
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 28

Design and Characterization of Parallel Prefix Adders

Dollu Madhu Mohan1, S.Mahaboob Basha2
1P.G. Scholar, 2Guide, Head of the Department

1,2 Branch:ECE (VLSI)
1,2 GEETHANJALI COLLEGE OF ENGG. & TECH.

Email Id: 1madhumohan329@gmail.com, 2syedmahaboob45@gmail.com

Abstract

The binary adder is the critical
element in most digital circuit designs
including digital signal processors (DSP)
and microprocessor data path units. As
such, extensive research continues to be
focused on improving the power delay
performance of the adder.

Parallel-prefix adders (also known
as carry-tree adders) are known to have the
best performance in VLSI designs. This
paper investigates three types of carry-tree
adders (the Kogge-Stone, sparse Kogge-
Stone, and spanning tree adder) and
compares them to the simple Ripple Carry
Adder (RCA) and Carry Skip Adder (CSA).
These designs of varied bit-widths were
implemented on a Xilinx Spartan 3E FPGA
and delay measurements were made with a
high-performance logic analyzer. Due to the
presence of a fast carry-chain, the RCA
designs exhibit better delay performance up
to 128 bits. The carry-tree adders are
expected to have a speed advantage over the
RCA as bit widths approach 256.

Keywords : - Adders, Delay, Routing,
Table lookup, Software, Simulation

INTRODUCTION
 Motivation

However, in digital systems, such as
a microprocessor, DSP (Digital Signal
Processor) or ASIC (Application-Specific
Integrated Circuit), binary numbers are
more pragmatic for a given computation.

This occurs because binary values
are optimally efficient at representing many
values. Binary adders are one of the most
essential logic elements within a digital
system. In addition, binary adders are also
helpful in units other than Arithmetic Logic
Units (ALU), such as multipliers, dividers
and memory addressing. Therefore, binary
addition is essential that any improvement
in binary addition can result in a
performance boost for any computing
system and, hence, help improve the
performance of the entire system. The major
problem for binary addition is the carry
chain. As the width of the input operand
increases, the length of the carry chain
increases. Figure 1.1 demonstrates an
example of an 8- bit binary add operation
and how the carry chain is affected.

Figure 1.1: Binary Adder
However, because of the structure of

the configurable logic and routing resources
in FPGAs, parallel-prefix adders will have a
different performance than VLSI
implementations. In this work , the practical
issues involved in designing and
implementing tree-based adders on FPGAs
are described. Several tree-based adder
structures are implemented and
characterized on a FPGA and compared

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 29

with the Ripple Carry Adder (RCA) and the
Carry Skip Adder (CSA). Finally, some
conclusions and suggestions for improving
FPGA designs to enable better tree-based
adder performance are given.

Carry-Propagate Adders

Binary carry-propagate adders have
been extensively published, heavily
attacking problems related to carry chain
problem. Binary adders evolve from linear
adders, which have a delay approximately
proportional to the width of the adder, e.g.
ripple-carry adder (RCA), to logarithmic-
delay adder, such as the carry-lookahead
adder (CLA). There are some additional
performance enhancing schemes, including
the carry-increment adder and the Ling
adder that can further enhance the carry
chain, however, in Very Large Scale
Integration (VLSI) digital systems, the most
efficient way of offering binary addition
involves utilizing parallel-prefix trees, this
occurs because they have the regular
structures that exhibit logarithmic delay.

This happens within VLSI

architectures because a carry-lookahead
adder, such as the one implemented in one
of Motorola's processors , tends to
implement the carry chain in the vertical
direction instead of a horizontal one, which
has a tendency to increase both wire density
and fan-in/out dependence.
BINARY ADDER SCHEMES

Adders are one of the most essential
components in digital building blocks,
however, the performance of adders become
more critical as the technology advances.
The problem of addition involves
algorithms in Boolean algebra and their
respective circuit implementation.
Algorithmically, there are linear-delay
adders like ripple-carry adders (RCA),
which are the most straightforward but
slowest. Adders like carry-skip adders
(CSKA), carry-select adders (CSEA) and

carry-increment adders (CINA) are linear-
based adders with optimized carry-chain
and improve upon the linear chain within a
ripple-carry adder. Carry-lookahead adders
(CLA) have logarithmic delay and currently
have evolved to parallel-prefix structures.
Other schemes, like Ling adders,
NAND/NOR adders and carry-save adders
can help improve performance as well.
Binary Adder Notations and Operations
 As mentioned previously, adders in
VLSI digital systems use binary notation. In
that case, add is done bit by bit using
Boolean equations. Consider a simple
binary add with two n-bit inputs A;B and a
one-bit carry-in cin along with n-bit output
S.

