
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 8

A Reconfigurable Cache for Efficient Use of Tag RAM as
Scratch-Pad Memory

Kamarthi Prakash Kumar1, S.Ashok Reddy2, S.Mahaboob Basha3

1P.G. Scholar, 2Assistant Professor, 3Head of the Department
1,2,3 Branch:ECE (VLSI)

GEETHANJALI COLLEGE OF ENGG. & TECH.
Email id:-1prakashkumar8341@gmail.com,2singasaniashokreddy@gmail.com

Abstract
The cache memory has been a predominant
component in modern chips, easily taking
up more than 50% of the silicon area. It is
then desirable to make the cache memory
flexible for different needs. Therefore, many
modern processor chips allow users to
configure a part of the cache memory as the
scratch-pad memory (SPM), a high-speed
internal memory for rapid data access.
However, such approach uses only the data
RAM of the cache memory while leaving
the tag RAM unused and thus wasting its
capacity. This paper presents a cache
organization, called Tag-SPM architecture,
which allows the tag RAM to be used as the
SPM and thus increases its capacity. It is
accomplished with small Tag/Data-SPM
controllers and four additional multiplexers
in the cache organization. The proposed
Tag-SPM architecture has been
implemented with an academic ARM-based
microprocessor with 4-/4-kB four-way set
associative instruction/data caches at the
register transfer level. Experiments show
that the proposed architecture boosts the
SPM capacity by 12.5% and requires only
0.08% area (434 gates) overhead without
impairing the cache’s circuit speed in
TSMC’s 90-nm standard cell
implementation. Furthermore, the power
overhead is negligible. When the Tag-SPM
architecture is applied to typical cache
systems, such as in ARM’s Cortex-A5 and
Cortex-A53 processors, additional 12.5%
SPM space per way can also be gained in
both cases. The analyses show that our Tag-

SPM architecture is a highly cost-effective
way to boost the SPM space.

Keywords-Cache memory,
microprocessor, reconfigurable,
architecture, system-on-chip.

INTRODUCTION

CACHE and scratch-pad memory
(SPM) are two approaches to mitigate the
speed gap between the processor and the
external main memory by keeping a small
amount of information on chip for high-
speed access. The cache approach keeps
frequently used information in an on-chip
data RAM and maintains its consistency
with the external main memory
automatically. The cache space is efficiently
reused by tracking the spatial/temporal
locality of memory reference. Therefore, the
cache is transparent to the software
programmer; there is no need for the
programmer to explicitly manipulate the
cache. To accomplish such a goal,
additional hardware components, such as
the tag RAM (storing address tags and
various status bits), comparators, and the
cache controller, are necessary. On the other
hand, the SPM approach requires only the
data RAM. It requires the programmer to
fully understand the memory reference
patterns of a specific program and manually
move data between the SPM and the
external memory. Compared with the cache,
the SPM consumes less energy and is more
time-predictable due to its simplicity. If

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 9

manipulated well, its performance could be
better than the cache.

Since the cache and the SPM have their
own advantages and usage scenarios, many
microprocessor/DSP/GPU cores, such as
Intel’s XScale, Texas Instruments’
TMS320C62, and NVidia’s Fermi , have
configurable caches, which allow the
programmer to configure a part of the cache
to operate as an SPM (or called tightly
coupled memory). Under such SPM mode,
only the data RAM of the cache memory is
utilized; the tag RAM of such cache is not
used and thus wasted.

In this project, we propose a cache
organization, called Tag-SPM architecture,
which allows its tag RAM to be used as the
SPM as well and thus increases the SPM
capacity in a highly cost-effective way. To
the best of our knowledge, this is the first
work to address such issue.

On chip caches using static RAM
consume power in the range of 25% to, 45%
of the total chip power. Recently, interest
has been focused on having on chip scratch
pad memory to reduce the power and
improve performance. On the other hand,
they can replace caches only if they are
supported by an effective compiler. Current
embedded processors particularly in the area
of multimedia applications and graphic
controllers have on-chip scratch pad
memories. In cache memory systems, the
mapping of program elements is done
during runtime, whereas in scratch pad
memory systems this is done either by the
user or automatically by the compiler using
suitable algorithm.

LITERATURE SURVEY

Ing-Jer Huang received the B.S. degree
in electrical Engineering from National
Taiwan University, Taipei, Taiwan, in 1986,
and the M.S. and Ph.D. Degrees in
computer engineering from the University
of Southern California, Los Angeles, CA,
USA, in 1989 and 1994, respectively. He is
currently a Professor with the Department

of Computer Science and Engineering,
National Sun Yat-sen University,
Kaohsiung, Taiwan. His current research
interests include microprocessors,
systemon-chip design, design automation,
system software, embedded systems,
hardware/software code sign, academic and
industrial activities, and extensive
collaboration with several IC-related
industries. Dr. Huang is a member of the
ACM.

Chun-Hung Lai received the B.S.
degree Information Engineering and
Computer Science, Feng-Chia University,
Taichung, Taiwan, and the M.S. and Ph.D.
degrees from National Sun Yat-sen
University, Kaohsiung, Taiwan, in 2007 and
2014, respectively. He is currently an
Engineer with the Industrial Technology
Research Institute, Hsinchu, Taiwan. His
current research interests include systemon-
chip debugging methodology,
microprocessor design or verification, and
multipurpose cache architecture.

Yun-Chung Yang received the B.S. and
M.S.degrees from the Department of
Computer Science and Engineering,
National Sun Yat-sen University,
Kaohsiung, Taiwan, in 2011 and 2015,
respectively. He is currently an Engineer
with the Design Validation Department,
Elite Semiconductor Memory Technology
Inc., Hsinchu, Taiwan. His current research
interests include memory issues in
embedded system design, embedded
microprocessors, and hardware/software
codesign.
MEMORY
 RAM

Random-access memory (RAM) is a
form of computer data storage. A random-
access device allows stored data to be
accessed directly in any random order. In
contrast, other data storage media such
as hard disks, CDs, DVDs and magnetic
tape, as well as early primary memory types
such as drum memory, read and write data
only in a predetermined order,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 10

consecutively, because of mechanical
design limitations. Therefore the time to
access a given data location varies
significantly depending on its physical
location.

Today, random-access memory takes the
form of integrated circuits. Strictly
speaking, modern types of DRAM are not
random access, as data is read in bursts,
although the name DRAM / RAM has
stuck. However, many types of
SRAM, ROM, OTP, and NOR flash are
still random access even in a strict sense.
RAM is normally associated
with volatile types of memory (such
as DRAM memory modules), where its
stored information is lost if the power is
removed. Many other types of non-volatile
memory are RAM as well, including most
types of ROM and a type of flash
memory called NOR-Flash. The first RAM
modules to come into the market were
created in 1951 and were sold until the late
1960s and early 1970s.

RAM is small, both in terms of its
physical size and in the amount of data.

