6	-64	1770	32.9
23	480	82.2	-45	1140	32.6	. 62	1800	32.9
.22	\$3.0	12.1	- 65	1170	82.7	Thursday	sail Residents	Aty 0.495532975 "Cm/W

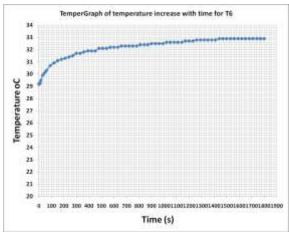


Figure 7: Graph of Temperature oC versus Time (s) for T6. Calculated Thermal Resistivity value of 0.406642071 °Cm/W

Table	12:	Ambient	temperature	and	corresponding
Therma	al Res	sistivity val	ues		

Points	Time of measurement	Ambient Temperature "C	Thermal Resistivity values "Cm/W
T1	6am	27.1	0.200030345
T2	Sam	28.1	0.336109371
T3	12noon	28.2	0.336501449
74	3pm	28.5	0.335894214
15	6pm	19.1	0.404745203
Tô .	9pm	19.2	0.406642073

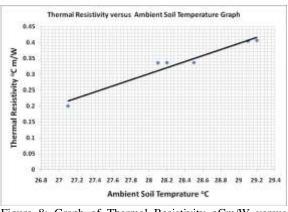


Figure 8: Graph of Thermal Resistivity oCm/W versus Ambient Soil Temperature $^{\rm o}{\rm C}$

7. Conclusion

The experimental result has indicated that soil thermal resistivity increases with Soil ambient temperature. This was confirmed by the positive slope of graph of thermal resistivity versus soil ambient temperature. It was evident that the difference between the two extreme thermal resistivity values which is 0.204714856 oCm/W, is more than the difference between that of sand and water. The optimum safe standard value accepted for buried pipeline and cables is 0.900000000 oC m/W. Therefore a difference in thermal resistivity value of 0.204714856 oCm/W could either mean that the surrounding soil is outside the safety limit with the value of (0.90000000 oC m/W + 0.204714856 oCm/W) 1.104714856 oCm/W, or very safe with a value of (0.90000000 oC m/W- 0.204714856 oCm/W) 0.695285144 oC m/W.

The implication of this research work is that the thermal resistivity value measured in the early morning will be different from the thermal resistivity measured at noon or in the late evening on the same soil, without moving the probe. Standardization is therefore necessary with further research to know what to add or subtract depending on which time the test was conducted. The notable difference between thermal resistivity measured in situ and thermal resistivity measured in the laboratory could be attributed to soil ambient temperature difference.

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 06 Issue 12 November 2019

8. References

[1]. Collins C. C., (2014). Evaluation of Natural Drainage Flow Pat-tern, Necessary for Flood Control, Using Digitized Topographic Information: A Case Study of Bayelsa State Nigeria. International Journal of Environmental, Ecological, Geological and Mining Engineering. World Academy of Science, Engineering and Technol-ogy. http://www.waset.org/Publications Vol:8 No:7: 500-505.

[2]. Filip S., Antonie O., and Sigmund M. H., (2015). Pipeline Modeling – Impact of Ambient Temperature and Heat Transfer Modeling. Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015, International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

[3]. Gaylon S. C., Keith L. B., (2014). The Effect of Soil Thermal Resistivity (RHO) on Underground Power Cable Installations Application Note, Printed in USA Decagon Devices, Inc.

[4]. Keith M., Carson B., and David C., (2014). The measurement of soil thermal stability, thermal resistivity, and underground cable ampacity. Conference Paper • May 2014 DOI: 10.1109/REPCon.2014.6842210.

[5]. Kogbe, C. A., (1989). The Cretaceous and Paleogene sediments of southern Nigeria. In: Geology of Nigeria, C.A. Kogbe, (editor), Elizabethan Press, Lagos: 311-334.

[6]. Osakuni, M. U., and Abam, T. K., (2004). Shallow resistivity measurement for cathodic protection of pipelines in the Niger Delta. Environmental Geology. 45: 747-752.

Short, K.C., and Stauble, A.J., (1967). Outline of the geology of the Niger Delta. Bull. AAPG. 51: 761-779.

[7]. Wright, J.B, Hasting, D. A., Jones, W. B., and Williams, H. R., (1985). Geology and mineral resources of West Africa, Allen and Unwin Limited, UK,: 107