
  International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 06 Issue 13 
December 2019 

  

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 8  
 

A Reconfigurable Cache for Efficient Use of Tag RAM as 
Scratch-Pad Memory 

 
Kamarthi Prakash Kumar1, S.Ashok Reddy2, S.Mahaboob Basha3 

1P.G. Scholar, 2Assistant Professor, 3Head of the Department 
1,2,3 Branch:ECE ( VLSI ) 

GEETHANJALI COLLEGE OF ENGG. & TECH. 
Email id:-1prakashkumar8341@gmail.com,2singasaniashokreddy@gmail.com 

 
 
Abstract 
The cache memory has been a predominant 
component in modern chips, easily taking 
up more than 50% of the silicon area. It is 
then desirable to make the cache memory 
flexible for different needs. Therefore, many 
modern processor chips allow users to 
configure a part of the cache memory as the 
scratch-pad memory (SPM), a high-speed 
internal memory for rapid data access. 
However, such approach uses only the data 
RAM of the cache memory while leaving 
the tag RAM unused and thus wasting its 
capacity. This paper presents a cache 
organization, called Tag-SPM architecture, 
which allows the tag RAM to be used as the 
SPM and thus increases its capacity. It is 
accomplished with small Tag/Data-SPM 
controllers and four additional multiplexers 
in the cache organization. The proposed 
Tag-SPM architecture has been 
implemented with an academic ARM-based 
microprocessor with 4-/4-kB four-way set 
associative instruction/data caches at the 
register transfer level. Experiments show 
that the proposed architecture boosts the 
SPM capacity by 12.5% and requires only 
0.08% area (434 gates) overhead without 
impairing the cache’s circuit speed in 
TSMC’s 90-nm standard cell 
implementation. Furthermore, the power 
overhead is negligible. When the Tag-SPM 
architecture is applied to typical cache 
systems, such as in ARM’s Cortex-A5 and 
Cortex-A53 processors, additional 12.5% 
SPM space per way can also be gained in 
both cases. The analyses show that our Tag-

SPM architecture is a highly cost-effective 
way to boost the SPM space. 
 
Keywords-Cache memory, 
microprocessor, reconfigurable, 
architecture, system-on-chip. 
 
INTRODUCTION 

CACHE and scratch-pad memory 
(SPM) are two approaches to mitigate the 
speed gap between the processor and the 
external main memory by keeping a small 
amount of information on chip for high-
speed access. The cache approach keeps 
frequently used information in an on-chip 
data RAM and maintains its consistency 
with the external main memory 
automatically. The cache space is efficiently 
reused by tracking the spatial/temporal 
locality of memory reference. Therefore, the 
cache is transparent to the software 
programmer; there is no need for the 
programmer to explicitly manipulate the 
cache. To accomplish such a goal, 
additional hardware components, such as 
the tag RAM (storing address tags and 
various status bits), comparators, and the 
cache controller, are necessary. On the other 
hand, the SPM approach requires only the 
data RAM. It requires the programmer to 
fully understand the memory reference 
patterns of a specific program and manually 
move data between the SPM and the 
external memory. Compared with the cache, 
the SPM consumes less energy and is more 
time-predictable due to its simplicity. If 
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manipulated well, its performance could be 
better than the cache. 

Since the cache and the SPM have their 
own advantages and usage scenarios, many 
microprocessor/DSP/GPU cores, such as 
Intel’s XScale, Texas Instruments’ 
TMS320C62, and NVidia’s Fermi , have 
configurable caches, which allow the 
programmer to configure a part of the cache 
to operate as an SPM (or called tightly 
coupled memory). Under such SPM mode, 
only the data RAM of the cache memory is 
utilized; the tag RAM of such cache is not 
used and thus wasted. 

In this project, we propose a cache 
organization, called Tag-SPM architecture, 
which allows its tag RAM to be used as the 
SPM as well and thus increases the SPM 
capacity in a highly cost-effective way. To 
the best of our knowledge, this is the first 
work to address such issue. 

On chip caches using static RAM 
consume power in the range of 25% to, 45% 
of the total chip power. Recently, interest 
has been focused on having on chip scratch 
pad memory to reduce the power and 
improve performance. On the other hand, 
they can replace caches only if they are 
supported by an effective compiler. Current 
embedded processors particularly in the area 
of multimedia applications and graphic 
controllers have on-chip scratch pad 
memories. In cache memory systems, the 
mapping of program elements is done 
during runtime, whereas in scratch pad 
memory systems this is done either by the 
user or automatically by the compiler using 
suitable algorithm. 
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MEMORY 
 RAM 

Random-access memory (RAM) is a 
form of computer data storage. A random-
access device allows stored data to be 
accessed directly in any random order. In 
contrast, other data storage media such 
as hard disks, CDs, DVDs and magnetic 
tape, as well as early primary memory types 
such as drum memory, read and write data 
only in a predetermined order, 
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consecutively, because of mechanical 
design limitations. Therefore the time to 
access a given data location varies 
significantly depending on its physical 
location. 

Today, random-access memory takes the 
form of integrated circuits. Strictly 
speaking, modern types of DRAM are not 
random access, as data is read in bursts, 
although the name DRAM / RAM has 
stuck. However, many types of 
SRAM, ROM, OTP, and NOR flash are 
still random access even in a strict sense. 
RAM is normally associated 
with volatile types of memory (such 
as DRAM memory modules), where its 
stored information is lost if the power is 
removed. Many other types of non-volatile 
memory are RAM as well, including most 
types of ROM and a type of flash 
memory called NOR-Flash. The first RAM 
modules to come into the market were 
created in 1951 and were sold until the late 
1960s and early 1970s. 

RAM is small, both in terms of its 
physical size and in the amount of data. 

RAM is of two types 
1. Static RAM (SRAM) 
2. Dynamic RAM (DRAM) 

3.1.1 Static RAM (SRAM)  
 The word static indicates that the 

memory retains its contents as long as 
power remains applied. However, data is 
lost when the power gets down due to 
volatile nature.  
 It has long data lifetime 
  There is no need to refresh 
  Faster 
  Used as cache memory 
  Large size 
  Expensive 
  High power consumption 

Dynamic RAM (DRAM) DRAM 
 Unlike SRAM, must be continually 
refreshed in order for it to maintain the data. 
This is done by placing the memory on a 
refresh circuit that rewrites the data several 

hundred times per second. DRAM is used 
for most system memory because it is cheap 
and small. All DRAMs are made up of 
memory cells. These cells are composed of 
one capacitor and one transistor.  