RAM is of two types
1. Static RAM (SRAM)
2. Dynamic RAM (DRAM)

3.1.1 Static RAM (SRAM)
 The word static indicates that the

memory retains its contents as long as
power remains applied. However, data is
lost when the power gets down due to
volatile nature.
 It has long data lifetime
 There is no need to refresh
 Faster
 Used as cache memory
 Large size
 Expensive
 High power consumption

Dynamic RAM (DRAM) DRAM
 Unlike SRAM, must be continually
refreshed in order for it to maintain the data.
This is done by placing the memory on a
refresh circuit that rewrites the data several

hundred times per second. DRAM is used
for most system memory because it is cheap
and small. All DRAMs are made up of
memory cells. These cells are composed of
one capacitor and one transistor.

Characteristic of the Dynamic RAM
 It has short data lifetime
 Need to refresh continuously
 Slower as compared to SRAM
 Used as RAM
 Lesser in size
 Less expensive
 Less power consumption

Table 3.1 Difference Between Static
RAM and Dynamic RAM

3.2 Read-only memory (ROM) is a class
of storage medium used in computers and
other electronic devices. Data stored in
ROM cannot be modified, or can be
modified only slowly or with difficulty, so it
is mainly used to
distribute firmware (software that is very
closely tied to specific hardware, and
unlikely to need frequent updates).
 In its strictest sense, ROM refers only
to mask ROM (the oldest type of solid
state ROM), which is fabricated with the
desired data permanently stored in it, and
thus can never be modified. Despite the
simplicity, speed and economies of scale of
mask ROM, field-programmability often
make reprogrammable memories more
flexible and inexpensive. As of 2007, actual
ROM circuitry is therefore mainly used for
applications such as microcode, and similar
structures, on various kinds of processors.

Other types of non-volatile
memory such as erasable programmable
read only memory (EPROM)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 11

and electrically erasable programmable
read-only memory (EEPROM or Flash
ROM) are sometimes referred to, in an
abbreviated way, as "read-only memory"
(ROM); although these types of memory
can be erased and re-programmed multiple
times, writing to this memory takes longer
and may require different procedures than
reading the memory.[1] When used in this
less precise way, "ROM" indicates a non-
volatile memory which serves functions
typically provided by mask ROM, such as
storage of program code and nonvolatile
data.

Use for Storing Program
Every stored-program computer needs

some form of non-volatile storage (that is,
storage that retains its data when power is
removed) to store the initial program that
runs when the computer is powered on or
otherwise begins execution (a process
known as bootstrapping, often abbreviated
to "booting" or "booting up"). Likewise,
every non-trivial computer needs some form
of mutable memory to record changes in
its state as it executes.

Forms of read-only memory were
employed as non-volatile storage for
programs in most early stored-program
computers, such as ENIAC after 1948.
(Until then it was not a stored-program
computer as every program had to be
manually wired into the machine, which
could take days to weeks.) Read-only
memory was simpler to implement since it
needed only a mechanism to read stored
values, and not to change them in-place, and
thus could be implemented with very crude
electromechanical devices (see examples
below). With the advent of integrated
circuits in the 1960s, both ROM and its
mutable counterpart static RAM were
implemented as arrays of transistors in
silicon chips; however, a ROM memory cell
could be implemented using fewer
transistors than an SRAM memory cell,
since the latter needs a latch (comprising 5-

20 transistors) to retain its contents, while a
ROM cell might consist of the absence
(logical 0) or presence (logical 1) of one
transistor connecting a bit line to a word
line. Consequently, ROM could be
implemented at a lower cost-per-bit than
RAM for many years.

Use for Storing Data
Since ROM (at least in hard-wired

mask form) cannot be modified, it is really
only suitable for storing data which is not
expected to need modification for the life of
the device. To that end, ROM has been used
in many computers to store look-up
tables for the evaluation of mathematical
and logical functions (for example,
a floating-point unit might tabulate the sine
function in order to facilitate faster
computation). This was especially effective
when CPUs were slow and ROM was cheap
compared to RAM.

Notably, the display adapters of
early personal computers stored tables of
bitmapped font characters in ROM. This
usually meant that the text
display font could not be changed
interactively. This was the case for both
the CGA and MDA adapters available with
the IBM PC XT.

Flash Memory
The saving works with the Floating-

Gate. The Floating-Gate is between the Gate
and Source-Drain Area and isolated with an
Oxide-Layer. If the Floating Gate is
uncharged then the Gate can control the
Source Drain current. The Floating Gate
gets filled (Tunnel-Effect) with electrons
when a high voltage at the Gate is supplied.
Now the negative potential on the Floating-
Gate works against the Gate and no current
is possible. The Floating-Gate can be erased
with a high voltage in reverse direction at
the Gate.
RISC

The Reduced Instruction Set
Computer, or RISC, is a microprocessor
CPU design philosophy that favors a

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 12

smaller and simpler set of instructions that
all take about the same amount of time to
execute. The most common RISC
microprocessors are ARM, DEC Alpha, PA-
RISC, SPARC, MIPS, and IBM's PowerPC.

The idea was inspired by the
discovery that many of the features that
were included in traditional CPU designs to
facilitate coding were being ignored by the
programs that were running on them. Also
these more complex features took several
processor cycles to be performed.
Additionally, the performance gap between
the processor and main memory was
increasing. This led to a number of
techniques to streamline processing within
the CPU, while at the same time attempting
to reduce the total number of memory
accesses.
Features which are generally found in
RISC designs are
Uniform Instruction Encoding (for
example the op-code is always in the same
bit position in each instruction, which is
always one word long), which allows faster
decoding;
A Homogeneous Register Set, allowing
any register to be used in any context and
simplifying compiler design.
Simple Addressing Modes (complex
addressing modes are replaced by sequences
of simple arithmetic instructions).
Few Data Types supported in hardware (for
example, some CISC machines had
instructions for dealing with byte strings.
Others had support for polynomials and
complex numbers. Such instructions are
unlikely to be found on a RISC machine).
Over many years, RISC instruction sets
have tended to grow in size. Thus, some
have started using the term "load-store" to
describe RISC processors, since this is the
key element of all such designs. Instead of
the CPU itself handling many addressing
modes, load-store architecture uses a
separate unit dedicated to handling very
simple forms of load and store operations.
CISC processors are then termed "register-

memory" or "memory-memory". Today
RISC CPUs (and microcontrollers)
represent the vast majority of all CPUs in
use. The RISC design technique offers
power in even small sizes, and thus has
come to completely dominate the market for
low-power "embedded" CPUs. Embedded
CPUs are by far the largest market for
processors.
.CACHE MEMORY
4.1 Cache Definition

The Cache Memory (Pronounced as
"cash") is the volatile computer memory
which is very nearest to the CPU so also
called CPU memory, all the Recent
Instructions are Stored into the Cache
Memory. It is the fastest memory that
provides high-speed data access to a
computer microprocessor. Cache meaning is
that it is used for storing the input which is
given by the user and which is necessary for
the computer microprocessor to perform a
Task. But the Capacity of the Cache
Memory is too low in compare to Memory
(random access memory (RAM)) and Hard
Disk.

