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ABSTRACT: 

We present a system that performs computations on 

finite state machines, syntactic semi groups, and one-

dimensional cellular automata. A hybrid automaton is 

a formal model for a mixed discrete-continuous 

system. We classify hybrid automata according to 

what questions about their behavior can be answered 

algorithmically. The classification reveals structure on 

mixed discrete-continuous state spaces that was 

previously studied on purely discrete state spaces 

only. In particular, various classes of hybrid 

automata induce  nitary trace equivalence (or 

similarity, or dissimilarity) relations on an 

uncountable state space, thus permitting the 

application of various model-checking techniques that 

were originally developed for finite-state systems. 
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I.  INTRODUCTION 
 

The automata system facilitates computation 

on finite state machines, syntactic semigroups, and 

one-dimensional cellular automata. Unlike some  other 

systems such as Grail, AUTOMATE, Amore, see [6] 

for detailed ref-    erences, the automata package is a 

hybrid system that is built around a commercial 

computer algebra system. Specifically, the current 

implemen-tation uses version 4.1 of Mathematica by 

Wolfram Research, Inc., see [14].    Before 

commenting more on this approach, we present two 

typical sample    sessions. Fairly detailed descriptions 

of earlier versions of the package can    be found in [8, 

9].     

 

Suppose you wish to determine the entropy of the 

sofic subshift associated with a particular one-

dimensional cellular automaton, see [5, 1] for 

morebackground information). Here is a short session 

in automata that shows    the necessary calculations. 

The dialogue is captured the way it would    appear in  

 

 

the plain text interface. For more elaborate examples 

using the notebook frontend, see 

http://www.cs.cmu.edu/~sutner The first    command 

converts the elementary cellular automaton number 92 

into ade Bruijn semiautomaton, which is then 

converted into the corresponding minimal Fischer 

automaton, see [2, 10]. We extract the transition 

matrix    from the latter, construed as a non-negative 

integer matrix, and determine its Perron eigenvalue.     

 
sa = ToSA[ CA[ 92, 3, 2 ] ]; 

mf = MinimalFischerFA[ sa ] 

 
SA[ 8, 2, {{1, 1, 1}, {2, 1, 4}, {3, 1, 1}, {4, 1, 6}, 
{5, 1, 1}, {6, 1, 6}, {7, 1, 8}, {1, 2, 2}, {2, 2, 3}, 
{3, 2, 5}, {4, 2, 2}, {6, 2, 7}, {7, 2, 5}, {8, 2, 2}} ] 
M = FullTransitionMatrixFA[ mf ]; 

Log[ 2, Max[ Abs[ N[ Eigenvalues[M] 

] ] ] ] 

0.900537 
 
In the mode chosen here the semi automaton mf is 

shown in abbreviated form. There are two invisible 

fields indicating the actual state set (a set of size 8 

according to the first field in the automaton, see 

section 2    below), and the elements of the alphabet (a 

set of size 2 according to the second field in the 

automaton). The first three commands use operations    

defined in the package, whereas computation of the 

eigen values is handled    entirely by Mathematica.   

 

II. Preserve  Regularity 

 
As a second example, consider regularity preserving 

operations on regular languages. There is a family of 

such operations based on existential quantification 

over strings of a certain length. In particular, a 

function 

f : N ! N is regularity preserving if for any regular 

language L the language 

 

T(L, f) = { x 2 ____ 9 y 2 __(|y| = f(|x|) ^ xy 2 L) } 

 

mailto:dudejakinshuk@gmail.com
mailto:aishwarya.kharbanda58@gmail.com
http://www.cs.cmu.edu/~sutner


 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 05, May 2015 

Available at http://internationaljournalofresearch.org 

  

Available online:http://internationaljournalofresearch.org/ P a g e  | 185 

is again regular. For specific functions f, the 

construction of the corresponding machines can be 

expressed easily in terms of Boolean matrices, see also 

[4]. For example, consider the function f(i) = 2i. Here 

is the con- 

struction of a DFA for T(L, f) where L is the language 

of all strings over 

{a, b} whose length is divisible by 3. We construct a 

DFA for L by hand and define symbol B to be the 

natural homomorphism _ : __ ! BQ×Q from words to 

Boolean matrices of size Q × Q. The ability to use 

higher type objects in this effortless way is a 

significant advantage in actual interactive, 

experimental computations. Of course, in this 
particular case this is a bit of overkill, the Boolean 
sum _(a)+_(b) is a simple circulant 
matrix here. 
 