Figure 3.1: 1-bit Half Adder.

S = A + B + Cin
where A = an-1, an-2……a0; B = bn-1, bn-
2……b0.

The + in the above equation is the
regular add operation. However, in the
binary world, only Boolean algebra works.
For add related operations, AND, OR and
Exclusive-OR (XOR) are required. In the
following documentation, a dot between
two variables (each with single bit), e.g. a _
b denotes 'a AND b'. Similarly, a + b
denotes 'a OR b' and a _ b denotes 'a XOR
b'.
Considering the situation of adding two bits,
the sum s and carry c can be expressed
using Boolean operations mentioned above.

si = ai^bi
ci+1 = ai.bi

The Equation of ci+1 can be
implemented as shown in Figure 2.1. In the
figure, there is a half adder, which takes
only 2 input bits. The solid line highlights
the critical path, which indicates the longest
path from the input to the output.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 30

Equation of ci+1 can be extended to
perform full add operation, where there is a
carry input.
si = ai ^ bi ^ ci
ci+1 = ai . bi + ai . ci + bi . ci

Figure 3.1.2: 1-bit Full Adder.

A full adder can be built based on

Equation above. The block diagram of a 1-
bit full adder is shown in Figure 2.2. The
full adder is composed of 2 half adders and
an OR gate for computing carry-out.
Using Boolean algebra, the equivalence can
be easily proven.

To help the computation of the carry
for each bit, two binary literals are
introduced. They are called carry generate
and carry propagate, denoted by gi and pi.
Another literal called temporary sum ti is
employed as well. There is relation between
the inputs and these literals.

gi = ai . bi
pi = ai + bi
ti = ai ^ bi

where i is an integer and 0 _ i < n.
With the help of the literals above, output
carry and sum at each bit can be written as

ci+1 = gi + pi . ci
si = ti ^ ci

In some literatures, carry-propagate
pi can be replaced with temporary sum ti in
order to save the number of logic gates.
Here these two terms are separated in order
to clarify the concepts. For example, for
Ling adders, only pi is used as carry-
propagate.

The single bit carry
generate/propagate can be extended to
group version G and P. The following
equations show the inherent relations.

Gi:k = Gi:j + Pi:j . Gj-1:k
Pi:k = Pi:j . Pj-1:k

where i : k denotes the group term from i
through k. Using group carry
generate/propagate, carry can be expressed
as expressed in the following equation.
ci+1 = Gi:j + Pi:j . cj
Ripple-Carry Adders (RCA)

The simplest way of doing binary
addition is to connect the carry-out from the
previous bit to the next bit's carry-in. Each
bit takes carry-in as one of the inputs and
outputs sum and carry-out bit and hence the
name ripple-carry adder. This type of adders
is built by cascading 1-bit full adders. A 4-
bit ripple-carry adder is shown in Figure
3.2. Each trapezoidal symbol represents a
single-bit full adder. At the top of the figure,
the carry is rippled through the adder from
cin to cout.

Figure 3.2: Ripple-Carry Adder.