1.1. Importance of Cache memory
The cache memory lies in the path

between the processor and the memory. The
cache memory therefore, has lesser access
time than memory and is faster than the
main memory. A cache memory have an
access time of 100ns, while the main
memory may have an access time of
700ns.The need for the cache memory is
due to the mismatch between the speeds of
the main memory and the CPU. The CPU
clock is very fast, whereas the main
memory access time is comparatively
slower. Hence, no matter how fast the
processor is, the processing speed depends
more on the speed of the main memory (the
strength of a chain is the strength of its
weakest link). It is because of this reason
that a cache memory having access time
closer to the processor speed is introduced.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 13

Fig. 4.1.1 Processing Speeds between

CPU and Main Memory.
The cache memory stores the

program (or its part) currently being
executed or which may be executed within a
short period of time. The cache memory
also stores temporary data that the CPU may
frequently require for manipulation. The
cache memory works according to various
algorithms, which decide
what information it has to store. These
algorithms work out the probability to
decide which data would be most frequently
needed. This probability is worked out on
the basis of past observations.

 Proposed Model
Scratchpad Memory Scratchpad

Memory (SPM) is the term chosen for
cache-like software-managed memory. It is
significantly smaller than the main memory,
ranging from below 1-KB to several KB in
research applications and being at 256-KB
in the SPEs of the Cell multiprocessor.
Being located on the same chip as - and
close to - the CPU core, its access latencies
are negligible compared to those of the main
memory. Unlike caches, SPM is not
transparent to software. It is mapped into an
address range different from the external
RAM.

Fig 4.1.2 Cache Configuration and SPM
Configuration

Some implementations make it possible for
the CPU to continue its calculations while

data is transferred from RAM to SPM or
vice versa by employing an asynchronous
DMA controller. Even without it being
asynchronous, transfers from or to RAM are
often handled by a special controller that
moves data in blocks rather than having the
CPU using load and store instructions.
There are approaches that use both a SPM
and a regular cache.

In multicore processors, there may
be a separate SPM per core, which can,
depending on the implementation, be used
as private buffer memory, ease
communication between cores or both

Modern computer applications
require more RAM to perform tasks than
can be embedded into the processor core.
Apart from some low-power embedded
systems, most processors utilize cache
hierarchies to lessen the speed penalty
caused by access to external memory. Cache
is a small temporary buffer managed by
hardware, employing usually hard-wired
displacement strategies like least-recently-
used (LRU), first-in-first-out (FIFO) or
randomized approaches. Since these
displacement strategies are written to
perform good for a wide spectrum of use
cases, they are less optimal than a strategy
that is tailored to a specific application by a
compiler that knows about the whole
program structure and may even employ
profiling data.
4.2 Energy Efficiency

The main advantage of cache over
SPM is that it is transparent to software. To
achieve this, it needs to know which
memory addresses lie within blocks that are
currently stored in the cache. Tags are the
parts of memory addresses that are required
to map a block of cache memory to the
address in the RAM it belongs to.

Depending on the implementation,
there may be different mechanisms like
write-back and write-through as well as
several displacement strategies available
that applications or the operating system can
choose from. Since the on-chip cache is a

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 14

major part in the energy consumption of a
modern processor, requiring from 25% to
45%, increasing its efficiency or replacing it
with SPM has a significant impact on the
energy consumption of the whole processor.
To compare the energy and area efficiency
of SPM and cache, modifies an existing
processor, the ARM7TDMI, to use an SPM
instead of the previously built-in cache.
They employ the energy-away compiler
with the post pass option of assigning code
and data blocks with the knapsack
algorithm.
4.3 Tag-SPM Architecture

The cache organization considered
in this paper is a reconfigurable cache,
which allows part of its cache ways to be
configured as an SPM. The SPM consists of
two portions: Data-SPM and Tag-SPM. The
Data-SPM, which can be found in many
commercial processors resides in the data
RAM of the cache ways, which are
configured as the SPM. On the other hand,
the Tag-SPM resides in the tag RAM of the
cache ways, which is our innovation. For
completeness, we will begin with a
description of the complete cache
organization and operations, including both
Data-SPM and Tag-SPM, and then focus on
the proposed Tag-SPM technique.The
proposed Tag-SPM technique can be
applied to both the instruction cache and the
data cache. To simplify the discussion, we
use the data cache as the example in this
paper.
.

Fig 4.3 Tag-SPM architecture (4-kB,

four-way associative cache, line size32 B).

6) The cache-SPM partitioning is way-
based. That is, the programmer can set aside
one or more ways to serve as the SPM while
the remaining ways as the regular cache.
When a way is configured as an SPM, both
its tag RAM and data RAM are used to store
data.
Support Circuitry for Tag-SPM and
Data-SPM

The shaded components in provide
the necessary mechanism to write data to
tag RAM and data RAM and to read data
from them. These components are three
control registers (Tag-SPM base register,
Data-SPM base register, and SPM way
register), two controllers (Tag-SPM
controller and Data-SPM controller), and
four multiplexers (M1, M2, M3, and M4).

The programmer configures the Tag-
SPM and Data-SPM regions by writing their
starting addresses to Tag-SPM base register
and Data-SPM base register, respectively.
On the other hand, the SPM way register
has n bits for an n-way cache. In our
example, n is four. The programmer
configures a cache way to function as an
SPM by writing a logical value 1 to its
corresponding bit. For instance, 0011
indicates that two cache ways, way1 and
way0, are configured as SPMs, respectively.

The multiplexers (M1–M4) select
appropriate information for SPM-related
components as follows.
1) M1 selects the Tag-SPM index or the
Data-SPM index to address a line in the tag
RAM and a line in the data RAM. When
neither Tag-SPM nor Data-SPM is hit, the
regular cache index (addr[9-5]) is passed
from Tag-SPM controller to M1.
2) When in the Tag-SPM mode, the tag-
SPM way selector M2 selects the line, as the
Tag-SPM mode’s output, addressed by
index in the tag RAM of the way designated
by addr[8-7].
3) The purpose of M3 is to generate the
appropriate way selection signal to help
multiplexer Data Select to select data,
addressed by index, from a particular way

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 15

of Data RAM. When Data-SPM is hit, the
output of M3 is Data-SPM Way (as
addr[11-10]); otherwise, it may be a regular
cache operation, and M3’s output is the way
that has a tag hit.
4) Finally, M4 selects data from the tag
RAM or the data RAM. When in the Tag-
SPM mode, data from the tag RAM are
output; when in either the regular cache
mode or the Data-SPM mode, data from the
data RAM are output.

Here, we summarize the operations
of SPM modes. In the Tag-SPM mode, the
Tag-SPM Hit signal is set, and the
read/write operations are as the following.
1) For a read operation, Tag-SPM controller
sends the set index signal TS_Index to tag
RAMs to read the corresponding lines,
while M2 selects the line from the way
designated by the way index signal addr[8-
7]. The selected line passes through M4 and
becomes the cache’s RData output.
2) For a write operation, Tag-SPM
controller sends the set index signal
TS_Index to tag RAMs and sends the data
value from WData to the write ports of the
tag RAMs. The data are written to the tag
RAM specified by the way index signal
addr[8-7].