 
 

m = DFA[ 3, 2, {{2,3,1},{2,3,1}}, 1, 

{1} ]; 

TransitionMatrixFA[ m, B, Type-

>Boolean ]; 

M = BooleanUnion[ B[a], B[b]] 

 
{{0, 1, 0}, {0, 0, 1}, {1, 0, 0}} 
 

 
 We can now define an operation dot that turns Q0 = 

Q×BQ×Q into a semimodule over __. First, the 

transition function of the DFA is assigned to delta. 

Operation dot then applies delta to the first component 

of any pair (p,A) 2 Q0, and squares the Boolean 

matrix. The sub-semimodule generated by (q0,M) 

provides the state set for the DFA mm recognizing 

T(L, f). During the generation of the sub-semimodule 

we also produce the transition function for mm. 

Lastly, the final states (p,A) can be determined by the 

condition that Ip · A · IF not be the null vector.   

 
 

TransitionFunctionFA[ m, delta ]; 

F = ToBitVector[ Final[m], Range[3] 

]; 

dot[{p_,P_},s_] := { delta[p,s], 

BooleanComposition[P,P] }; 

final[{p_,P_}] := ToBitVector[ p, 

Range[3] ] . P . F > 0; 

{Q,W,mm} = GenerateDFA[ {{1},M}, 

dot, 2, final ];mm 

 

            DFA[ 6, 2, {{2, 3, 4, 5, 6, 1}, {2, 3, 4, 5, 6, 
1}},1, {2, 3} ] 
 

W 

  
{Eps, a, aa, aaa, aaaa, aaaaa} 
 

 
 
The other fields Q and W contain the carrier set of the 

semimodule and a collection of corresponding 

witnesses, respectively. Either one could be used as 

the underlying state set of mm if need be. At any rate, 

the resulting machine has 6 states and a little 

arithmetic shows that T(L, f) should consist of all 

words of length i where i _ 1, 2 (mod 6). We can 

verify this computationally by generating a few words 

in the language, or by evaluating its census function 

up to length 20. 

 

 
 
LanguageFA[ mm, -6 ] 

LanguageFA[ mm, -20, SizeOnly->True 

] 

 
{{}, {a, b}, {aa, ab, ba, bb}, {}, {}, {}, {}} 
{0, 2, 4, 0, 0, 0, 0, 128, 256, 0, 0, 0, 0, 8192, 
16384, 
0, 0, 0, 0, 524288, 1048576} 

 
 
As a last example, we calculate the syntactic 

semigroup of a regular language. Consider L = { x 2 

{a, b}___ x−3 = a}, the set of all wordshaving an a in 

the third position from the end. 

 

 
 
m = MinimizeFA[ IthSymbolFA[ a, -3 ] 

]; 

{S,W,eq} = SyntacticSG[ m, 

Equations->True ]; 

S 

 
SG[T[2, 3, 5, 7, 5, 7, 3, 2], T[1, 4, 6, 8, 6, 8, 4, 1], 
T[3, 
5, 5, 3, 5, 3, 5, 3], T[4, 6, 6, 4, 6, 4, 6, 4], T[2, 7, 
7, 2, 
7, 2, 7, 2], T[1, 8, 8, 1, 8, 1, 8, 1], T[5, 5, 5, 5, 5, 
5, 5, 
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5], T[6, 6, 6, 6, 6, 6, 6, 6], T[7, 7, 7, 7, 7, 7, 7, 7], 
T[8, 
8, 8, 8, 8, 8, 8, 8], T[3, 3, 3, 3, 3, 3, 3, 3], T[4, 4, 
4, 4, 
4, 4, 4, 4], T[2, 2, 2, 2, 2, 2, 2, 2], T[1, 1, 1, 1, 1, 
1, 1,1]] 

 
The semigroup is presented as an explicit set of 

functions [8] ! [8]. We also determine the canonical 

rewrite system for the semigroup, which turns out to 

consists of all directed equations _1_2_3_4 = _2_3_4. 