Characteristic of the Dynamic RAM 
 It has short data lifetime 
 Need to refresh continuously 
 Slower as compared to SRAM 
 Used as RAM 
 Lesser in size 
 Less expensive 
 Less power consumption 

Table 3.1 Difference Between Static 
RAM and Dynamic RAM 

 
3.2 Read-only memory (ROM) is a class 
of storage medium used in computers and 
other electronic devices. Data stored in 
ROM cannot be modified, or can be 
modified only slowly or with difficulty, so it 
is mainly used to 
distribute firmware (software that is very 
closely tied to specific hardware, and 
unlikely to need frequent updates). 
  In its strictest sense, ROM refers only 
to mask ROM (the oldest type of solid 
state ROM), which is fabricated with the 
desired data permanently stored in it, and 
thus can never be modified. Despite the 
simplicity, speed and economies of scale of 
mask ROM, field-programmability often 
make reprogrammable memories more 
flexible and inexpensive. As of 2007, actual 
ROM circuitry is therefore mainly used for 
applications such as microcode, and similar 
structures, on various kinds of processors. 

Other types of non-volatile 
memory such as erasable programmable 
read only memory (EPROM) 
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and electrically erasable programmable 
read-only memory (EEPROM or Flash 
ROM) are sometimes referred to, in an 
abbreviated way, as "read-only memory" 
(ROM); although these types of memory 
can be erased and re-programmed multiple 
times, writing to this memory takes longer 
and may require different procedures than 
reading the memory.[1] When used in this 
less precise way, "ROM" indicates a non-
volatile memory which serves functions 
typically provided by mask ROM, such as 
storage of program code and nonvolatile 
data. 

Use for Storing Program 
Every stored-program computer needs 

some form of non-volatile storage (that is, 
storage that retains its data when power is 
removed) to store the initial program that 
runs when the computer is powered on or 
otherwise begins execution (a process 
known as bootstrapping, often abbreviated 
to "booting" or "booting up"). Likewise, 
every non-trivial computer needs some form 
of mutable memory to record changes in 
its state as it executes. 

Forms of read-only memory were 
employed as non-volatile storage for 
programs in most early stored-program 
computers, such as ENIAC after 1948. 
(Until then it was not a stored-program 
computer as every program had to be 
manually wired into the machine, which 
could take days to weeks.) Read-only 
memory was simpler to implement since it 
needed only a mechanism to read stored 
values, and not to change them in-place, and 
thus could be implemented with very crude 
electromechanical devices (see examples 
below). With the advent of integrated 
circuits in the 1960s, both ROM and its 
mutable counterpart static RAM were 
implemented as arrays of transistors in 
silicon chips; however, a ROM memory cell 
could be implemented using fewer 
transistors than an SRAM memory cell, 
since the latter needs a latch (comprising 5-

20 transistors) to retain its contents, while a 
ROM cell might consist of the absence 
(logical 0) or presence (logical 1) of one 
transistor connecting a bit line to a word 
line. Consequently, ROM could be 
implemented at a lower cost-per-bit than 
RAM for many years. 

Use for Storing Data 
Since ROM (at least in hard-wired 

mask form) cannot be modified, it is really 
only suitable for storing data which is not 
expected to need modification for the life of 
the device. To that end, ROM has been used 
in many computers to store look-up 
tables for the evaluation of mathematical 
and logical functions (for example, 
a floating-point unit might tabulate the sine 
function in order to facilitate faster 
computation). This was especially effective 
when CPUs were slow and ROM was cheap 
compared to RAM. 

Notably, the display adapters of 
early personal computers stored tables of 
bitmapped font characters in ROM. This 
usually meant that the text 
display font could not be changed 
interactively. This was the case for both 
the CGA and MDA adapters available with 
the IBM PC XT. 

Flash Memory 
The saving works with the Floating-

Gate. The Floating-Gate is between the Gate 
and Source-Drain Area and isolated with an 
Oxide-Layer. If the Floating Gate is 
uncharged then the Gate can control the 
Source Drain current. The Floating Gate 
gets filled (Tunnel-Effect) with electrons 
when a high voltage at the Gate is supplied. 
Now the negative potential on the Floating-
Gate works against the Gate and no current 
is possible. The Floating-Gate can be erased 
with a high voltage in reverse direction at 
the Gate. 
RISC 

The Reduced Instruction Set 
Computer, or RISC, is a microprocessor 
CPU design philosophy that favors a 
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smaller and simpler set of instructions that 
all take about the same amount of time to 
execute. The most common RISC 
microprocessors are ARM, DEC Alpha, PA-
RISC, SPARC, MIPS, and IBM's PowerPC. 

The idea was inspired by the 
discovery that many of the features that 
were included in traditional CPU designs to 
facilitate coding were being ignored by the 
programs that were running on them. Also 
these more complex features took several 
processor cycles to be performed. 
Additionally, the performance gap between 
the processor and main memory was 
increasing. This led to a number of 
techniques to streamline processing within 
the CPU, while at the same time attempting 
to reduce the total number of memory 
accesses. 
Features which are generally found in 
RISC designs are 
Uniform Instruction Encoding (for 
example the op-code is always in the same 
bit position in each instruction, which is 
always one word long), which allows faster 
decoding; 
A Homogeneous Register Set, allowing 
any register to be used in any context and 
simplifying compiler design. 
Simple Addressing Modes (complex 
addressing modes are replaced by sequences 
of simple arithmetic instructions). 
Few Data Types supported in hardware (for 
example, some CISC machines had 
instructions for dealing with byte strings. 
Others had support for polynomials and 
complex numbers. Such instructions are 
unlikely to be found on a RISC machine). 
Over many years, RISC instruction sets 
have tended to grow in size. Thus, some 
have started using the term "load-store" to 
describe RISC processors, since this is the 
key element of all such designs. Instead of 
the CPU itself handling many addressing 
modes, load-store architecture uses a 
separate unit dedicated to handling very 
simple forms of load and store operations. 
CISC processors are then termed "register-

memory" or "memory-memory". Today 
RISC CPUs (and microcontrollers) 
represent the vast majority of all CPUs in 
use. The RISC design technique offers 
power in even small sizes, and thus has 
come to completely dominate the market for 
low-power "embedded" CPUs. Embedded 
CPUs are by far the largest market for 
processors. 
.CACHE MEMORY 
4.1 Cache Definition 

The Cache Memory (Pronounced as 
"cash") is the volatile computer memory 
which is very nearest to the CPU so also 
called CPU memory, all the Recent 
Instructions are Stored into the Cache 
Memory. It is the fastest memory that 
provides high-speed data access to a 
computer microprocessor. Cache meaning is 
that it is used for storing the input which is 
given by the user and which is necessary for 
the computer microprocessor to perform a 
Task. But the Capacity of the Cache 
Memory is too low in compare to Memory 
(random access memory (RAM)) and Hard 
Disk. 