In the Data-SPM mode, the Data-
SPM Hit signal is set, and the read/write
operations are as the following.
1) For a read operation, Data-SPM
controller sends the set index signal
DS_Index to data RAMs to read the
corresponding lines, while multiplexers M3
and Data Select select the line from the way
designated by the way index signal addr[11-
10]. The selected line passes through M4
and becomes the cache’s RData output.
2) For a write operation, Data-SPM
controller sends the set index signal
DS_Index to data RAMs and sends the data
value from WData to the write ports of the
data RAMs. The data are written to the data
RAM specified by the way index signal
addr[8-7].
4.4. Tag/Data-SPM Controllers

Here, we elaborate the structure and
operations of the Tag-SPM controller and
the Data-SPM controller. Since their
functionalities are similar, they share the
same structure as in Fig. 4.4 where generic
signal names are given without
distinguishing Tag-SPM and Data-SPM
modes.
The comparator matches the incoming
memory address with the SPM Base register
to see if the address falls within the SPM
region. If the match happens in a way that is
configured as an SPM as specified in the
bits of the SPM Way register, the SPM_Hit
signal is set. If the SPM is hit, multiplexers
M5 and M6 output SPM_Index and WData,
respectively. Otherwise, the index field and
the tag field from the incoming address,
interpreted according to the regular cache
mode.

Fig 4.4 Tag/Data-SPM controller and

definition of input signals.
The table in Fig. 4.4 lists the

configurations for the Tag- SPM controller
and the Data-SPM controller. The signals
SPM Base Address, SPM_Way, and
SPM_Index are mapped to the
corresponding field positions in the
incoming memory address on the other
hand, the control signal M6S is assigned
constant 0 for the tag-SPM controller, since
the output of M6 is determined by the
SPM_Hit signal. The control signal M6S is
assigned constant 1 for the Data-SPM
controller since the output of M6 always
comes from WData; no matter SPM_Hit is 1
(Data-SPM mode) or 0 (regular cache
mode).

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 16

4.5. Special Consideration for Smaller
Tag RAM Width

The bit width of the tag RAM of the
cache in most modern processors is usually
at least 32 bits, which can accommodate the
typical 32-bit-wide memory data in the Tag-
SPM mode. On the other hand, how can
earlier processors such as Open RISC 1200,
which has limited cache functionality and
thus needs a narrower tag RAM (19-bit
wide), accommodate the 32-bit memory
data? One solution is to split the 32-bit data
into two 16-bit sub data that each can be
fitted into the narrower tag RAM.
Therefore, it takes two accesses (cycles) to
read/write 32-bit data. This solution is
straightforward but slows down the memory
operations. Here, we provide a better
solution that utilizes the concept of banked
RAMs to retain the single-cycle read/write
latency in the Tag-SPM mode.

The organization of the even–odd
tag RAM banks per way is shown in Fig.
4.5

Fig 4.5 Even–odd banked organization

for a narrower tag RAM (16 ≤bitwidth ≤
31) (per way).

The shaded components, consisting
of five multiplexers M7– M11 and two
AND gates A1 and A2, are necessary to
support the banked organization. Their
operations are explained as the following.
1) Regular Cache Operations In the
regular cache mode, the tag value is written
to or read from the appropriate tag RAM
bank. To write a tag value, M7 and M8
select the tag value as inputs to the tag
RAM banks. M9, A1, M10, and A2 ensure
that only one tag RAM bank is activated for

tag writing. On the other hand, to read a tag
value, M11, controlled by the least
significant bit of index, selects the proper
tag RAM bank for output.
2) Tag-SPM Operations In the Tag-SPM
mode (Tag_SPM_Hit being set), the data
accessed are 32 bits wide and thus span an
even bank and an odd bank. Therefore, both
banks need to be activated. To write 32-bit
data, M7 and M8, choose the upper and
lower 16 bits of WData, respectively, and
M9 and M10 ensure that both banks are
enabled for writing. On the other hand, to
perform a read, the concatenate logic at the
bottom concatenates the two 16-bit data
from the two banks into 32-bit data. With
these arrangements, a 32-bit data read/write
can be accomplished in one clock cycle.
E. Possible Critical Paths and Power
Overhead

Because we add and modify
hardware in the conventional cache, it is
important to check if our Tag-SPM
architecture has any impact on the circuit’s
critical path. There are three possible paths
that might be affected. First, the multiplexer
M4 in Fig. 4.3 may add delay to the RData.
Second, the two multiplexers in Fig. 4.4
might add delays to the data and index
paths. Finally, when dealing with a tag
RAM that is less than 32 bits wide,
multiplexers M7, M8, and M11 in Fig. 4.5
might also add delays
INTRODUCTION TO VLSI

Very-large-scale integration (VLSI) is
the process of creating integrated circuits by
combining thousands of transistor-based
circuits into a single chip. VLSI began in
the 1970s when complex semiconductor and
communication technologies were being
developed. The microprocessor is a VLSI
device. The term is no longer as common as
it once was, as chips have increased in
complexity into the hundreds of millions of
transistors.
6.1 Overview
The first semiconductor chips held one
transistor each. Subsequent advances added

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 17

more and more transistors, and, as a
consequence, more individual functions or
systems were integrated over time. The first
integrated circuits held only a few devices,
perhaps as many as ten diodes, transistors,
resistors and capacitors, making it possible
to fabricate one or more logic gates on a
single device. Now known retrospectively
as "small-scale integration" (SSI),
improvements in technique led to devices
with hundreds of logic gates, known as
large-scale integration (LSI), i.e. systems
with at least a thousand logic gates. Current
technology has moved far past this mark
and today's microprocessors have many
millions of gates and hundreds of millions
of individual transistors.

At one time, there was an
effort to name and calibrate various levels
of large-scale integration above VLSI.
Terms like Ultra-large-scale Integration
(ULSI) were used. But the huge number of
gates and transistors available on common
devices has rendered such fine distinctions
moot.

Terms suggesting greater
than VLSI levels of integration are no
longer in widespread use. Even VLSI is
now somewhat quaint, given the common
assumption that all microprocessors are
VLSI or better.

As of early 2008, billion-
transistor processors are commercially
available, an example of which is Intel's
Montecito Itanium chip. This is expected to
become more commonplace as
semiconductor fabrication moves from the
current generation of 65 nm processes to the
next 45 nm generations (while experiencing
new challenges such as increased variation
across process corners). Another notable
example is NVIDIA’s 280 series GPU.

This microprocessor is
unique in the fact that its 1.4 Billion
transistor count, capable of a teraflop of
performance, is almost entirely dedicated to
logic (Itanium's transistor count is largely

due to the 24MB L3 cache). Current
designs, as opposed to the earliest devices,
use extensive design automation and
automated logic synthesis to lay out the
transistors, enabling higher levels of
complexity in the resulting logic
functionality. Certain high-performance
logic blocks like the SRAM cell, however,
are still designed by hand to ensure the
highest efficiency (sometimes by bending or
breaking established design rules to obtain
the last bit of performance by trading
stability).

Understanding why integrated circuit
technology has such profound influence on
the design of digital systems requires
understanding both the technology of IC
manufacturing and the economics of ICs
and digital systems.