It can be observed in Figure 3.2 that
the critical path, highlighted with a solid
line, is from the least significant bit (LSB)
of the input (a0 or b0) to the most
significant bit (MSB) of sum (sn-1).
Assuming each simple gate, including
AND, OR and XOR gate has a delay of 2/\
and NOT gate has a delay of 1/\. All the
gates have an area of 1 unit. Using this
analysis and assuming that each add block is
built with a 9-gate full adder, the critical
path is calculated as follows.
ai , bi si = 10/\
ai , bi ci+1 = 9/\
ci si = 5/\
ci ci+1 = 4/\
The critical path, or the worst delay is

trca = {9 + (n- 2) x 4 + 5}/\ = {f4n + 6}/\
As each bit takes 9 gates, the area is simply
9n for a n-bit RCA.
Carry-Select Adders (CSEA)

Simple adders, like ripple-carry
adders, are slow since the carry has to to

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 31

travel through every full adder block. The
method is based on the conditional sum
adder and extended to a carry-select adder.
With two RCA, each computing the case of
the one polarity of the carry-in, the sum can
be obtained with a 2x1 multiplexer with the
carry-in as the select signal. An example of
16-bit carry-select adder is shown in Figure
3.3.1 . In the figure, the adder is grouped
into four 4-bit blocks. The 1-bit
multiplexors for sum selection can be
implemented as Figure 3.3.2 shows.
Assuming the two carry terms are utilized
such that the carry input is given as a
constant 1 or 0:

Figure 3.3 : Carry-Select Adder.

In Figure 3.3, each two adjacent 4-
bit blocks utilizes a carry relationship
ci+4 = c0 i+4 + c1 i+4 . ci
The relationship can be verified with
properties of the group carry
generate/propagate and c0 i+4 can be
written as
c0 i+4 = Gi+4:i + Pi+4:i . 0 = Gi+4:i
Similarly, c1 i+4 can be written as
c1 i+4 = Gi+4:i + Pi+4:i .1= Gi+4:i + Pi+4:i
Then
c0 i+4 + c1 i+4 . ci = Gi+4:i + (Gi+4:i + Pi+4:i) .
ci
= Gi+4:i + Gi+4:i . ci + Pi+4:i . ci

= Gi+4:i + Pi+4:i . ci= ci+4

Figure 3.3.1 : 2-1 Multiplexor.

Varying the number of bits in each

group can work as well for carry-select

adders. temporary sums can be defined as
follows.

s0 i+1 = ti+1 . c0 i
s1 i+1 = ti+1 . c1 i

The final sum is selected by carry-in
between the temporary sums already
calculated.

si+1 = cj . s0 i+1 + cj . s1 i+1
Assuming the block size is fixed at

r-bit, the n-bit adder is composed of k
groups of r-bit blocks, i.e. n = r x k. The
critical path with the first RCA has a delay
of (4r + 5)/\ from the input to the carry-out,
and there are k - 2 blocks that follow, each
with a delay of 4/\ for carry to go through.
The final delay comes from the multiplexor,
which has a delay of 5/\, as indicated in
Figure 2.5. The total delay for this CSEA is
calculated as

tcsea = 4r + 5 + 4(k - 2) + 5/\
= {4r + 4k + 2}/\

The area can be estimated with (2n - r) FAs,
(n - r) multiplexors and (k - 1) AND/OR
logic. As mentioned above, each FA has an
area of 9 and a multiplexor takes 5 units of
area. The total area can be estimated
9(2n - r) + 2(k - 1) + 4(n - r) = 22n - 13r + 2k - 2
The delay of the critical path in CSEA is
reduced at the cost of increased area. For
example, in Figure 2.4, k = 4, r = 4 and n =
16. The delay for the CSEA is 34/\
compared to 70/\ for 16-bit RCA. The area
for the CSEA is 310 units while the RCA
has an area of 144 units. The delay of the
CSEA is about the half of the RCA. But the
CSEA has an area more than twice that of
the RCA.

Carry-Skip Adders (CSKA)

There is an alternative way of
reducing the delay in the carry-chain of a
RCA by checking if a carry will propagate
through to the next block. This is called
carry-skip adders.
ci+1 = Pi:j _ Gi:j + Pi:j . cj
Figure 3.4 shows an example of 16-bit
carry-skip adder.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 32

Figure 3.4 : Carry-Skip Adder.

The carry-out of each block is
determined by selecting the carry-in and
Gi:j using Pi:j. When Pi:j = 1, the carry-in cj
is allowed to get through the block
immediately. Otherwise, the carry-out is
determined by Gi:j. The CSKA has less
delay in the carry-chain with only a little
additional extra logic. Further improvement
can be achieved generally by making the
central block sizes larger and the two-end
block sizes smaller.