1.1. Importance of Cache memory 
The cache memory lies in the path 

between the processor and the memory. The 
cache memory therefore, has lesser access 
time than memory and is faster than the 
main memory. A cache memory have an 
access time of 100ns, while the main 
memory may have an access time of 
700ns.The need for the cache memory is 
due to the mismatch between the speeds of 
the main memory and the CPU. The CPU 
clock is very fast, whereas the main 
memory access time is comparatively 
slower. Hence, no matter how fast the 
processor is, the processing speed depends 
more on the speed of the main memory (the 
strength of a chain is the strength of its 
weakest link). It is because of this reason 
that a cache memory having access time 
closer to the processor speed is introduced. 
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Fig. 4.1.1 Processing Speeds between 

CPU and Main Memory. 
The cache memory stores the 

program (or its part) currently being 
executed or which may be executed within a 
short period of time. The cache memory 
also stores temporary data that the CPU may 
frequently require for manipulation. The 
cache memory works according to various 
algorithms, which decide 
what information it has to store. These 
algorithms work out the probability to 
decide which data would be most frequently 
needed. This probability is worked out on 
the basis of past observations. 

 Proposed Model 
Scratchpad Memory Scratchpad 

Memory (SPM) is the term chosen for 
cache-like software-managed memory. It is 
significantly smaller than the main memory, 
ranging from below 1-KB to several KB in 
research applications and being at 256-KB 
in the SPEs of the Cell multiprocessor. 
Being located on the same chip as - and 
close to - the CPU core, its access latencies 
are negligible compared to those of the main 
memory. Unlike caches, SPM is not 
transparent to software. It is mapped into an 
address range different from the external 
RAM. 

Fig 4.1.2 Cache Configuration and SPM 
Configuration 

Some implementations make it possible for 
the CPU to continue its calculations while 

data is transferred from RAM to SPM or 
vice versa by employing an asynchronous 
DMA controller. Even without it being 
asynchronous, transfers from or to RAM are 
often handled by a special controller that 
moves data in blocks rather than having the 
CPU using load and store instructions. 
There are approaches that use both a SPM 
and a regular cache. 

In multicore processors, there may 
be a separate SPM per core, which can, 
depending on the implementation, be used 
as private buffer memory, ease 
communication between cores or both 

Modern computer applications 
require more RAM to perform tasks than 
can be embedded into the processor core. 
Apart from some low-power embedded 
systems, most processors utilize cache 
hierarchies to lessen the speed penalty 
caused by access to external memory. Cache 
is a small temporary buffer managed by 
hardware, employing usually hard-wired 
displacement strategies like least-recently-
used (LRU), first-in-first-out (FIFO) or 
randomized approaches. Since these 
displacement strategies are written to 
perform good for a wide spectrum of use 
cases, they are less optimal than a strategy 
that is tailored to a specific application by a 
compiler that knows about the whole 
program structure and may even employ 
profiling data.  
4.2 Energy Efficiency 

The main advantage of cache over 
SPM is that it is transparent to software. To 
achieve this, it needs to know which 
memory addresses lie within blocks that are 
currently stored in the cache. Tags are the 
parts of memory addresses that are required 
to map a block of cache memory to the 
address in the RAM it belongs to.  

Depending on the implementation, 
there may be different mechanisms like 
write-back and write-through as well as 
several displacement strategies available 
that applications or the operating system can 
choose from. Since the on-chip cache is a 
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major part in the energy consumption of a 
modern processor, requiring from 25% to 
45%, increasing its efficiency or replacing it 
with SPM has a significant impact on the 
energy consumption of the whole processor. 
To compare the energy and area efficiency 
of SPM and cache, modifies an existing 
processor, the ARM7TDMI, to use an SPM 
instead of the previously built-in cache. 
They employ the energy-away compiler 
with the post pass option of assigning code 
and data blocks with the knapsack 
algorithm.  
4.3 Tag-SPM Architecture 

The cache organization considered 
in this paper is a reconfigurable cache, 
which allows part of its cache ways to be 
configured as an SPM. The SPM consists of 
two portions: Data-SPM and Tag-SPM. The 
Data-SPM, which can be found in many 
commercial processors resides in the data 
RAM of the cache ways, which are 
configured as the SPM. On the other hand, 
the Tag-SPM resides in the tag RAM of the 
cache ways, which is our innovation. For 
completeness, we will begin with a 
description of the complete cache 
organization and operations, including both 
Data-SPM and Tag-SPM, and then focus on 
the proposed Tag-SPM technique.The 
proposed Tag-SPM technique can be 
applied to both the instruction cache and the 
data cache. To simplify the discussion, we 
use the data cache as the example in this 
paper. 
. 

 
Fig 4.3 Tag-SPM architecture (4-kB, 

four-way associative cache, line size32 B). 

6) The cache-SPM partitioning is way-
based. That is, the programmer can set aside 
one or more ways to serve as the SPM while 
the remaining ways as the regular cache. 
When a way is configured as an SPM, both 
its tag RAM and data RAM are used to store 
data. 
Support Circuitry for Tag-SPM and 
Data-SPM 

The shaded components in provide 
the necessary mechanism to write data to 
tag RAM and data RAM and to read data 
from them. These components are three 
control registers (Tag-SPM base register, 
Data-SPM base register, and SPM way 
register), two controllers (Tag-SPM 
controller and Data-SPM controller), and 
four multiplexers (M1, M2, M3, and M4). 

The programmer configures the Tag-
SPM and Data-SPM regions by writing their 
starting addresses to Tag-SPM base register 
and Data-SPM base register, respectively. 
On the other hand, the SPM way register 
has n bits for an n-way cache. In our 
example, n is four. The programmer 
configures a cache way to function as an 
SPM by writing a logical value 1 to its 
corresponding bit. For instance, 0011 
indicates that two cache ways, way1 and 
way0, are configured as SPMs, respectively. 

The multiplexers (M1–M4) select 
appropriate information for SPM-related 
components as follows. 
1) M1 selects the Tag-SPM index or the 
Data-SPM index to address a line in the tag 
RAM and a line in the data RAM. When 
neither Tag-SPM nor Data-SPM is hit, the 
regular cache index (addr[9-5]) is passed 
from Tag-SPM controller to M1. 
2) When in the Tag-SPM mode, the tag-
SPM way selector M2 selects the line, as the 
Tag-SPM mode’s output, addressed by 
index in the tag RAM of the way designated 
by addr[8-7]. 
3) The purpose of M3 is to generate the 
appropriate way selection signal to help 
multiplexer Data Select to select data, 
addressed by index, from a particular way 
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of Data RAM. When Data-SPM is hit, the 
output of M3 is Data-SPM Way (as 
addr[11-10]); otherwise, it may be a regular 
cache operation, and M3’s output is the way 
that has a tag hit. 
4) Finally, M4 selects data from the tag 
RAM or the data RAM. When in the Tag-
SPM mode, data from the tag RAM are 
output; when in either the regular cache 
mode or the Data-SPM mode, data from the 
data RAM are output. 