Applications
 Electronic system in cars.
 Digital electronics control VCRs
 Transaction processing system, ATM
 Personal computers and Workstations
 Medical electronic systems.
 Etc….

6.6 Applications of VLSI
Electronic systems now

perform a wide variety of tasks in daily life.
Electronic systems in some cases have
replaced mechanisms that operated
mechanically, hydraulically, or by other
means; electronics are usually smaller, more
flexible, and easier to service. In other cases
electronic systems have created totally new
applications. Electronic systems perform a
variety of tasks, some of them visible, some
more hidden:
 Personal entertainment systems such as

portable MP3 players and DVD players
perform sophisticated algorithms with
remarkably little energy.

 Electronic systems in cars operate
stereo systems and displays; they also
control fuel injection systems, adjust
suspensions to varying terrain, and

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 18

perform the control functions required
for anti-lock braking (ABS) systems.

 Digital electronics compress and
decompress video, even at high-
definition data rates, on-the-fly in
consumer electronics.

 Low-cost terminals for Web browsing
still require sophisticated electronics,
despite their dedicated function.

 Personal computers and workstations
provide word-processing, financial
analysis, and games. Computers include
both central processing units (CPUs)
and special-purpose hardware for disk
access, faster screen display, etc.

 Medical electronic systems measure
bodily functions and perform complex
processing algorithms to warn about
unusual conditions. The availability of
these complex systems, far from
overwhelming consumers, only creates
demand for even more complex
systems.

ASIC
An Application-Specific Integrated

Circuit (ASIC) is an integrated circuit (IC)
customized for a particular use, rather than
intended for general-purpose use. For
example, a chip designed solely to run a cell
phone is an ASIC. Intermediate between
ASICs and industry standard integrated
circuits, like the 7400 or the 4000 series, are
application specific standard products
(ASSPs).

As feature sizes have shrunk and
design tools improved over the years, the
maximum complexity (and hence
functionality) possible in an ASIC has
grown from 5,000 gates to over 100 million.
Modern ASICs often include entire 32-bit
processors, memory blocks including ROM,
RAM, EEPROM, Flash and other large
building blocks. Such an ASIC is often
termed a SoC (system-on-a-chip). Designers
of digital ASICs use a hardware description
language (HDL), such as Verilog or VHDL,
to describe the functionality of ASICs.

Field-programmable gate arrays (FPGA)
are the modern-day technology for building
a breadboard or prototype from standard
parts; programmable logic blocks and
programmable interconnects allow the same
FPGA to be used in many different
applications. For smaller designs and/or
lower production volumes, FPGAs may be
more cost effective than an ASIC design
even in production.
 An application-specific integrated

circuit (ASIC) is an integrated circuit
(IC) customized for a particular use,
rather than intended for general-
purpose use.

 A Structured ASIC falls between an
FPGA and a Standard Cell-based ASIC

 Structured ASIC’s are used mainly for
mid-volume level design. The design
task for structured ASIC’s is to map the
circuit into a fixed arrangement of
known cells.

INTRODUCTION TO XILINX
Migrating Projects from Previous ISE
Software Releases

When you open a project file from a
previous release, the ISE® software
prompts you to migrate your project. If you
click Backup and Migrate or Migrate Only,
the software automatically converts your
project file to the current release. If you
click Cancel, the software does not convert
your project and, instead, opens Project
Navigator with no project loaded.
Note: After you convert your project, you
cannot open it in previous versions of the
ISE software, such as the ISE 11 software.
However, you can optionally create a
backup of the original project as part of
project migration, as described below.
To Migrate a Project

1. In the ISE 12 Project Navigator, select
File > Open Project.

2. In the Open Project dialog box, select
the .xise file to migrate.

3. In the dialog box that appears, select
Backup and Migrate or Migrate Only.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 19

4. The ISE software automatically converts
your project to an ISE 12 project.

5. Implement the design using the new
version of the software.

Properties
For information on properties that

have changed in the ISE 12 software, see
ISE 11 to ISE 12 Properties Conversion.
IP Modules

If your design includes IP modules
that were created using CORE
Generator™ software or Xilinx® Platform
Studio (XPS) and you need to modify
these modules, you may be required to
update the core. However, if the core
netlist is present and you do not need to
modify the core, updates are not required
and the existing netlist is used during
implementation.
Obsolete Source File Types

The ISE 12 software supports all of
the source types that were supported in the
ISE 11 software.

If you are working with projects
from previous releases, state diagram source
files (.dia), ABEL source files (.abl), and
test bench waveform source files (.tbw) are
no longer supported. For state diagram and
ABEL source files, the software finds an
associated HDL file and adds it to the
project, if possible. For test bench
waveform files, the software automatically
converts the TBW file to an HDL test bench
and adds it to the project. To convert a
TBW file after project migration, see
Converting a TBW File to an HDL Test
Bench.
7.5 Using ISE Example Projects

To help familiarize you with the
ISE® software and with FPGA and CPLD
designs, a set of example designs is
provided with Project Navigator. The
examples show different design techniques
and source types, such as VHDL, Verilog,
schematic, or EDIF, and include different
constraints and IP.
 To Open an Example
 Select File > Open Example.

 In the Open Example dialog box, select
the Sample Project Name.

 In the Destination Directory field, enter a
directory name or browse to the
directory.

 Click OK.
The example project is extracted to

the directory you specified in the
Destination Directory field and is
automatically opened in Project Navigator.
You can then run processes on the
example project and save any changes.

Note If you modified an example
project and want to overwrite it with the
original example project, select File > Open
Example, select the Sample Project Name,
and specify the same Destination Directory
you originally used. In the dialog box that
appears, select Overwrite the existing
project and click OK.
7.6 Creating a Project

Project Navigator allows you to
manage your FPGA and CPLD designs
using an ISE® project, which contains all
the source files and settings specific to your
design. First, you must create a project and
then, add source files, and set process
properties. After you create a project, you
can run processes to implement, constrain,
and analyze your design. Project Navigator
provides a wizard to help you create a
project as follows.

Note If you prefer, you can create a
project using the New Project dialog box
instead of the New Project Wizard. To use
the New Project dialog box, deselect the
Use New Project wizard option in the
ISE General page of the Preferences
dialog box.

To Create a Project

1. Select File > New Project to launch the
New Project Wizard.

2. In the Create New Project page, set the
name, location, and project type, and
click Next.

3. For EDIF or NGC/NGO projects only:
In the Import EDIF/NGC Project

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 20

page, select the input and constraint file
for the project, and click Next.

4. In the Project Settings page, set the
device and project properties, and click
Next.

5. In the Project Summary page, review
the information, and click Finish to
create the project

Project Navigator creates the
project file (project_name.xise) in the
directory you specified. After you add
source files to the project, the files appear
in the Hierarchy pane of the

Design panel
Project Navigator manages your

project based on the design properties
(top-level module type, device type,
synthesis tool, and language) you selected
when you created the project. It organizes
all the parts of your design and keeps track
of the processes necessary to move the
design from design entry through
implementation to programming the
targeted Xilinx® device.
Note For information on changing design
properties, see Changing Design
Properties.
You can now perform any of the
following:
 Create new source files for your project.
 Add existing source files to your project.
 Run processes on your source files.
 Modify process properties.
7.8 Creating a Copy of a Project

You can create a copy of a project to
experiment with different source options
and implementations. Depending on your
needs, the design source files for the copied
project and their location can vary as
follows:

 Design source files are left in their
existing location, and the copied project
points to these files.

