

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 180

Object-Oriented Approach and Waterfall Model: A Review

Kinshuk Dudeja

6th Semester, Electronics and Computer Science Department,

dudejakinshuk@gmail.com

Aishwarya Kharbanda
aishwarya.kharbanda58@gmail.com

ABSTRACT―

This paper discusses two main software engineering

methodologies to system development, the waterfall

model and the object-oriented approach. A review of

literature reveals that waterfall model uses linear

approach and is only suitable for sequential or

procedural design. In waterfall, errors can only be

detected at the end of the whole process and it may be

difficult going back to repeat the entire process

because the processes are sequential. Also, software

based on waterfall approach is difficult to maintain and

upgrade due to lack of integration between software

components. On the other hand, the Object Oriented

approach enables software systems to be developed as

integration of software objects that work together to

make a holistic and functional system. The software

objects are independent of each other, allowing easy

upgrading and maintenance of software codes. The

paper also highlighted the merits and demerits of each

of the approaches. This work concludes with the

appropriateness of each approach in relation to the

complexity of the problem domain.

Keywords—
Object-oriented Approach; Software; Software

Engineering; Software Engineering Methodologies;

Software Objects; Traditional Approach; Waterfall

Model

I. INTRODUCTION

Today, many computers or electronic systems run

software to address scientific, social as well as

economic problems. The importance of software―an

abstract structure―in many facets of life call for an

engineering approach towards its development, thus

making it (i.e. software) the object of Software

Engineering. Various definitions of software

engineering have been proffered in the literature (see

[6], [9]). Wang defined software engineering as a

discipline that studies the nature of software,

approaches and methodologies for large-scale software

development, and theories and laws behind software

behavior and software engineering practices, aiming at

high productivity, low cost, controllable quality and

measurable development schedule. McDermid [8]

defined software engineering as “….the science and art

of specifying, designing, implementing and evolving –

with economy, timeliness and elegance – programs,

documentation and operating procedures whereby

computers can be made useful to man.”

The foregoing definitions thus suggest the significance

of adopting the most appropriate methodology and/or

approach that yield the best results, thus necessitating

the application of engineering principles. While the

former definition perceives software engineering―in

the context of nature―as an engineering discipline that

adopts engineering approaches (methodologies,

processes, measurements, tools, standards,

organizational methods, management methods and

quality assurance systems), with object under study

being “large scale software” and aims the following

attributes: productivity, quality, cost and time . The

latter definition portrays software engineering―in

terms of nature―as science and art, adopted the means

of life.

cycle methods (including specification, design,

implementation and evolving), with the object of study

being “program and documentation” and aims

attributes of economy, reliability and efficiency [8].

Thus, software engineering could be said to involve

both analysis and design of a software system that

addresses a specific task or problem domain, and

includes elaboration of concept(s) which will later be

constructed or developed into appropriate software

system(s). According to Bennett et al. [1], analysis

describes the “what” of a software system, which

means what happens in the current and what will be

required in the new software system; this refers to

requirement analysis or gathering. On the other hand,

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 181

design describes the “how” of a software system; that

is, how the system will be constructed. Thence, analysis

and design make up the foundation upon which

information system―an integrated set of components

that includes the software element―is built; they (i.e.

analysis and design) constitute major elements of

software engineering. Satzinger et al. [15] also stated

that System Development Life Cycle (SDLC), or

alternatively, software development life cycle, is a very

fundamental concept in information system

development. SDLC is the process of creating or

altering information systems, and the models and

methodologies that could be used to develop these

systems [14]. Software engineering thus makes

available a number of methodological approaches that

could be implemented during SDLC.

In recent time, the most popular methodological

approaches for developing software for a computer-

based information system are the popular traditional

Waterfall Model [12] and the Object-Oriented approach

[5]. The latter is sometimes considered a technique

rather than a model. The waterfall model (or sometimes

referred to as structured analysis and design model)

follows sequential process and separates data in a

system from the programs that act on the data. This

traditional approach (i.e. Waterfall model) renders a

rigid system development process [11]; hence, software

systems―using this approach―are not easily

upgradable or easily repaired. Hence, coupling between

subsystems do occur―changing the processes if the

data are to be changed. On the other hand, Object

Oriented approach is based on the analysis and design

of a collection of software objects, representing

solution to a single problem or concept, that are

integrated and work together in order to provide a

holistic system functionality. The objects represent

“instances of programming constructs, normally

classes, which are data abstractions and which contain

procedural abstractions that operate on the objects” [5,

p.31] Thus, each object is an encapsulation of its

states/attributes, behavior/operations and identity of the

object.