Here, we summarize the operations 
of SPM modes. In the Tag-SPM mode, the 
Tag-SPM Hit signal is set, and the 
read/write operations are as the following. 
1) For a read operation, Tag-SPM controller 
sends the set index signal TS_Index to tag 
RAMs to read the corresponding lines, 
while M2 selects the line from the way 
designated by the way index signal addr[8-
7]. The selected line passes through M4 and 
becomes the cache’s RData output. 
2) For a write operation, Tag-SPM 
controller sends the set index signal 
TS_Index to tag RAMs and sends the data 
value from WData to the write ports of the 
tag RAMs. The data are written to the tag 
RAM specified by the way index signal 
addr[8-7]. 

In the Data-SPM mode, the Data-
SPM Hit signal is set, and the read/write 
operations are as the following. 
1) For a read operation, Data-SPM 
controller sends the set index signal 
DS_Index to data RAMs to read the 
corresponding lines, while multiplexers M3 
and Data Select select the line from the way 
designated by the way index signal addr[11-
10]. The selected line passes through M4 
and becomes the cache’s RData output. 
2) For a write operation, Data-SPM 
controller sends the set index signal 
DS_Index to data RAMs and sends the data 
value from WData to the write ports of the 
data RAMs. The data are written to the data 
RAM specified by the way index signal 
addr[8-7]. 
4.4. Tag/Data-SPM Controllers 

Here, we elaborate the structure and 
operations of the Tag-SPM controller and 
the Data-SPM controller. Since their 
functionalities are similar, they share the 
same structure as in Fig. 4.4 where generic 
signal names are given without 
distinguishing Tag-SPM and Data-SPM 
modes. 
The comparator matches the incoming 
memory address with the SPM Base register 
to see if the address falls within the SPM 
region. If the match happens in a way that is 
configured as an SPM as specified in the 
bits of the SPM Way register, the SPM_Hit 
signal is set. If the SPM is hit, multiplexers 
M5 and M6 output SPM_Index and WData, 
respectively. Otherwise, the index field and 
the tag field from the incoming address, 
interpreted according to the regular cache 
mode. 

 
Fig 4.4 Tag/Data-SPM controller and 

definition of input signals. 
The table in Fig. 4.4 lists the 

configurations for the Tag- SPM controller 
and the Data-SPM controller. The signals 
SPM Base Address, SPM_Way, and 
SPM_Index are mapped to the 
corresponding field positions in the 
incoming memory address on the other 
hand, the control signal M6S is assigned 
constant 0 for the tag-SPM controller, since 
the output of M6 is determined by the 
SPM_Hit signal. The control signal M6S is 
assigned constant 1 for the Data-SPM 
controller since the output of M6 always 
comes from WData; no matter SPM_Hit is 1 
(Data-SPM mode) or 0 (regular cache 
mode). 
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4.5. Special Consideration for Smaller 
Tag RAM Width 

The bit width of the tag RAM of the 
cache in most modern processors is usually 
at least 32 bits, which can accommodate the 
typical 32-bit-wide memory data in the Tag-
SPM mode. On the other hand, how can 
earlier processors such as Open RISC 1200, 
which has limited cache functionality and 
thus needs a narrower tag RAM (19-bit 
wide), accommodate the 32-bit memory 
data? One solution is to split the 32-bit data 
into two 16-bit sub data that each can be 
fitted into the narrower tag RAM. 
Therefore, it takes two accesses (cycles) to 
read/write 32-bit data. This solution is 
straightforward but slows down the memory 
operations. Here, we provide a better 
solution that utilizes the concept of banked 
RAMs to retain the single-cycle read/write 
latency in the Tag-SPM mode. 

The organization of the even–odd 
tag RAM banks per way is shown in Fig. 
4.5 

 
Fig 4.5 Even–odd banked organization 

for a narrower tag RAM (16 ≤bitwidth ≤ 
31) (per way). 

The shaded components, consisting 
of five multiplexers M7– M11 and two 
AND gates A1 and A2, are necessary to 
support the banked organization. Their 
operations are explained as the following. 
1) Regular Cache Operations In the 
regular cache mode, the tag value is written 
to or read from the appropriate tag RAM 
bank. To write a tag value, M7 and M8 
select the tag value as inputs to the tag 
RAM banks. M9, A1, M10, and A2 ensure 
that only one tag RAM bank is activated for 

tag writing. On the other hand, to read a tag 
value, M11, controlled by the least 
significant bit of index, selects the proper 
tag RAM bank for output. 
2) Tag-SPM Operations In the Tag-SPM 
mode (Tag_SPM_Hit being set), the data 
accessed are 32 bits wide and thus span an 
even bank and an odd bank. Therefore, both 
banks need to be activated. To write 32-bit 
data, M7 and M8, choose the upper and 
lower 16 bits of WData, respectively, and 
M9 and M10 ensure that both banks are 
enabled for writing. On the other hand, to 
perform a read, the concatenate logic at the 
bottom concatenates the two 16-bit data 
from the two banks into 32-bit data. With 
these arrangements, a 32-bit data read/write 
can be accomplished in one clock cycle. 
E. Possible Critical Paths and Power 
Overhead 

Because we add and modify 
hardware in the conventional cache, it is 
important to check if our Tag-SPM 
architecture has any impact on the circuit’s 
critical path. There are three possible paths 
that might be affected. First, the multiplexer 
M4 in Fig. 4.3 may add delay to the RData. 
Second, the two multiplexers in Fig. 4.4 
might add delays to the data and index 
paths. Finally, when dealing with a tag 
RAM that is less than 32 bits wide, 
multiplexers M7, M8, and M11 in Fig. 4.5 
might also add delays 
INTRODUCTION TO VLSI 

Very-large-scale integration (VLSI) is 
the process of creating integrated circuits by 
combining thousands of transistor-based 
circuits into a single chip. VLSI began in 
the 1970s when complex semiconductor and 
communication technologies were being 
developed. The microprocessor is a VLSI 
device. The term is no longer as common as 
it once was, as chips have increased in 
complexity into the hundreds of millions of 
transistors. 
6.1 Overview 
The first semiconductor chips held one 
transistor each. Subsequent advances added 
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more and more transistors, and, as a 
consequence, more individual functions or 
systems were integrated over time. The first 
integrated circuits held only a few devices, 
perhaps as many as ten diodes, transistors, 
resistors and capacitors, making it possible 
to fabricate one or more logic gates on a 
single device. Now known retrospectively 
as "small-scale integration" (SSI), 
improvements in technique led to devices 
with hundreds of logic gates, known as 
large-scale integration (LSI), i.e. systems 
with at least a thousand logic gates. Current 
technology has moved far past this mark 
and today's microprocessors have many 
millions of gates and hundreds of millions 
of individual transistors. 

