

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 184

Hybrid System for Computational Automata Theory
Aishwarya Kharband & Kinshuk Dudeja

6
th
 Semester, Electronics and Computer Science Department,

dudejakinshuk@gmail.com; aishwarya.kharbanda58@gmail.com

ABSTRACT:

We present a system that performs computations on

finite state machines, syntactic semi groups, and one-

dimensional cellular automata. A hybrid automaton is

a formal model for a mixed discrete-continuous

system. We classify hybrid automata according to

what questions about their behavior can be answered

algorithmically. The classification reveals structure on

mixed discrete-continuous state spaces that was

previously studied on purely discrete state spaces

only. In particular, various classes of hybrid

automata induce nitary trace equivalence (or

similarity, or dissimilarity) relations on an

uncountable state space, thus permitting the

application of various model-checking techniques that

were originally developed for finite-state systems.

Keywords—

Hybrid Automaton; Finite State Systems; Semi

Groups

I. INTRODUCTION

The automata system facilitates computation

on finite state machines, syntactic semigroups, and

one-dimensional cellular automata. Unlike some other

systems such as Grail, AUTOMATE, Amore, see [6]

for detailed ref- erences, the automata package is a

hybrid system that is built around a commercial

computer algebra system. Specifically, the current

implemen-tation uses version 4.1 of Mathematica by

Wolfram Research, Inc., see [14]. Before

commenting more on this approach, we present two

typical sample sessions. Fairly detailed descriptions

of earlier versions of the package can be found in [8,

9].

Suppose you wish to determine the entropy of the

sofic subshift associated with a particular one-

dimensional cellular automaton, see [5, 1] for

morebackground information). Here is a short session

in automata that shows the necessary calculations.

The dialogue is captured the way it would appear in

the plain text interface. For more elaborate examples

using the notebook frontend, see

http://www.cs.cmu.edu/~sutner The first command

converts the elementary cellular automaton number 92

into ade Bruijn semiautomaton, which is then

converted into the corresponding minimal Fischer

automaton, see [2, 10]. We extract the transition

matrix from the latter, construed as a non-negative

integer matrix, and determine its Perron eigenvalue.

sa = ToSA[CA[92, 3, 2]];

mf = MinimalFischerFA[sa]

SA[8, 2, {{1, 1, 1}, {2, 1, 4}, {3, 1, 1}, {4, 1, 6},
{5, 1, 1}, {6, 1, 6}, {7, 1, 8}, {1, 2, 2}, {2, 2, 3},
{3, 2, 5}, {4, 2, 2}, {6, 2, 7}, {7, 2, 5}, {8, 2, 2}}]
M = FullTransitionMatrixFA[mf];

Log[2, Max[Abs[N[Eigenvalues[M]

]]]]

0.900537

In the mode chosen here the semi automaton mf is

shown in abbreviated form. There are two invisible

fields indicating the actual state set (a set of size 8

according to the first field in the automaton, see

section 2 below), and the elements of the alphabet (a

set of size 2 according to the second field in the

automaton). The first three commands use operations

defined in the package, whereas computation of the

eigen values is handled entirely by Mathematica.

II. Preserve Regularity

As a second example, consider regularity preserving

operations on regular languages. There is a family of

such operations based on existential quantification

over strings of a certain length. In particular, a

function

f : N ! N is regularity preserving if for any regular

language L the language

T(L, f) = { x 2 ____ 9 y 2 __(|y| = f(|x|) ^ xy 2 L) }

mailto:dudejakinshuk@gmail.com
mailto:aishwarya.kharbanda58@gmail.com
http://www.cs.cmu.edu/~sutner

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 185

is again regular. For specific functions f, the

construction of the corresponding machines can be

expressed easily in terms of Boolean matrices, see also

[4]. For example, consider the function f(i) = 2i. Here

is the con-

struction of a DFA for T(L, f) where L is the language

of all strings over

{a, b} whose length is divisible by 3. We construct a

DFA for L by hand and define symbol B to be the

natural homomorphism _ : __ ! BQ×Q from words to

Boolean matrices of size Q × Q. The ability to use

higher type objects in this effortless way is a

significant advantage in actual interactive,

experimental computations. Of course, in this
particular case this is a bit of overkill, the Boolean
sum _(a)+_(b) is a simple circulant
matrix here.

m = DFA[3, 2, {{2,3,1},{2,3,1}}, 1,

{1}];

TransitionMatrixFA[m, B, Type-

>Boolean];

M = BooleanUnion[B[a], B[b]]

{{0, 1, 0}, {0, 0, 1}, {1, 0, 0}}

 We can now define an operation dot that turns Q0 =

Q×BQ×Q into a semimodule over __. First, the

transition function of the DFA is assigned to delta.