It should be noted that both the Waterfall and the

Object-oriented approaches depend solely on the

understanding of system requirements in order to make

meaningful elicitation during analysis and design.

Hickey and Davis [3] affirms that knowledge of

existing and proposed software system is important in

performing requirements elicitation and only the

selection of an appropriate elicitation technique (e.g.

brainstorming, document analysis, focus group,

interface analysis, observation, prototyping, survey,

etc.) could result in a successful analysis. In this work,

the above mentioned approaches―Waterfall model and

Object-oriented approach―are discussed. It aims, not

only to shed light on the two approaches, but also, to

identify factors that will inform the use of either

approach. The next section discusses the two

methodological approaches, thereafter, the merits and

demerits of each approach are highlighted.

II. THE METHODOLOGIES

This section provides a deeper understanding of the

traditional approach based on the waterfall model and

the object oriented approach using iterative and

incremental models.

The Waterfall Model

The traditional approach to software development can

be illustrated through the waterfall model which is

time-tested and easy to understand. The waterfall

model is a static model and it approaches systems

development in a linear and sequential manner,

completing one activity before the other. Fowler [2]

affirms that waterfall style breaks up projects based on

activities: requirement analysis, design, coding and

testing. Pressman [13] identifies the activities as:

communication (involving project initiation and

requirements gathering), planning (estimating,

scheduling and tracking), modeling (analysis and

design), construction (coding and testing), and

deployment (delivery, support and feedback). Pfleeger

and Atlee [12] present the model as involving the

following phases: requirement analysis, system design,

program design, coding, unit and integration testing,

system testing, acceptance testing and operation and

maintenance. Summarily, the waterfall model could be

said to involve the following phases: requirement

analysis, design, implementation (i.e. coding), testing,

and operation and maintenance (see fig. 1 below).

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 182

Fig. 1: The phases of a Waterfall Model

The waterfall model usually has distinct goals for each

phase of development. Once a phase is completely

Developed, the development proceeds into the next

phase and there is no opportunity to go back and revisit

earlier stage as depicted in fig. 1 above. The model thus

supports an approach that is structured and process-

centered. Fowler [2] further stressed that there are

usually some handoffs between phases and there are

often backflows but they should be very much avoided.

Any completed phase completes a particular set goal,

which is quite different from the goal of the next phase.

Also during design, if an error is detected in the

completed phases, there is usually no opportunity to

revisit the earlier phase. For instance, during design

stage something may come up that requires you revisit

analysis stage. It should be noted that during

development process, an amendment may be necessary

due to adjustment in requirement specification by the

owner/user of the proposed system. Such amendment is

impossible to achieve in waterfall development

process; this depicts the weakness of the traditional

approach.

Furthermore, in traditional waterfall model,

development proceeds without any overlapping

between stages. Although the model can accommodate

iteration, it does so indirectly [13]. Once a phase is

completed, there exists no room to revisit it over and

over to detect any flaw. Thence, no improvements can

be made since the phase cannot be revisited. This

model is most useful in structured systems development

where altering the software after coding is very much

prohibited. Also, processes and data are usually

separated in waterfall model, such that if the data are to

be modified the code must be changed as well (known

as software coupling). This makes software not

reusable and system not easily upgraded because the

entire processes will be modified in order to make any

adjustment which can be cumbersome and expensive.

 Object-Oriented Approach

Unlike the traditional system development model (such

as the waterfall model) that regards processes and data

as separate components, object-oriented approach

models real-world processes using objects. That is, the

solution of problems can be seen as a set of objects or

computations performed in the context of objects [4],

[5], [10], [11]16]. Data and the processes that act on the

data are encapsulated within every object. Each

object’s data (attributes or states) are the properties that

relate to the object. The object’s operations are

processes performed to modify the data in order to meet

specific.