At one time, there was an 
effort to name and calibrate various levels 
of large-scale integration above VLSI. 
Terms like Ultra-large-scale Integration 
(ULSI) were used. But the huge number of 
gates and transistors available on common 
devices has rendered such fine distinctions 
moot. 

Terms suggesting greater 
than VLSI levels of integration are no 
longer in widespread use. Even VLSI is 
now somewhat quaint, given the common 
assumption that all microprocessors are 
VLSI or better. 

As of early 2008, billion-
transistor processors are commercially 
available, an example of which is Intel's 
Montecito Itanium chip. This is expected to 
become more commonplace as 
semiconductor fabrication moves from the 
current generation of 65 nm processes to the 
next 45 nm generations (while experiencing 
new challenges such as increased variation 
across process corners). Another notable 
example is NVIDIA’s 280 series GPU. 

This microprocessor is 
unique in the fact that its 1.4 Billion 
transistor count, capable of a teraflop of 
performance, is almost entirely dedicated to 
logic (Itanium's transistor count is largely 

due to the 24MB L3 cache). Current 
designs, as opposed to the earliest devices, 
use extensive design automation and 
automated logic synthesis to lay out the 
transistors, enabling higher levels of 
complexity in the resulting logic 
functionality. Certain high-performance 
logic blocks like the SRAM cell, however, 
are still designed by hand to ensure the 
highest efficiency (sometimes by bending or 
breaking established design rules to obtain 
the last bit of performance by trading 
stability). 

Understanding why integrated circuit 
technology has such profound influence on 
the design of digital systems requires 
understanding both the technology of IC 
manufacturing and the economics of ICs 
and digital systems. 

Applications 
 Electronic system in cars. 
 Digital electronics control VCRs 
 Transaction processing system, ATM 
 Personal computers and Workstations 
 Medical electronic systems. 
 Etc…. 

6.6 Applications of VLSI 
Electronic systems now 

perform a wide variety of tasks in daily life. 
Electronic systems in some cases have 
replaced mechanisms that operated 
mechanically, hydraulically, or by other 
means; electronics are usually smaller, more 
flexible, and easier to service. In other cases 
electronic systems have created totally new 
applications. Electronic systems perform a 
variety of tasks, some of them visible, some 
more hidden: 
 Personal entertainment systems such as 

portable MP3 players and DVD players 
perform sophisticated algorithms with 
remarkably little energy. 

 Electronic systems in cars operate 
stereo systems and displays; they also 
control fuel injection systems, adjust 
suspensions to varying terrain, and 
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perform the control functions required 
for anti-lock braking (ABS) systems. 

 Digital electronics compress and 
decompress video, even at high-
definition data rates, on-the-fly in 
consumer electronics. 

 Low-cost terminals for Web browsing 
still require sophisticated electronics, 
despite their dedicated function. 

 Personal computers and workstations 
provide word-processing, financial 
analysis, and games. Computers include 
both central processing units (CPUs) 
and special-purpose hardware for disk 
access, faster screen display, etc. 

 Medical electronic systems measure 
bodily functions and perform complex 
processing algorithms to warn about 
unusual conditions. The availability of 
these complex systems, far from 
overwhelming consumers, only creates 
demand for even more complex 
systems. 

ASIC 
An Application-Specific Integrated 

Circuit (ASIC) is an integrated circuit (IC) 
customized for a particular use, rather than 
intended for general-purpose use. For 
example, a chip designed solely to run a cell 
phone is an ASIC. Intermediate between 
ASICs and industry standard integrated 
circuits, like the 7400 or the 4000 series, are 
application specific standard products 
(ASSPs). 

As feature sizes have shrunk and 
design tools improved over the years, the 
maximum complexity (and hence 
functionality) possible in an ASIC has 
grown from 5,000 gates to over 100 million. 
Modern ASICs often include entire 32-bit 
processors, memory blocks including ROM, 
RAM, EEPROM, Flash and other large 
building blocks. Such an ASIC is often 
termed a SoC (system-on-a-chip). Designers 
of digital ASICs use a hardware description 
language (HDL), such as Verilog or VHDL, 
to describe the functionality of ASICs. 

Field-programmable gate arrays (FPGA) 
are the modern-day technology for building 
a breadboard or prototype from standard 
parts; programmable logic blocks and 
programmable interconnects allow the same 
FPGA to be used in many different 
applications. For smaller designs and/or 
lower production volumes, FPGAs may be 
more cost effective than an ASIC design 
even in production. 
 An application-specific integrated 

circuit (ASIC) is an integrated circuit 
(IC) customized for a particular use, 
rather than intended for general-
purpose use. 

 A Structured ASIC falls between an 
FPGA and a Standard Cell-based ASIC 

 Structured ASIC’s are used mainly for 
mid-volume level design. The design 
task for structured ASIC’s is to map the 
circuit into a fixed arrangement of 
known cells. 

INTRODUCTION TO XILINX 
Migrating Projects from Previous ISE 
Software Releases 

When you open a project file from a 
previous release, the ISE® software 
prompts you to migrate your project. If you 
click Backup and Migrate or Migrate Only, 
the software automatically converts your 
project file to the current release. If you 
click Cancel, the software does not convert 
your project and, instead, opens Project 
Navigator with no project loaded. 
Note: After you convert your project, you 
cannot open it in previous versions of the 
ISE software, such as the ISE 11 software. 
However, you can optionally create a 
backup of the original project as part of 
project migration, as described below. 
To Migrate a Project 

1. In the ISE 12 Project Navigator, select 
File > Open Project. 

2. In the Open Project dialog box, select 
the .xise file to migrate. 

3. In the dialog box that appears, select 
Backup and Migrate or Migrate Only. 
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4. The ISE software automatically converts 
your project to an ISE 12 project. 

5. Implement the design using the new 
version of the software. 

Properties 
For information on properties that 

have changed in the ISE 12 software, see 
ISE 11 to ISE 12 Properties Conversion. 
IP Modules 

If your design includes IP modules 
that were created using CORE 
Generator™ software or Xilinx® Platform 
Studio (XPS) and you need to modify 
these modules, you may be required to 
update the core. However, if the core 
netlist is present and you do not need to 
modify the core, updates are not required 
and the existing netlist is used during 
implementation. 
Obsolete Source File Types 

The ISE 12 software supports all of 
the source types that were supported in the 
ISE 11 software. 