 Design source files, including generated
files, are copied and placed in a
specified directory.

 Design source files, excluding generated
files, are copied and placed in a
specified directory.

Copied projects are the same as other
projects in both form and function. For
example, you can do the following with
copied projects:

 Open the copied project using the File >
Open Project menu command.

 View, modify, and implement the
copied project.

 Use the Project Browser to view key
summary data for the copied project and
then, open the copied project for further
analysis and implementation, as
described in

Using the Project Browser
Alternatively, you can create an archive

of your project, which puts all of the
project contents into a ZIP file. Archived
projects must be unzipped before being
opened in Project Navigator. For
information on archiving, see Creating a
Project Archive.
To Create a Copy of a Project

1. Select File > Copy Project.
2. In the Copy Project dialog box, enter the

Name for the copy.
 Note The name for the copy can be the

same as the name for the project, as long
as you specify a different location.

3. Enter a directory Location to store the
copied project.

4. Optionally, enter a Working directory.
 By default, this is blank, and the

working directory is the same as the
project directory. However, you can
specify a working directory if you want
to keep your ISE® project file (.xise
extension) separate from your working
area.

5. Optionally, enter a Description for the
copy.

 The description can be useful in
identifying key traits of the project for
reference later.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 21

6. In the Source options area, do the
following:

Select one of the following options:
 Keep sources in their current

locations - to leave the design source
files in their existing location.

If you select this option, the
copied project points to the files in their
existing location. If you edit the files in
the copied project, the changes also
appear in the original project, because
the source files are shared between the
two projects.

 Copy sources to the new location - to
make a copy of all the design source
files and place them in the specified
Location directory.

If you select this option, the copied project
points to the files in the specified directory.
If you edit the files in the copied project, the
changes do not appear in the original
project, because the source files are not
shared between the two projects.

Optionally, select Copy files from
Macro Search Path directories to copy
files from the directories you specify in the
Macro Search Path property in the
Translate Properties dialog box. All files
from the specified directories are copied,
not just the files used by the design.

Note: If you added a net list source
file directly to the project as described in
Working with Net list-Based IP, the file is
automatically copied as part of Copy Project
because it is a project source file. Adding
net list source files to the project is the
preferred method for incorporating net list
modules into your design, because the files
are managed automatically by Project
Navigator.

Optionally, click Copy Additional
Files to copy files that were not included in
the original project. In the Copy Additional
Files dialog box, use the Add Files and
Remove Files buttons to update the list of
additional files to copy. Additional files are
copied to the copied project location after
all other files are copied. To exclude

generated files from the copy, such as
implementation results and reports, select
7.10 Exclude generated files from the
copy
When you select this option, the copied
project opens in a state in which processes
have not yet been run.
7. To automatically open the copy

after creating it, select Open the copied
project.

Note By default, this option is disabled. If
you leave this option disabled, the
original project remains open after the
copy is made.

Click OK.
Creating a Project Archive

A project archive is a single,
compressed ZIP file with a .zip extension.
By default, it contains all project files,
source files, and generated files, including
the following:
User-added sources and associated files
 Remote sources
 Verilog include files
 Files in the macro search path
 Generated files
 Non-project files

To Archive a Project
1. Select Project > Archive.
2. In the Project Archive dialog box,

specify a file name and directory for the
ZIP file.

3. Optionally, select Exclude generated
files from the archive to exclude
generated files and non-project files
from the archive.

4. Click OK.

A ZIP file is created in the specified
directory. To open the archived project,
you must first unzip the ZIP file, and then,
you can open the project.

INTRODUCTION TO VERILOG
In the semiconductor and electronic

design industry, Verilog is a hardware
description language(HDL) used to
model electronic systems. Verilog HDL, not
to be confused with VHDL (a competing

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 22

language), is most commonly used in the
design, verification, and implementation of
digital logic chips at the register-transfer
level of abstraction. It is also used in the
verification of analog and mixed-signal
circuits.
SystemVerilog
SystemVerilog is a superset of Verilog-
2005, with many new features and
capabilities to aid design verification and
design modeling. As of 2009, the
SystemVerilog and Verilog language
standards were merged into SystemVerilog
2009 (IEEE Standard 1800-2009).
The advent of hardware verification
languages such as OpenVera,
and Verisity's e language encouraged the
development of Superlog by Co-Design
Automation Inc. Co-Design Automation Inc
was later purchased by Synopsys. The
foundations of Superlog and Vera were
donated to Accellera, which later became
the IEEE standard P1800-2005:
SystemVerilog.

In the late 1990s, the Verilog
Hardware Description Language (HDL)
became the most widely used language for
describing hardware for simulation and
synthesis. However, the first two versions
standardized by the IEEE (1364-1995 and
1364-2001) had only simple constructs for
creating tests. As design sizes outgrew the
verification capabilities of the language,
commercial Hardware Verification
Languages (HVL) such as Open Vera and
were created. Companies that did not want
to pay for these tools instead spent hundreds
of man-years creating their own custom
tools. The donation of the Open-Vera
language formed the basis for the HVL
features of SystemVerilog. Accellera’s goal
was met in November 2005 with the
adoption of the IEEE standard P1800-2005
for SystemVerilog, IEEE (2005).
Some of the typical features of an HVL that
distinguish it from a Hardware Description
Language such as Verilog or VHDL are

 Constrained-random stimulus
generation

 Functional coverage
 Higher-level structures, especially

Object Oriented Programming
 Multi-threading and inter process

communication
 Support for HDL types such as

Verilog’s 4-state values
 Tight integration with event-simulator

for control of the design
There are many other useful

features, but these allow you to create test
benches at a higher level of abstraction than
you are able to achieve with an HDL or a
programming language such as C.

System Verilog provides the best
framework to achieve coverage-driven
verification (CDV). CDV combines
automatic test generation, self-checking
testbenches, and coverage metrics to
significantly reduce the time spent verifying
a design.

The purpose of CDV is to
 Eliminate the effort and time spent

creating hundreds of tests.
 Ensure thorough verification using up-

front goal setting.
 Receive early error notifications and

deploy run-time checking and error
analysis to simplify debugging.

Examples
Ex1 A hello world program looks like this:
module main;
initial
begin
$display("Hello world!");
$finish;
end
endmodule

The other assignment operator, "=",
is referred to as a blocking assignment.
When "=" assignment is used, for the
purposes of logic, the target variable is
updated immediately. In the above example,
had the statements used the "=" blocking
operator instead of "<=", flop1 and flop2

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 23

would not have been swapped. Instead, as in
traditional programming, the compiler
would understand to simply set flop1 equal
to flop2 (and subsequently ignore the
redundant logic to set flop2 equal to flop1.)