Assuming the n-bit adder is divided
evenly to k r-bit blocks, part of the critical
path is from the LSB input through the
MSB output of the final RCA. The first
delay is from the LSB input to carry-out,
which is 4r + 5. Then, there are k - 2 skip
logic blocks with a delay of 3/\. Each skip
logic block includes one 4-input AND gate
for getting Pi+3:i and one AND/OR logic.
The final RCA has a delay from input to
sum at MSB, which is 4r+6. The total delay
is calculated as follows.
tcska = {4r + 5 + 3(k - 2) + 4r + 6}/\
= {8r + 3k + 5}/\

The CSKA has n-bit FA and k - 2 skip logic
blocks. Each skip logic block has an area of
3 units. Therefore, the total area is estimated
as 9n + 3(k - 2) = 9n + 3k – 6.

Carry-Look-ahead Adders (CLA)
 The carry-chain can also be
accelerated with carry generate/propagate
logic. Carry-lookahead adders employ the
carry generate/propagate in groups to
generate carry for the next block. In other
words, digital logic is used to calculate all
the carries at once. The carry
generate/propagate signals gi/pi feed to

carry-lookahead generator (CLG) for carry
inputs to RFA.

Figure 3.5.1 : Reduced Full Adder.

The theory of the CLA is based on
next Equations. Figure 3.5.2 shows an
example of 16-bit carry-lookahead adder. In
the figure, each block is fixed at 4-bit.
BCLG stands for Block Carry Lookahead
Carry Generator, which generates
generate/propagate signals in group form.
For the 4-bit BCLG, the following equations
are created.
Gi+3:i = gi+3 + pi+3 . gi+2 + pi+3 . pi+2 . gi+1 +

pi+3 . pi+2 . pi+1 . gi
Pi+3:i = pi+3 . pi+2 . pi+1 . pi

The group generate takes a delay of 4/\,
which is an OR after an AND, therefore, the
carry-out can be computed, as follows.
ci+3 = Gi+3:i + Pi+3:i . ci

Figure 3.5.2 : Carry-Lookahead Adder.

The carry computation also has a
delay of 4/\, which is an OR after an AND.
The 4-bit BCLG has an area of 14 units.

The critical path of the 16-bit CLA
can be observed from the input operand
through 1 RFA, then 3 BCLG and through
the final RFA. That is, the critical path
shown in Figure 3.5.2 is from a0/b0 to s7.
The delay will be the same for a0/b0 to s11
or s15, however, the critical path traverses
logarithmically, based on the group size.
The delays are listed below.

a0 , b0 p0 , g0 = 2/\
p0 , g0 G3,0 = 4/\

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 33

G3,0 c4 = 4/\
c4 c7 = 4/\
c7 s7 = 5/\

a0 , b0 s7 = 19/\

The 16-bit CLA is composed of 16 RFAs
and 5 BCLGs, which amounts to an area of
16 x 8 + 5 x 14 = 198 units .

Assume the CLA has n-bits, which
is divided into k groups of r-bit blocks. It
requires dlogrne logic levels. The critical
path starts from the input to p0/g0
generation, BLCG logic and the carry-in to
sum at MSB. The generation of (p; g) takes
a delay of 2/\. The group version of (p; g)
generated by the BCLG has a delay of 4/\.
From next BCLG, there is a 4/\ delay from
the CLG generation and 4/\ from the BCLG
generation to the next level, which totals to
8/\. Finally, from ck+r to sk+r, there is a
delay of 5/\. Thus, the total delay is
calculated as follows.
tcla = {2 + 8(dlogrn - 1) + 4 + 5}/\

= {3 + 8dlogrn}/\
PARALLEL-PREFIX STRUCTURES
Introduction

To resolve the delay of carry-
lookahead adders, the scheme of multilevel-
lookahead adders or parallel-prefix adders
can be employed. These adders have tree
structures within a carry-computing stage
similar to the carry propagate adder.
However, the other two stages for these
adders are called pre-computation and post-
computation stages.