If you are working with projects 
from previous releases, state diagram source 
files (.dia), ABEL source files (.abl), and 
test bench waveform source files (.tbw) are 
no longer supported. For state diagram and 
ABEL source files, the software finds an 
associated HDL file and adds it to the 
project, if possible. For test bench 
waveform files, the software automatically 
converts the TBW file to an HDL test bench 
and adds it to the project. To convert a 
TBW file after project migration, see 
Converting a TBW File to an HDL Test 
Bench. 
7.5 Using ISE Example Projects 

To help familiarize you with the 
ISE® software and with FPGA and CPLD 
designs, a set of example designs is 
provided with Project Navigator. The 
examples show different design techniques 
and source types, such as VHDL, Verilog, 
schematic, or EDIF, and include different 
constraints and IP. 
 To Open an Example 
 Select File > Open Example. 

 In the Open Example dialog box, select 
the Sample Project Name. 

 In the Destination Directory field, enter a 
directory name or browse to the 
directory. 

 Click OK. 
The example project is extracted to 

the directory you specified in the 
Destination Directory field and is 
automatically opened in Project Navigator. 
You can then run processes on the 
example project and save any changes. 

Note If you modified an example 
project and want to overwrite it with the 
original example project, select File > Open 
Example, select the Sample Project Name, 
and specify the same Destination Directory 
you originally used. In the dialog box that 
appears, select Overwrite the existing 
project and click OK. 
7.6 Creating a Project 

Project Navigator allows you to 
manage your FPGA and CPLD designs 
using an ISE® project, which contains all 
the source files and settings specific to your 
design. First, you must create a project and 
then, add source files, and set process 
properties. After you create a project, you 
can run processes to implement, constrain, 
and analyze your design. Project Navigator 
provides a wizard to help you create a 
project as follows. 

Note If you prefer, you can create a 
project using the New Project dialog box 
instead of the New Project Wizard. To use 
the New Project dialog box, deselect the 
Use New Project wizard option in the 
ISE General page of the Preferences 
dialog box. 

To Create a Project 

1. Select File > New Project to launch the 
New Project Wizard. 

2. In the Create New Project page, set the 
name, location, and project type, and 
click Next. 

3. For EDIF or NGC/NGO projects only: 
In the Import EDIF/NGC Project 
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page, select the input and constraint file 
for the project, and click Next. 

4. In the Project Settings page, set the 
device and project properties, and click 
Next. 

5. In the Project Summary page, review 
the information, and click Finish to 
create the project 

Project Navigator creates the 
project file (project_name.xise) in the 
directory you specified. After you add 
source files to the project, the files appear 
in the Hierarchy pane of the 

Design panel 
Project Navigator manages your 

project based on the design properties 
(top-level module type, device type, 
synthesis tool, and language) you selected 
when you created the project. It organizes 
all the parts of your design and keeps track 
of the processes necessary to move the 
design from design entry through 
implementation to programming the 
targeted Xilinx® device. 
Note For information on changing design 
properties, see Changing Design 
Properties. 
You can now perform any of the 
following: 
 Create new source files for your project. 
 Add existing source files to your project.  
 Run processes on your source files.  
 Modify process properties. 
7.8 Creating a Copy of a Project 

You can create a copy of a project to 
experiment with different source options 
and implementations. Depending on your 
needs, the design source files for the copied 
project and their location can vary as 
follows: 

 Design source files are left in their 
existing location, and the copied project 
points to these files. 

 Design source files, including generated 
files, are copied and placed in a 
specified directory. 

 Design source files, excluding generated 
files, are copied and placed in a 
specified directory. 

Copied projects are the same as other 
projects in both form and function. For 
example, you can do the following with 
copied projects: 

 Open the copied project using the File > 
Open Project menu command. 

 View, modify, and implement the 
copied project. 

 Use the Project Browser to view key 
summary data for the copied project and 
then, open the copied project for further 
analysis and implementation, as 
described in 

Using the Project Browser 
Alternatively, you can create an archive 

of your project, which puts all of the 
project contents into a ZIP file. Archived 
projects must be unzipped before being 
opened in Project Navigator. For 
information on archiving, see Creating a 
Project Archive. 
To Create a Copy of a Project 

1. Select File > Copy Project. 
2. In the Copy Project dialog box, enter the 

Name for the copy. 
 Note The name for the copy can be the 

same as the name for the project, as long 
as you specify a different location. 

3. Enter a directory Location to store the 
copied project. 

4. Optionally, enter a Working directory. 
 By default, this is blank, and the 

working directory is the same as the 
project directory. However, you can 
specify a working directory if you want 
to keep your ISE® project file (.xise 
extension) separate from your working 
area. 

5. Optionally, enter a Description for the 
copy. 

 The description can be useful in 
identifying key traits of the project for 
reference later. 
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6. In the Source options area, do the 
following: 

Select one of the following options: 
 Keep sources in their current 

locations - to leave the design source 
files in their existing location. 

If you select this option, the 
copied project points to the files in their 
existing location. If you edit the files in 
the copied project, the changes also 
appear in the original project, because 
the source files are shared between the 
two projects. 

 Copy sources to the new location - to 
make a copy of all the design source 
files and place them in the specified 
Location directory. 

If you select this option, the copied project 
points to the files in the specified directory. 
If you edit the files in the copied project, the 
changes do not appear in the original 
project, because the source files are not 
shared between the two projects. 

Optionally, select Copy files from 
Macro Search Path directories to copy 
files from the directories you specify in the 
Macro Search Path property in the 
Translate Properties dialog box. All files 
from the specified directories are copied, 
not just the files used by the design. 

Note: If you added a net list source 
file directly to the project as described in 
Working with Net list-Based IP, the file is 
automatically copied as part of Copy Project 
because it is a project source file. Adding 
net list source files to the project is the 
preferred method for incorporating net list 
modules into your design, because the files 
are managed automatically by Project 
Navigator. 

Optionally, click Copy Additional 
Files to copy files that were not included in 
the original project. In the Copy Additional 
Files dialog box, use the Add Files and 
Remove Files buttons to update the list of 
additional files to copy. Additional files are 
copied to the copied project location after 
all other files are copied. To exclude 

generated files from the copy, such as 
implementation results and reports, select 
7.10 Exclude generated files from the 
copy 
When you select this option, the copied 
project opens in a state in which processes 
have not yet been run. 
7. To automatically open the copy 

after creating it, select Open the copied 
project. 

Note By default, this option is disabled. If 
you leave this option disabled, the 
original project remains open after the 
copy is made. 

Click OK. 
Creating a Project Archive 

A project archive is a single, 
compressed ZIP file with a .zip extension. 
By default, it contains all project files, 
source files, and generated files, including 
the following: 
User-added sources and associated files 
 Remote sources 
 Verilog include files 
 Files in the macro search path 
 Generated files 
 Non-project files 

To Archive a Project 
1. Select Project > Archive. 
2. In the Project Archive dialog box, 

specify a file name and directory for the 
ZIP file. 