Ex3 An example counter circuit follows
module Div20x (rst, clk, cet, cep, count, tc);
// TITLE 'Divide-by-20 Counter with
enables'
// enable CEP is a clock enable only
// enable CET is a clock enable and
// enables the TC output
// a counter using the Verilog language
parameter size = 5;
parameter length = 20;

input rst; // These inputs/outputs represent
input clk; // connections to the module.
input cet;
input cep;
output [size-1:0] count;
output tc;
reg [size-1:0] count; // Signals assigned
// within an always
// (or initial)block
// must be of type reg
wire tc; // Other signals are of type wire
// The always statement below is a parallel
// execution statement that
// executes any time the signals
// rst or clk transition from low to high
always @ (posedge clk or posedge rst)
if (rst) // This causes reset of the cntr
count <= {size{1'b0}};
else
if (cet && cep) // Enables both true
begin
if (count == length-1)
count <= {size{1'b0}};
else
count <= count + 1'b1;
end
// the value of tc is continuously assigned
// the value of the expression
assign tc = (cet && (count == length-1));
endmodule

The always clause above illustrates
the other type of method of use, i.e. the
always clause executes any time any of the
entities in the list change, i.e. the b or e
change. When one of these changes,
immediately a is assigned a new value, and
due to the blocking assignment b is assigned
a new value afterward (taking into account
the new value of a.) After a delay of 5 time
units, c is assigned the value of b and the
value of c ^ e is tucked away in an invisible
store. Then after 6 more time units, d is
assigned the value that was tucked away.

Signals that are driven from within a
process (an initial or always block) must be
of type reg. Signals that are driven from
outside a process must be of type wire. The
keyword reg does not necessarily imply a
hardware register.

Constants
The definition of constants in Verilog
supports the addition of a width parameter.
The basic syntax is:

<Width in bits>'<base letter><number>
Examples:
 12'h123 - Hexadecimal 123 (using 12

bits)
 20'd44 - Decimal 44 (using 20 bits -

0 extension is automatic)
 4'b1010 - Binary 1010 (using 4 bits)
 6'o77 - Octal 77 (using 6 bits)

8.4 Synthesizable Constructs
There are several statements in

Verilog that have no analog in real
hardware, e.g. $display. Consequently,
much of the language can not be used to
describe hardware. The examples presented
here are the classic subset of the language
that has a direct mapping to real gates.

// Mux examples - Three ways to do the
same thing.
// The first example uses continuous
assignment
wire out;
assign out = sel ? a : b;

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 24

// the second example uses a procedure
// to accomplish the same thing.
reg out;
always @(a or b or sel)
begin
case(sel)
1'b0: out = b;
1'b1: out = a;
endcase
end
// Finally - you can use if/else in a
// procedural structure.
reg out;
always @(a or b or sel)
if (sel)
out = a;
else
out = b;

The next interesting structure is
a transparent latch; it will pass the input to
the output when the gate signal is set for
"pass-through", and captures the input and
stores it upon transition of the gate signal to
"hold". The output will remain stable
regardless of the input signal while the gate
is set to "hold". In the example below the
"pass-through" level of the gate would be
when the value of the if clause is true, i.e.
gate = 1. This is read "if gate is true, the din
is fed to latch_out continuously." Once the
if clause is false, the last value at latch_out
will remain and is independent of the value
of din.

EX6: // Transparent latch example
reg out;
always @(gate or din)
if(gate)
out = din; // Pass through state
// Note that the else isn't required here. The
variable
// out will follow the value of din while gate
is high.
// When gate goes low, out will remain
constant.
The flip-flop is the next significant
template; in Verilog, the D-flop is the
simplest, and it can be modeled as:

reg q;
always @(posedge clk)
q <= d;
The significant thing to notice in the
example is the use of the non-blocking
assignment. A basic rule of thumb is to
use <= when there is a
posedge or negedge statement within the
always clause.

A variant of the D-flop is one with an
asynchronous reset; there is a convention
that the reset state will be the first if clause
within the statement.

reg q;
always @(posedge clk or posedge reset)
if(reset)
q <= 0;
else
q <= d;
The next variant is including both an
asynchronous reset and asynchronous set
condition; again the convention comes into
play, i.e. the reset term is followed by the
set term.
reg q;
always @(posedge clk or posedge reset or
posedge set)
if(reset)
q <= 0;
else
if(set)
q <= 1;
else
q <= d;

In this example the always @
statement would first execute when the
rising edge of reset occurs which would
place q to a value of 0. The next time the
always block executes would be the rising
edge of clk which again would keep q at a
value of 0. The always block then executes
when set goes high which because reset is
high forces q to remain at 0. This condition
may or may not be correct depending on the
actual flip flop.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 25

Note that there are no "initial" blocks
mentioned in this description. There is a
split between FPGA and ASIC synthesis
tools on this structure. FPGA tools allow
initial blocks where reg values are
established instead of using a "reset" signal.
ASIC synthesis tools don't support such a
statement. The reason is that an FPGA's
initial state is something that is downloaded
into the memory tables of the FPGA. An
ASIC is an actual hardware implementation.

8.5 Initial Vs Always
There are two separate ways of

declaring a Verilog process. These are
the always and the initial keywords.
The always keyword indicates a free-
running process. The initial keyword
indicates a process executes exactly once.
Both constructs begin execution at simulator
time 0, and both execute until the end of the
block. Once an always block has reached its
end, it is rescheduled (again). It is a
common misconception to believe that an
initial block will execute before an always
block. In fact, it is better to think of
the initial-block as a special-case of
the always-block, one which terminates
after it completes for the first time.
//Examples:
initial
begin
a = 1; // Assign a value to reg a at time 0
#1; // Wait 1 time unit
b = a; // Assign the value of reg a to reg b
end

always @(a or b) // Any time a or b
CHANGE, run the process
begin
if (a)
c = b;
else
d = ~b;
end // Done with this block, now return to
the top (i.e. the @ event-control)

always @(posedge a)// Run whenever reg a
has a low to high change
a <= b;

These are the classic uses for these
two keywords, but there are two significant
additional uses. The most common of these
is an alwayskeyword without
the @(...) sensitivity list. It is possible to use
always as shown below:

always
begin // Always begins executing at time 0
and NEVER stops
clk = 0; // Set clk to 0
#1; // Wait for 1 time unit
clk = 1; // Set clk to 1
#1; // Wait 1 time unit
end // Keeps executing - so continue back at
the top of the begin

The always keyword acts similar to
the "C" construct while(1) {..} in the sense
that it will execute forever.

The other interesting exception is the
use of the initial keyword with the addition
of the forever keyword.

Race Condition
The order of execution isn't always

guaranteed within Verilog. This can best be
illustrated by a classic example. Consider
the code snippet below:

initial
a = 0;
initial
b = a;
initial
begin
#1;
$display("Value a=%b Value of
b=%b",a,b);
end
What will be printed out for the values of a
and b? Depending on the order of execution
of the initial blocks, it could be zero and
zero, or alternately zero and some other
arbitrary uninitialized value. The $display
statement will always execute after both

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 26

assignment blocks have completed, due to
the #1 delay.