Operation dot then applies delta to the first component

of any pair (p,A) 2 Q0, and squares the Boolean

matrix. The sub-semimodule generated by (q0,M)

provides the state set for the DFA mm recognizing

T(L, f). During the generation of the sub-semimodule

we also produce the transition function for mm.

Lastly, the final states (p,A) can be determined by the

condition that Ip · A · IF not be the null vector.

TransitionFunctionFA[m, delta];

F = ToBitVector[Final[m], Range[3]

];

dot[{p_,P_},s_] := { delta[p,s],

BooleanComposition[P,P] };

final[{p_,P_}] := ToBitVector[p,

Range[3]] . P . F > 0;

{Q,W,mm} = GenerateDFA[{{1},M},

dot, 2, final];mm

 DFA[6, 2, {{2, 3, 4, 5, 6, 1}, {2, 3, 4, 5, 6,
1}},1, {2, 3}]

W

{Eps, a, aa, aaa, aaaa, aaaaa}

The other fields Q and W contain the carrier set of the

semimodule and a collection of corresponding

witnesses, respectively. Either one could be used as

the underlying state set of mm if need be. At any rate,

the resulting machine has 6 states and a little

arithmetic shows that T(L, f) should consist of all

words of length i where i _ 1, 2 (mod 6). We can

verify this computationally by generating a few words

in the language, or by evaluating its census function

up to length 20.

LanguageFA[mm, -6]

LanguageFA[mm, -20, SizeOnly->True

]

{{}, {a, b}, {aa, ab, ba, bb}, {}, {}, {}, {}}
{0, 2, 4, 0, 0, 0, 0, 128, 256, 0, 0, 0, 0, 8192,
16384,
0, 0, 0, 0, 524288, 1048576}

As a last example, we calculate the syntactic

semigroup of a regular language. Consider L = { x 2

{a, b}___ x−3 = a}, the set of all wordshaving an a in

the third position from the end.

m = MinimizeFA[IthSymbolFA[a, -3]

];

{S,W,eq} = SyntacticSG[m,

Equations->True];

S

SG[T[2, 3, 5, 7, 5, 7, 3, 2], T[1, 4, 6, 8, 6, 8, 4, 1],
T[3,
5, 5, 3, 5, 3, 5, 3], T[4, 6, 6, 4, 6, 4, 6, 4], T[2, 7,
7, 2,
7, 2, 7, 2], T[1, 8, 8, 1, 8, 1, 8, 1], T[5, 5, 5, 5, 5,
5, 5,

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 186

5], T[6, 6, 6, 6, 6, 6, 6, 6], T[7, 7, 7, 7, 7, 7, 7, 7],
T[8,
8, 8, 8, 8, 8, 8, 8], T[3, 3, 3, 3, 3, 3, 3, 3], T[4, 4,
4, 4,
4, 4, 4, 4], T[2, 2, 2, 2, 2, 2, 2, 2], T[1, 1, 1, 1, 1,
1, 1,1]]

The semigroup is presented as an explicit set of

functions [8] ! [8]. We also determine the canonical

rewrite system for the semigroup, which turns out to

consists of all directed equations _1_2_3_4 = _2_3_4.

There are 8 idemptotents in the semigroup, and they

happen to coincide with the right nulls.

id = IdemSG[S]

{T[5, 5, 5, 5, 5, 5, 5, 5], T[6, 6, 6, 6, 6, 6, 6, 6],
T[7, 7,
7, 7, 7, 7, 7, 7], T[8, 8, 8, 8, 8, 8, 8, 8], T[3, 3, 3,
3, 3,
3, 3, 3], T[4, 4, 4, 4, 4, 4, 4, 4], T[2, 2, 2, 2, 2, 2,
2, 2],
T[1, 1, 1, 1, 1, 1, 1, 1]}

id == RightNullSG[S]