In the prefix stage, the group carry
generate/propagate signals are computed to
form the carry chain and provide the carry-
in for the adder below.
Gi:k = Gi:j + Pi:j . Gj-1:k
Pi:k = Pi:j . Pj-1:k

In the post-computation stage, the
sum and carry-out are finally produced. The
carry-out can be omitted if only a sum needs
to be produced.
si = ti ^ Gi:-1
cout = gn-1 + pn-1 _ Gn-2:-1

where Gi:-1 = ci with the assumption g-1 =
cin.

Figure 4.1.1 : 8-bit Parallel-Prefix

Structure with carry save notation.

To illustrate a sample prefix
structure, an 8-bit Sklansky prefix tree is
shown in Figure 4.1.1. Although Sklansky
created this prefix structure with
relationship to adders, it is typically referred
to as a member of the Ladner-Fischer prefix
family. More details about prefix structures,
including how to build the prefix structures
and the performance comparison, will be
described the next chapter of this
dissertation.

Figure 4.1.2: Sklansky Parallel-Prefix

4.2 Building Prefix Structures

Parallel-prefix structures are found
to be common in high performance adders
because of the delay is logarithmically
proportional to the adder width. Such
structures can usually be divided into three
stages, pre-computation, prefix tree and
post-computation.

An example of an 8-bit parallel-
prefix structure is shown in Figure 4.2. In
the prefix tree, group generate/propagate are
the only signals used. The group
generate/propagate equations are based on
single bit generate/propagate, which are
computed in the pre-computation stage.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 34

gi = ai . bi
pi = ai ^ bi
where 0 < I < n. g -1 = cin and p -1 = 0.
Sometimes, pi can be computed with OR
logic instead of an XOR gate. The OR logic
is mandatory especially when Ling's scheme
is applied. Here, the XOR logic is utilized to
save a gate for temporary sum ti.
In the prefix tree, group generate/propagate
signals are computed at each bit.
Gi:k = Gi:j + Pi:j . Gj-1:k
Pi:k = Pi:j . Pj-1:k

More practically, the above equation
can be expressed using a symbol " o "
denoted by Brent and Kung . Its function is
exactly the same as that of a black cell. That
is
(Gi:k; Pi:k) = (Gi:j; Pi:j) o (Gj-1:k; Pj-
1:k); or

Figure 4.2 : Cell Definitions.

Gi:k = (gi; pi) o (gi-1; pi-1) o …………o (gk; pk)
Pi:k = pi . pi-1 . …… . pk
The "o" operation will help make the rules
of building prefix structures. In the post-
computation, the sum and carry-out are the
final output.
si = pi . Gi-1:-1
cout = Gn:-1
where “-1” is the position of carry-input.

Preparing Prefix Tree

The synthesis rules apply to any type
of prefix tree. In this section, the
methodology utilized to build fixed prefix
structures is discussed.

The l level refers to the logic row where
group generate G and propagate P are
computed. u=v are the maximum output bit
span and input bit span of the logic cells. If
the logic level is not the last of the prefix

tree, the output of the current logic level
will be the input to the next logic level. The
maximum bit span sets the limit of the bit
span at a certain logic level. The relations
between these terms are described by the
following equations

u = 2 l level, v = 2 l level-1
 The value of v is 1/2 of the value of
u. To further ease the illustration, the term
(Gi:m; Pi:m) is briefed as GPi:m. For
example,

GP6:3 = GP6:5 o GP4:3
which is equal to

G6:3 = G6:5 + P6:5 . G4:3
P6:3 = P6:5 . P4:3

For this case, l level = 2; u = 4; v = 2. The
inputs are GP6:3 and GP4:3 that have a bit
span of 2, as the subscripts of GP indicate.
The output is GP6:3, which has a bit span of
4.
Figure 4.3.1 shows an 8-bit example of an
empty matrix with only bit lines and dashed
boxes filled in. The inputs gi/pi go from the
top and the outputs ci are at the bottom. The
LSB is labeled as -1 where the carry-input
(cin) locates. The objective is to obtain all
ci's in the form of Gi-1:-1's,
Where c0 = G-1:-1; c1 = G0:-1; c2 = G1:-
1; ……….; cn-1 = Gn-2:-1

Figure 4.3.1 : 8-bit Empty Prefix Tree.