An object can represent actual people, things,

transactions, and so on. A software object is an instance

of a class, and a class is a user-defined data type. A set

of objects describe a class while each object consist of

a set of properties. For example, in a result-

computation system, the name of a class could be

Student and names of the students (e.g. “Jones”,

“Chloe”) could be two instances (two objects) of the

Student class. In an organization, department could be a

class and the title of the departments (e.g. “admin”,

“works”) could be object instances of the class. The fig.

2 above represents several objects and their properties

in a banking application.

A class has both internal and external definitions. The

external definition of a class is the class interface

through which objects of other classes and

programmers of those objects are able to know services

rendered by the objects of that class and the signature

to request the services. Therefore, access to the data

within an object by other objects is available only via

the objects’ interface. The internal definition of a class

refers to what the objects of that class know and what

they can do. Only objects of a class know the internal

definitions of the class. Internal definition of a class

ensures good code modularity, meaning that less

programming is required when adding new functions to

the complex systems.

In Object-oriented development, information system is

constructed so that the implementation of each part is

quite independent of the implementation of the other

part (decoupling of software), due to possibility of

modularization. Each software object is coded and

implemented and then integrated to the Information

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 183

System. This continues until the entire Information

System is completed. So, there is decoupling of

software because each software object can be modified

and recoded and its data adjusted without disrupting the

entire system. Due to modularisation, each process is

located with the data it uses and this gives ample

opportunity for reuse of software components. The

entire system is constructed as integration of software

objects with each object consisting of the processes and

set of data that they work on.

III. MERITS AND DEMERITS

This section compare and contrast the two approaches

discussed above, highlighting their merits and demerits.

Merits & Demerits of Traditional Waterfall

Approach

The waterfall approach still remains the most popular

model used in the field of software development. Being

a linear and structured model, it is very simple to

implement, and less expensive. Bennett et al. [1]

identified some advantages of waterfall: that it is good

for effective control and management of resources such

as money, staff and time. For instance, merging

analysis and design may be cumbersome if staff skills

and experience require separating analysis stage from

design stage. It is mostly used in industries for

development of software that is expected to flow

steadily downwards like a waterfall where highly

structured programs are needed and in which changes

after coding are prohibitively costly, if not impossible.

Documentation is also produced at every stage of the

software development, which enhances understanding

the product designing procedure.

The most obvious disadvantages of the traditional

waterfall model are the inability to evaluate the

outcome of one stage before moving on to the next

(intermittent evaluation) and the inability to go back to

any step to make changes in the system. Sometimes, the

client is not very clear of what he exactly wants from

the software, so mentioning any changes in between

may cause a lot of confusion. The entire process is

sequential and there is no opportunity to revisit the

previous phase. Thus, he is hardly in a position to

inform the developers, if what has been designed is

exactly what he had asked for. Lack of integration

between software components and separation of

processes from data are other disadvantages of the

waterfall which makes it unsuitable for Object-Oriented

programming. There is coupling of software

components causing software to be reworked if data are

to be changed, this makes software not reusable.

Merits & Demerits of Object Oriented Approach

Since the Object Oriented method makes use of

iterative and incremental steps, it gives opportunity to

manage changes as they occur to user requirements. So,

it is more prone to user satisfaction. Due to several

iterations of an increment, potential risks are quickly

and easily identified, and new codes reworked while

existing ones are deleted. Another advantage of the

Object Oriented method is that it gives room for

iteration retrospect and opportunity for the team to

learn in the process, as such design modifications can

be made and new functional capabilities added.

Successful iterations imply completion of an increment

which means production of a subsystem needed for

specific functionality. This provides feedback to the

development team whether to move to subsequent

increments.

Furthermore, the fact that software objects are

encapsulated as a result of modularization, make

system easy to maintain, easy to upgrade, and more

reliable. There is opportunity to reuse software

components since they are very much decoupled with

low degree of dependency of program modules on each

other. The major disadvantage of Object Oriented

approach is, not knowing when exactly to stop

iterations. The development team may be tempted to

remain in several loops of iterations still wanting to

come up with a perfect functioning system. Another

disadvantage of using Object Oriented method is that it

can be very expensive. It is also difficult to come up

with an object-oriented system because it is very time-

consuming and cumbersome.