True

III. Experiment, Production and Prototyping

Code

 One of the goals of automata is to demonstrate the

feasibility of a compu- tational environment that

supports interactive computation, rapid pro- totyping

of complicated algorithms, and the use of production

scientific code. As a case in point, take the function

MinimalFischerFA that was used in the entropy

computation. Originally this function consisted of a

short segment of Mathematica code, interactively

developed and based on primitives provided by the

package, whose sole purpose it was to compute a few

Fischer automata arising from a some examples. The

code was later collected into an experimental function

available in the package, but not yet officially

supported. In the last step, the function became a fully

sup- ported part of the package, complete with an

implementation as external C++ code. The external

code communicates with the kernel via Math- Link,

see [14], and allows one to deal with machines with

many thousands of states. It can also be used as a part

of a C++ library, in the form of shell scripts, or as a

command in an interactive calculator written entirely

in C++. Similar comments apply to other operations

that tend to be compu- tational bottlenecks:

computation of a power automaton, minimization,

generation of syntactic semigroups, to name a few. All

these operations are implemented both in Mathematica

and externally in C++. Note that this double

implementation has some advantages with respect to

check- ing correctness: the implementation languages

Mathematica and C++ are sufficiently different to

make it unlikely that the same error would appear in

both implementations. As indicated in the semimodule

computation above, some operations can optionally

produce certificates that can be used to verify the

correctness of the output. For example, the internal

algorithms dealing with finite state machines support

an option Normalize which allows the user to preserve

the natural state set of a machine. Thus, in a power

automaton construction the state set of the new

machine is naturally a subset of pow(Q), where Q is

the state set of the nondeterministic machine. In a

product automaton, the state set is a subset of Q1×Q2

and minimization produces a partition of the state set

of the given machine. By default the state set is always

normalized to [n], but whenever necessary we can

preserve the structure even during nested operations:

m1 = ToDFA[InfixFA[aba],

Normalize->1];

MinimizeFA[m1, Normalize->2] //

States

{{{1}}, {{1, 2}}, {{1, 3}}, {{1, 2, 4}, {1, 3, 4}, {1, 4}}}

Another important point is the quality of the frontend.

The visual presentation of mathematical information is

a challenging task, and one should not expect

satisfactory solutions from ad-hoc efforts. The

Mathematica frontend on the other hand produces

near-publication quality re- sults, and provides easy

access to a large collection of operations. When the

data produced by the core algorithms of the system are

complicated in nature (e.g., the D-class decomposition

of a semigroup), the notebook frontend greatly helps

to display, manipulate and further analyze the data,

conveniently within the whole system. Needless to

say, maintenance of a hybrid system poses significant

chal- lenges. The latest version of automata uses XML

as the sole repository for the Mathematica code. The

various components are automatically assem- bled into

a so-called add-on package via XSL style-sheets. This

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 187

bundling process produces a software package that can

simply be deposited in the user’s home directory, and

that will then load automatically. Short help on a per-

function basis is available from the notebook interface,

and there is a large collection of notebooks that

demonstrate the use of the package. We are currently

working on full integration with the extensible

Mathematica help-browser. In the external code, the

STL is used as the main source for standard data

structures, see [7, 3]. If desired, the user can provide

memory managers to speed up the external code (the

standard memory manager is taken from the STL).

Apart from the nested lists of atoms the external code

tries to avoid inheritance in favor of parametrized

types; thus it is relatively easy to read, extend, and

modify. The package has been brought to bear on a

number of problems that might otherwise well have

proven intractable, see [11, 13, 10, 12]. The code is

available at http://www.cs.cmu.edu/~sutner.

REFERENCES

[1] M.-P. Beal and D. Perrin. Symbolic dynamics and

finite automata. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, volume 2,

chapter 10. Springer Verlag, 1997.

[2]R. Fischer. Sofic systems and graphs. Monatshefte

f¨ur Mathematik, 80:179–186,

1975.

[3]G. Glass and B. Schuchert. The STL <Primer>.

Prentice Hall, 1996.

[4]D. Kozen. Lower bounds for natural proof systems.

In Proc. 18-th Ann. Symp. On Foundations of

Computer Science, pages 254–266. IEEE Computer

Society, 1977.

[5]D. Lind and B. Marcus. Introduction to Symbolic

Dynamics and Coding. Cam-

bridge University Press, 1995.

[6]R. Raymond, D. Wood, and S. Yu. First

International Workshop on Implementing

Automata, volume 1260 of Lecture Notes in CS.

Springer Verlag, 1997.

[7]B. Stroustrup. The C++ Programming Language.

Addison-Wesley, 1997.

[8]K. Sutner. Finite state machines and syntactic

semigroups. The Mathematica

Journal, 2(1):78–87, 1992.

http://www.cs.cmu.edu/~sutner