The way of building a prefix tree can be
processed as the arrows indicate (i.e. from
LSB to MSB horizontally and then from top
logic level down to bottom logic level
vertically).
 Kogge-Stone Prefix Tree

Kogge-Stone prefix tree is among
the type of prefix trees that use the fewest
logic levels. A 16-bit example is shown in
Figure 4.3.2. In fact, Kogge-Stone is a
member of Knowles prefix tree. The 16-bit
prefix tree can be viewed as Knowels

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 35

[1,1,1,1]. The numbers in the brackets
represent the maximum branch fan-out at
each logic level. The maximum fan-out is 2
in all logic levels for all width Kogge-Stone
prefix trees.

Figure 4.3.2 : 16-bit Kogge-Stone Prefix

Tree.
For the Kogge-Stone prefix tree, at the logic
level 1, the inputs span is 1 bit (e.g. group
(4:3) take the inputs at bit 4 and bit 3).
Group (4:3) will be taken as inputs and
combined with group (6:5) to generate
group (6:3) at logic level 2.

Figure 4.3.3 : 16-bit Kogge-Stone Prefix

Tree with Buffers.
The number cells for a Kogge-Stone

prefix tree can be counted as follows. Each
logic level has n-m cells, where m = 2 l level -

1. That is, each logic level is missing m
cells. That number is the sum of a geometric
series starting from 1 to n/2 which totals to
n-1. The total number of cells will be nlog
2n subtracting the total number of cells
missing at each logic level , which winds up
with nlog 2n-n +1. When n = 16, the area is
estimated as 49.
Brent-Kung Adder

Brent-Kung adder is a very well-
known logarithmic adder architecture that
gives an optimal number of stages from
input to all outputs but with asymmetric
loading on all intermediate stages. The cost
and wiring complexity is less in brent kung
adders. But the gate level depth of Brent-
Kung adders is 0 (log2(n)), so the speed is
lower. The block diagram of 4-bit Brent-
Kung adder is shown in Fig.

Fig. 4.4 : Block Diagram of 4-Bit Brent

Kung Adder
CARRY-TREE ADDER DESIGNS
Kogge-Stone Adder

Parallel-prefix adders, also known as
carry-tree adders, pre-compute the
propagate and generate signals. These
signals are variously combined using the
fundamental carry operator (fco).

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR)
 Due to associative property of the
fco, these operators can be combined in
different ways to form various adder
structures. For, example the four-bit carry-
lookahead generator is given by:

c4 = (g4, p4) ο [(g3, p3) ο [(g2, p2) ο (g1, p1)]]
 A simple rearrangement of the order
of operations allows parallel operation,
resulting in a more efficient tree structure
for this four bit example:

c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)]
It is readily apparent that a key

advantage of the tree structured adder is that
the critical path due to the carry delay is on
the order of log2N for an N-bit wide adder.
The arrangement of the prefix network
gives rise to various families of adders. For
this study, the focus is on the Kogge-Stone
adder, known for having minimal logic
depth and fanout see Figure (5.1). Here we
designate BC as the black cell which

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 36

generates the ordered pair in equation (1);
the gray cell (GC) generates the left signal
only.

Figure 5.1: 16 bit Kogge-Stone adder

Figure 5.1.2: Sparse 16 bit Kogge-Stone

adder
Another carry-tree adder known as

the spanning tree carry-lookahead (CLA)
adder is also examined [6]. Like the sparse
Kogge-Stone adder, this design terminates
with a 4- bit RCA. As the FPGA uses a fast
carry-chain for the RCA, it is interesting to
compare the performance of this adder with
the sparse Kogge-Stone and regular Kogge-
Stone adders. Also of interest for the
spanning-tree CLA is its testability features
[7].