3. Optionally, select Exclude generated 
files from the archive to exclude 
generated files and non-project files 
from the archive. 

4. Click OK. 

A ZIP file is created in the specified 
directory. To open the archived project, 
you must first unzip the ZIP file, and then, 
you can open the project. 

INTRODUCTION TO VERILOG 
In the semiconductor and electronic 

design industry, Verilog is a hardware 
description language(HDL) used to 
model electronic systems. Verilog HDL, not 
to be confused with VHDL (a competing 
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language), is most commonly used in the 
design, verification, and implementation of 
digital logic chips at the register-transfer 
level of abstraction. It is also used in the 
verification of analog and mixed-signal 
circuits. 
SystemVerilog 
SystemVerilog is a superset of Verilog-
2005, with many new features and 
capabilities to aid design verification and 
design modeling. As of 2009, the 
SystemVerilog and Verilog language 
standards were merged into SystemVerilog 
2009 (IEEE Standard 1800-2009). 
The advent of hardware verification 
languages such as OpenVera, 
and Verisity's e language encouraged the 
development of Superlog by Co-Design 
Automation Inc. Co-Design Automation Inc 
was later purchased by Synopsys. The 
foundations of Superlog and Vera were 
donated to Accellera, which later became 
the IEEE standard P1800-2005: 
SystemVerilog. 

In the late 1990s, the Verilog 
Hardware Description Language (HDL) 
became the most widely used language for 
describing hardware for simulation and 
synthesis. However, the first two versions 
standardized by the IEEE (1364-1995 and 
1364-2001) had only simple constructs for 
creating tests. As design sizes outgrew the 
verification capabilities of the language, 
commercial Hardware Verification 
Languages (HVL) such as Open Vera and 
were created. Companies that did not want 
to pay for these tools instead spent hundreds 
of man-years creating their own custom 
tools. The donation of the Open-Vera 
language formed the basis for the HVL 
features of SystemVerilog. Accellera’s goal 
was met in November 2005 with the 
adoption of the IEEE standard P1800-2005 
for SystemVerilog, IEEE (2005). 
Some of the typical features of an HVL that 
distinguish it from a Hardware Description 
Language such as Verilog or VHDL are 

 Constrained-random stimulus 
generation 

 Functional coverage 
 Higher-level structures, especially 

Object Oriented Programming 
 Multi-threading and inter process 

communication 
 Support for HDL types such as 

Verilog’s 4-state values 
 Tight integration with event-simulator 

for control of the design 
There are many other useful 

features, but these allow you to create test 
benches at a higher level of abstraction than 
you are able to achieve with an HDL or a 
programming language such as C. 

System Verilog provides the best 
framework to achieve coverage-driven 
verification (CDV). CDV combines 
automatic test generation, self-checking 
testbenches, and coverage metrics to 
significantly reduce the time spent verifying 
a design.  

The purpose of CDV is to 
 Eliminate the effort and time spent 

creating hundreds of tests. 
 Ensure thorough verification using up-

front goal setting. 
 Receive early error notifications and 

deploy run-time checking and error 
analysis to simplify debugging. 

Examples 
Ex1 A hello world program looks like this: 
module main; 
initial 
begin 
$display("Hello world!"); 
$finish; 
end 
endmodule 

The other assignment operator, "=", 
is referred to as a blocking assignment. 
When "=" assignment is used, for the 
purposes of logic, the target variable is 
updated immediately. In the above example, 
had the statements used the "=" blocking 
operator instead of "<=", flop1 and flop2 
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would not have been swapped. Instead, as in 
traditional programming, the compiler 
would understand to simply set flop1 equal 
to flop2 (and subsequently ignore the 
redundant logic to set flop2 equal to flop1.) 

Ex3 An example counter circuit follows 
module Div20x (rst, clk, cet, cep, count, tc); 
// TITLE 'Divide-by-20 Counter with 
enables' 
// enable CEP is a clock enable only 
// enable CET is a clock enable and 
// enables the TC output 
// a counter using the Verilog language 
parameter size = 5; 
parameter length = 20; 
 
input rst; // These inputs/outputs represent 
input clk; // connections to the module. 
input cet; 
input cep; 
output [size-1:0] count; 
output tc; 
reg [size-1:0] count; // Signals assigned 
// within an always 
// (or initial)block 
// must be of type reg 
wire tc; // Other signals are of type wire 
// The always statement below is a parallel 
// execution statement that 
// executes any time the signals 
// rst or clk transition from low to high 
always @ (posedge clk or posedge rst) 
if (rst) // This causes reset of the cntr 
count <= {size{1'b0}}; 
else 
if (cet && cep) // Enables both  true 
begin 
if (count == length-1) 
count <= {size{1'b0}}; 
else 
count <= count + 1'b1; 
end 
// the value of tc is continuously assigned 
// the value of the expression 
assign tc = (cet && (count == length-1)); 
endmodule 

The always clause above illustrates 
the other type of method of use, i.e. the 
always clause executes any time any of the 
entities in the list change, i.e. the b or e 
change. When one of these changes, 
immediately a is assigned a new value, and 
due to the blocking assignment b is assigned 
a new value afterward (taking into account 
the new value of a.) After a delay of 5 time 
units, c is assigned the value of b and the 
value of c ^ e is tucked away in an invisible 
store. Then after 6 more time units, d is 
assigned the value that was tucked away. 

Signals that are driven from within a 
process (an initial or always block) must be 
of type reg. Signals that are driven from 
outside a process must be of type wire. The 
keyword reg does not necessarily imply a 
hardware register. 

Constants 
The definition of constants in Verilog 
supports the addition of a width parameter. 
The basic syntax is: 

<Width in bits>'<base letter><number> 
Examples: 
 12'h123 - Hexadecimal 123 (using 12 

bits) 
 20'd44 - Decimal 44 (using 20 bits - 

0 extension is automatic) 
 4'b1010 - Binary 1010 (using 4 bits) 
 6'o77 - Octal 77 (using 6 bits) 

8.4 Synthesizable Constructs 
There are several statements in 

Verilog that have no analog in real 
hardware, e.g. $display. Consequently, 
much of the language can not be used to 
describe hardware. The examples presented 
here are the classic subset of the language 
that has a direct mapping to real gates. 