There are 8 idemptotents in the semigroup, and they 

happen to coincide with the right nulls.  

 
id = IdemSG[S] 

 
{T[5, 5, 5, 5, 5, 5, 5, 5], T[6, 6, 6, 6, 6, 6, 6, 6], 
T[7, 7, 
7, 7, 7, 7, 7, 7], T[8, 8, 8, 8, 8, 8, 8, 8], T[3, 3, 3, 
3, 3, 
3, 3, 3], T[4, 4, 4, 4, 4, 4, 4, 4], T[2, 2, 2, 2, 2, 2, 
2, 2], 
T[1, 1, 1, 1, 1, 1, 1, 1]} 
 

id == RightNullSG[S] 

 
True 

 
 

 
III.  Experiment, Production and Prototyping  

Code 

 One of the goals of automata is to demonstrate the 

feasibility of a compu- tational environment that 

supports interactive computation, rapid pro- totyping 

of complicated algorithms, and the use of production 

scientific code. As a case in point, take the function 

MinimalFischerFA that was used in the entropy 

computation. Originally this function consisted of a 

short segment of Mathematica code, interactively 

developed and based on primitives provided by the 

package, whose sole purpose it was to compute a few 

Fischer automata arising from a some examples. The 

code was later collected into an experimental function 

available in the package, but not yet officially 

supported. In the last step, the function became a fully 

sup- ported part of the package, complete with an 

implementation as external C++ code. The external 

code communicates with the kernel via Math- Link, 

see [14], and allows one to deal with machines with 

many thousands of states. It can also be used as a part 

of a C++ library, in the form of shell scripts, or as a 

command in an interactive calculator written entirely 

in C++.  Similar comments apply to other operations 

that tend to be compu- tational bottlenecks: 

computation of a power automaton, minimization, 

generation of syntactic semigroups, to name a few. All 

these operations are implemented both in Mathematica 

and externally in C++. Note that this double 

implementation has some advantages with respect to 

check- ing correctness: the implementation languages 

Mathematica and C++ are sufficiently different to 

make it unlikely that the same error would appear in 

both implementations. As indicated in the semimodule 

computation above, some operations can optionally 

produce certificates that can be used to verify the 

correctness of the output.  For example, the internal 

algorithms dealing with finite state machines support 

an option Normalize which allows the user to preserve 

the natural state set of a machine. Thus, in a power 

automaton construction the state set of the new 

machine is naturally a subset of pow(Q), where Q is 

the state set of the nondeterministic machine. In a 

product automaton, the state set is a subset of Q1×Q2 

and minimization produces a partition of the state set 

of the given machine. By default the state set is always 

normalized to [n], but whenever necessary we can 

preserve the structure even during nested operations:  

 
m1 = ToDFA[ InfixFA[ aba ], 

Normalize->1 ]; 

MinimizeFA[ m1, Normalize->2 ] // 

States 

 
{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 2, 4}, {1, 3, 4}, {1, 4}}} 

 
 
Another important point is the quality of the frontend. 

The visual presentation of mathematical information is 

a challenging task, and one should not expect 

satisfactory solutions from ad-hoc efforts. The 

Mathematica frontend on the other hand produces 

near-publication quality re- sults, and provides easy 

access to a large collection of operations. When the 

data produced by the core algorithms of the system are 

complicated in nature (e.g., the D-class decomposition 

of a semigroup), the notebook frontend greatly helps 

to display, manipulate and further analyze the data, 

conveniently within the whole system.  Needless to 

say, maintenance of a hybrid system poses significant 

chal- lenges. The latest version of automata uses XML 

as the sole repository for the Mathematica code. The 

various components are automatically assem- bled into 

a so-called add-on package via XSL style-sheets. This 
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bundling process produces a software package that can 

simply be deposited in the user’s home directory, and 

that will then load automatically. Short help on a per-

function basis is available from the notebook interface, 

and there is a large collection of notebooks that 

demonstrate the use of the package. We are currently 

working on full integration with the extensible 

Mathematica help-browser. In the external code, the 

STL is used as the main source for standard data 

structures, see [7, 3]. If desired, the user can provide 

memory managers to speed up the external code (the 

standard memory manager is taken from the STL). 

Apart from the nested lists of atoms the external code 

tries to avoid inheritance in favor of parametrized 

types; thus it is relatively easy to read, extend, and 

modify.  The package has been brought to bear on a 

number of problems that might otherwise well have 

proven intractable, see [11, 13, 10, 12]. The code is 

available at http://www.cs.cmu.edu/~sutner.   
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