System Tasks
System tasks are available to handle simple
I/O, and various design measurement
functions. All system tasks are prefixed
with $ to distinguish them from user tasks
and functions. This section presents a short
list of the most often used tasks. It is by no
means a comprehensive list.
 $display - Print to screen a line followed

by an automatic newline.
 $write - Write to screen a line without

the newline.
 $swrite - Print to variable a line without

the newline.
 $sscanf - Read from variable a format-

specified string. (*Verilog-2001)
 $fopen - Open a handle to a file (read or

write)
 $fdisplay - Write to file a line followed

by an automatic newline.
 $fwrite - Write to file a line without the

newline.
 $fscanf - Read from file a format-

specified string. (*Verilog-2001)
 $fclose - Close and release an open file

handle.
 $readmemh - Read hex file content into a

memory array.
 $readmemb - Read binary file content

into a memory array.
 $monitor - Print out all the listed

variables when any change value.
 $time - Value of current simulation time.
 $dumpfile - Declare the VCD (Value

Change Dump) format output file name.
 $dumpvars - Turn on and dump the

variables.
 $dumpports - Turn on and dump the
 variables in Extended-VCD format.
CONCLUSION

In this project presented the Tag-SPM
architecture, which allows the tag RAM to
be used as the SPM and thus increases the
SPM capacity. It is accomplished with small

Tag/Data- SPM controllers and four
additional multiplexers in the cache
organization. We also provide an even–odd
banked solution for some early processors
with simpler caches. The proposed Tag-
SPM architecture has been implemented
with an academic ARM-based
microprocessor with a 4-kB four-way
instruction cache and a 4-kB four-way data
cache at RTL level.
REFERENCES
[1] Cortex-A5 Technical Reference Manual,

ARM Ltd., Cambridge, U.K., Sep.
2010.

[2] ARM Cortex-A53 Technical Reference
Manual, ARM Ltd., Cambridge,U.K.,
Feb.2014.

[3] O. Avissar, R. Barua, and D. Stewart,
“An optimal memory allocation scheme
for scratch-pad-based embedded
systems,” ACM Trans. Embedded
Comput. Syst., vol. 1, no.1, pp. 6–26,
2002.

[4] R. Banakar, S. Steinke, B.-S. Lee, M.

Balakrishnan, and P.
Marwedel,“Scratchpad memory:
Design alternative for cache on-chip
memory in embedded systems,” in
Proc. 10th Int. Symp. Hardw./Softw.
Codesign, 2002, pp. 73–78.

[5] L. Benini, A. Macii, E. Macii, and M.
Poncino, “Increasing energy efficiency
of embedded systems by application-
specific memory hierarchy generation,”
IEEE Design Test Comput., vol. 17, no.
2, pp. 74–85, Apr. 2000.

[6] N. Binkert et al., “The gem5 simulator,”
ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[7] Y.-T. Chen et al., “Dynamically
reconfigurable hybrid cache: An
energy-efficient last-level cache
design,” in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), Mar.
2012, pp. 45–50.

[8] J. Cong, K. Gururaj, H. Huang, C. Liu,
G. Reinman, and Y. Zou, “An energy-

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 27

efficient adaptive hybrid cache,” in
Proc. Int. Symp. Low Power Electron.
Design, Aug. 2011, pp.67–72.

[9] H. Cook, K. Asanovi´c, and D. A.
Patterson, “Virtual local stores:
Enabling software-managed memory
hierarchies in mainstream computing
environments,” Univ.
California,Berkeley, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2009-
131, 2009.

[10] J. Edler. (1998). Dinero IV Trace-
Driven Uniprocessor Cache Simulator.
[Online]. Available:
http://www.cs.wisc.edu/~markhill/Dine
roIV/ [11] Gaisler Research. LEON2
Cache Memory VHDL Code.
Accessed: Dec. 31, 2017. [Online].
Available:
https://github.com/Galland/LEON2/
blob/master/leon2-1.0.30-
xst/leon/cachemem.vhd

[12] Z. Ge, W.-F. Wong, and H.-B. Lim,
“DRIM: A low power dynamically
reconfigurable instruction memory
hierarchy for embedded systems,” in
Proc. Design, Autom. Test Eur. Conf.
Exhibit., Apr. 2007, pp. 1–6.

[13] M. R. Guthaus, J. S. Ringenberg, D.
Ernst, T. M. Austin, T. Mudge,and R.
B. Brown, “MiBench: A free,
commercially representative embedded
benchmark suite,” in Proc. IEEE Int.
Workshop Workload Characterization
(WWC), Dec. 2001, pp. 3–14.

[14] Texas Instruments. TMS320C6000
Programmers Guide. Accessed: Dec.
31, 2017. [Online]. Available:
http://www.ti.com/lit/ug/spru198k/
spru198k.pdf.

[15] Intel. 3rd Generation Intel XScale
Microarchitecture. Accessed: Dec. 31,
2017. [Online]. Available:
http://download.intel.com/design/
intelxscale/31628302.pdf.

[16] G. Kalokerinos et al., “Prototyping a
configurable cache/scratchpad memory
with virtualized user-level RDMA

capability,” Trans. High Perform.
Embedded Archit. Compilation, vol. 5,
no. 3, pp. 75–95,Aug. 2010.

[17] M. Kandemir, J. Ramanujam, M. J.
Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh, “Dynamic management of
scratch-pad memory space,”in Proc.
Design Autom. Conf., 2001, pp. 690–
695.

[18] T. Kluter, P. Brisk, P. Ienne, and E.
Charbon, “Way stealing: Cacheassisted
automatic instruction set extensions,” in
Proc. ACM/IEEE Design Autom.
Conf., Jul. 2009,

 pp. 31-36.
[19] D. Lampret. OpenRISC 1200 Tag

RAM of the Data Cache Source Code.
Accessed: Dec. 31, 2017. [Online].
Available:

 https://github.com/openrisc/or1200/blo
b/master/rtl/verilog/or1200_dc_tag.v

[20] C. Lim and G. T. Byrd, “Exploiting
producer patterns and L2 cache for
timely dependence-based prefetching,”
in Proc. IEEE Int. Conf. Comput.
Design, Oct. 2008, pp.685–692.

[21] NVIDIA. NVIDIA’s Next Generation
CUDA Compute Architecture: Fermi.
Accessed: 2009. [Online].

 Available:http://www.nvidia.com/conte
nt/PDF/fermi_white_papersNVIDIA_F
ermi_Compute_Architecture_Whitepap
er.pdf

[22] I. Puaut and C. Pais, “Scratchpad
memories vs locked caches in hard real-
time systems: A quantitative
comparison,” in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), Apr.
2007, pp. 1–6.

[23] H. Zhou, M. C. Toburen, E. Rotenberg,
and T. M. Conte, “Adaptive mode
control: A static-power-efficient cache
design,” ACM Trans. Embedded
Comput. Syst., vol. 2, no. 3, pp. 347–
372, Aug. 2003.