IV. CONCLUSION

From the above discussions, Object-oriented method is

a very flexible approach tolerating changes and

improvements throughout system development due to

the style of continuous chain and cyclical model. The

traditional waterfall is more rigid because of its linear

approach, and there may be little or lesser user

satisfaction since there is no opportunity to make

changes to the system. As such, the quality of

deliverables of Object-oriented development is very

high and robust compared to traditional waterfall-based

systems which are mostly error prone. However

coming up with an Object-oriented system can be

difficult and also quite expensive Waterfall on the other

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 184

hand is simpler to implement and less expensive, that

being the reason it is more widely used, especially its

modified version. None the less, once an Object-

oriented system is developed it can be reworked easily

to improve the existing system, and can be reused

severally for other applications with little adjustments.

Therefore, it can be concluded that the two approaches

are still functional in system development, but Object-

oriented method is more efficient and effective,

facilitating better user satisfaction of information

systems than the waterfall. The object-oriented

approach thus tends to have an edge over traditional

waterfall model in that it is readily applicable to real

world problems, reducing complex problems to a

collection of integrated objects, grouped into classes

with associated relationships. Thus, when the focus is

to model complex problems that will require revisit of

previous phase(s) , to attend to changing requirements

or address issues that emerge during the development

process, then object-oriented appears more appropriate

than the traditional waterfall model. However, when the

problem domain and requirements are very clear and

straightforward, the traditional waterfall model could

be easily adopted due to its simplicity and sequential

process.

V. REFERENCES

[1] Bennett, S., McRobb, S. & Farmer, R. (2002).

Object- Oriented Systems Analysis and Design Using

UML Berkshire: McGraw-Hill Education.

[2] Fowler, M. (2004), UML Distilled a Brief Guide to

the Standard Object Modelling Language, Boston:

Pearson Education, Inc.

[3] Hickey, A. M & Davis, A.M. (2003). Requirements

Elicitation and Elicitation Technique Selection: Model

for Two Knowledge - Intensive Software Development

Processes. In: Systems Sciences, Proceedings of the

36
th

Annual Hawali International conference, 6-9, Jan.,

2003.

[4] Larman, C. (2005). Applying UML and Patterns:

An Introduction to Object-Oriented Analysis and

Design and Iterative Development. New Jersey:

Pearson Education, Inc.

[5] Lethbridge, T.C. & Laganiere, R. (2005). Object-

oriented Software Engineering: Practical Software

Development using UML and Java, 2
nd

edition. UK:

McGraw-Hill.

[6] Mathew, S. (2007). Software Engineering. New

Delhi: S. Chand & Company Ltd.

[7] McConnell, S.M. (1996). Rapid Development:

Taming Wild Software Schedules. Microsoft Press.

[8] McDermid, J.A. ed. (1991). Software Engineer’s

Reference Book. UK: Butterworth-Heinemann Ltd.,

Oxford.

[9] Mnkandla, E. (2009). About Software engineering

Frameworks and Methodologies. Proceeding of IEEE

AFRICON 2009, 23-25 Sep., 2009, Nairobi, Kenya.

[10] Munassar, N.M.A & Govardhan, A. (2010). A

Comparison of Five Models of Software Engineering.

International Journal of Computer Science, 7(5).

[11] Munassar, N.M.A & Govardhan, A. (2011).

Comparison between Traditional Approach and Object-

oriented Approach in Software Engineering

Development. International Journal of Advanced

Computer Science and Applications, 2(6).

[12] Pfleeeger, S.L. & Atlee, J.M. (2006). Software

Engineering: Theory and Practice, 3
rd

Edition. US:

Prentice Hall.

[13] Pressman, R.S. (2005). Software Engineering: A

Practitioners Approach, 6
th

Edition. Singapore:

McGraw-Hill.

14] Rob, M.A. (2004). Issues of Structured Vs. Object-

oriented Methodology of Systems Analysis and Design.

Issues in Information Systems, 5 (1).

[15] Satzinger, J.W., Jackson, R.B. & Stephen, D.B.

(2008). Systems Analysis and Design in a Changing

World, Lengage Learning EMEA 3
rd

Edition .