// Mux examples - Three ways to do the 
same thing. 
// The first example uses continuous 
assignment 
wire out; 
assign out = sel ? a : b; 
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// the second example uses a procedure 
// to accomplish the same thing. 
reg out; 
always @(a or b or sel) 
begin 
case(sel) 
1'b0: out = b; 
1'b1: out = a; 
endcase 
end 
// Finally - you can use if/else in a 
// procedural structure. 
reg out; 
always @(a or b or sel) 
if (sel) 
out = a; 
else 
out = b; 

The next interesting structure is 
a transparent latch; it will pass the input to 
the output when the gate signal is set for 
"pass-through", and captures the input and 
stores it upon transition of the gate signal to 
"hold". The output will remain stable 
regardless of the input signal while the gate 
is set to "hold". In the example below the 
"pass-through" level of the gate would be 
when the value of the if clause is true, i.e. 
gate = 1. This is read "if gate is true, the din 
is fed to latch_out continuously." Once the 
if clause is false, the last value at latch_out 
will remain and is independent of the value 
of din. 

EX6: // Transparent latch example 
reg out; 
always @(gate or din) 
if(gate) 
out = din; // Pass through state 
// Note that the else isn't required here. The 
variable 
// out will follow the value of din while gate 
is high. 
// When gate goes low, out will remain 
constant. 
The flip-flop is the next significant 
template; in Verilog, the D-flop is the 
simplest, and it can be modeled as: 

reg q; 
always @(posedge clk) 
q <= d; 
The significant thing to notice in the 
example is the use of the non-blocking 
assignment. A basic rule of thumb is to 
use <= when there is a 
posedge or negedge statement within the 
always clause. 

A variant of the D-flop is one with an 
asynchronous reset; there is a convention 
that the reset state will be the first if clause 
within the statement. 

reg q; 
always @(posedge clk or posedge reset) 
if(reset) 
q <= 0; 
else 
q <= d; 
The next variant is including both an 
asynchronous reset and asynchronous set 
condition; again the convention comes into 
play, i.e. the reset term is followed by the 
set term. 
reg q; 
always @(posedge clk or posedge reset or 
posedge set) 
if(reset) 
q <= 0; 
else 
if(set) 
q <= 1; 
else 
q <= d; 

In this example the always @ 
statement would first execute when the 
rising edge of reset occurs which would 
place q to a value of 0. The next time the 
always block executes would be the rising 
edge of clk which again would keep q at a 
value of 0. The always block then executes 
when set goes high which because reset is 
high forces q to remain at 0. This condition 
may or may not be correct depending on the 
actual flip flop. 
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Note that there are no "initial" blocks 
mentioned in this description. There is a 
split between FPGA and ASIC synthesis 
tools on this structure. FPGA tools allow 
initial blocks where reg values are 
established instead of using a "reset" signal. 
ASIC synthesis tools don't support such a 
statement. The reason is that an FPGA's 
initial state is something that is downloaded 
into the memory tables of the FPGA. An 
ASIC is an actual hardware implementation. 

8.5 Initial Vs Always 
There are two separate ways of 

declaring a Verilog process. These are 
the always and the initial keywords. 
The always keyword indicates a free-
running process. The initial keyword 
indicates a process executes exactly once. 
Both constructs begin execution at simulator 
time 0, and both execute until the end of the 
block. Once an always block has reached its 
end, it is rescheduled (again). It is a 
common misconception to believe that an 
initial block will execute before an always 
block. In fact, it is better to think of 
the initial-block as a special-case of 
the always-block, one which terminates 
after it completes for the first time. 
//Examples: 
initial 
begin 
a = 1; // Assign a value to reg a at time 0 
#1; // Wait 1 time unit 
b = a; // Assign the value of reg a to reg b 
end 
 
always @(a or b) // Any time a or b 
CHANGE, run the process 
begin 
if (a) 
c = b; 
else 
d = ~b; 
end // Done with this block, now return to 
the top (i.e. the @ event-control) 
 

always @(posedge a)// Run whenever reg a 
has a low to high change 
a <= b; 

These are the classic uses for these 
two keywords, but there are two significant 
additional uses. The most common of these 
is an alwayskeyword without 
the @(...) sensitivity list. It is possible to use 
always as shown below: 

always 
begin // Always begins executing at time 0 
and NEVER stops 
clk = 0; // Set clk to 0 
#1; // Wait for 1 time unit 
clk = 1; // Set clk to 1 
#1; // Wait 1 time unit 
end // Keeps executing - so continue back at 
the top of the begin 

The always keyword acts similar to 
the "C" construct while(1) {..} in the sense 
that it will execute forever. 

The other interesting exception is the 
use of the initial keyword with the addition 
of the forever keyword. 

Race Condition 
The order of execution isn't always 

guaranteed within Verilog. This can best be 
illustrated by a classic example. Consider 
the code snippet below: 

initial 
a = 0; 
initial 
b = a; 
initial 
begin 
#1; 
$display("Value a=%b Value of 
b=%b",a,b); 
end 
What will be printed out for the values of a 
and b? Depending on the order of execution 
of the initial blocks, it could be zero and 
zero, or alternately zero and some other 
arbitrary uninitialized value. The $display 
statement will always execute after both 
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assignment blocks have completed, due to 
the #1 delay. 

System Tasks 
System tasks are available to handle simple 
I/O, and various design measurement 
functions. All system tasks are prefixed 
with $ to distinguish them from user tasks 
and functions. This section presents a short 
list of the most often used tasks. It is by no 
means a comprehensive list. 
 $display - Print to screen a line followed 

by an automatic newline. 
 $write - Write to screen a line without 

the newline. 
 $swrite - Print to variable a line without 

the newline. 
 $sscanf - Read from variable a format-

specified string. (*Verilog-2001) 
 $fopen - Open a handle to a file (read or 

write) 
 $fdisplay - Write to file a line followed 

by an automatic newline. 
 $fwrite - Write to file a line without the 

newline. 
 $fscanf - Read from file a format-

specified string. (*Verilog-2001) 
 $fclose - Close and release an open file 

handle. 
 $readmemh - Read hex file content into a 

memory array. 
 $readmemb - Read binary file content 

into a memory array. 
 $monitor - Print out all the listed 

variables when any change value. 
 $time - Value of current simulation time. 
 $dumpfile - Declare the VCD (Value 

Change Dump) format output file name. 
 $dumpvars - Turn on and dump the 

variables. 
 $dumpports - Turn on and dump the 
 variables in Extended-VCD format.                            
CONCLUSION 

In this project presented the Tag-SPM 
architecture, which allows the tag RAM to 
be used as the SPM and thus increases the 
SPM capacity. It is accomplished with small 

Tag/Data- SPM controllers and four 
additional multiplexers in the cache 
organization. We also provide an even–odd 
banked solution for some early processors 
with simpler caches. The proposed Tag-
SPM architecture has been implemented 
with an academic ARM-based 
microprocessor with a 4-kB four-way 
instruction cache and a 4-kB four-way data 
cache at RTL level. 
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