Figure 5.1.3: 16-bit Spanning Tree Carry

Lookahead Adder
Modification

Han-Carlson adder constitutes a
good trade-off between fanout, number of
logic levels and number of black cells.
Because of this, Han-Carlson adder can
achieve equal speed performance respect to
Kogge-Stone adder, at lower power
consumption and area .

Therefore it is interesting to
implement a speculative Han-Carlson adder.
Moved by these reasons, we have generated
a Han-Carlson speculative prefix-processing
stage by deleting the last rows of the
Kogge-Stone part of the adder. As an
example, the Fig. 10 shows the Han-Carlson
adder in which the two BrentKung rows at

the beginning and at the end of the graph are
unchanged, while the last Kogge-Stone row
is pruned.

As it can be observed in Fig., the
length of the propagate chains is only for ,
while for the propagate chain length is . In
general, the computed propagate and
generate signals for the speculative Han-
Carlson architecture are:

As it will be apparent in the following,
having the propagate lengths equal to for
half of the outputs greatly simplifies the
error detection.

Figure 5.2 : Han-Carlson speculative

prefix-processing stage.
XILINX TOOLS
Xilinx ISE Overview

The Integrated Software
Environment (ISE) is the Xilinx design
software suite that allows you to take your
design from design entry through Xilinx
device programming. The ISE Project
Navigator manages and processes your
design through the following steps in the
ISE design flow.
Project Navigator Overview

Project Navigator organizes your design
files and runs processes to move the design
from design entry through implementation

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 37

to programming the targeted Xilinx device.

Fig 6.2 Project Navigator window

1. Toolbar
2. Sources window
3. Processes window
4. Workspace
5. Transcript window

The first step in implementing your
design for a Xilinx FPGA or CPLD is to
assemble the design source files into a
project. For information on creating projects
and source files, see Creating a Project and
Creating a Source File.

Fig 6.2.1 Design view drop down list

The Design View ("Sources for")

drop-down list at the top of the Sources tab
allows you to view only those source files
associated with the selected Design View
(for example, Synthesis/Implementation).
The "Number of" drop-down list, Resources
column, and Preserve column are available
for designs that use Partitions.

You can change the project properties,
such as the device family to target, the top-
level module type, the synthesis tool, the
simulator, and the generated simulation
language Depending on the source file and

tool you are working with, additional tabs
are available in the Sources window:
 Always available: Sources tab,

Snapshots tab, Libraries tab
 Constraints Editor: Timing Constraints

tab
 Floorplan Editor: Translated Netlist tab,

Implemented Objects tab
 IMPACT: Configuration Modes tab
 Schematic Editor: Symbols tab
 RTL and Technology Viewers: Design

tab
 Timing Analyzer: Timing tab

The Processes tab in the Processes
window allows you to run actions or
"processes" on the source file you select in
the Sources tab of the Sources window. The
Process tab shows the available processes in
a hierarchical view. You can collapse and
expand the levels by clicking the plus (+) or
minus (-) icons. Processes are arranged in
the order of a typical design flow: project
creation, design entry, constraints
management, synthesis, implementation,
and programming file creation. Depending
on the source file and tool you are working
with, additional tabs are available in the
Processes window:
 Always available: Processes tab
 Floor plan Editor: Design Objects tab,

Implemented - Selection tab
 IMPACT: Configuration Operations tab
 ISE Simulator: Hierarchy Browser tab
 Schematic Editor: Options tab
 Timing Analyzer: Timing Objects tab

The following types of processes are
available as you work on your design:

 Tasks
When you run a task process, the

ISE software runs in "batch mode," that
is, the software processes your source
file but does not open any additional
software tools in the Workspace.

 Reports
Most tasks include report sub-

processes, which generate a summary or

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 38

status report, .for example, the Synthesis
Report or Map Report. When you run a
report process, the report appears in the
Workspace.

 Tools
When you run a tools process, the

related tool launches in standalone mode
or appears in the Workspace where you
can view or modify your design source
files. . As you work on your design, you
may make changes that require some or
all of the processes to be rerun. Project
Navigator keeps track of the changes
you make and shows the status of each
process with the following status icons:

 Running
This icon shows that the process is
running.

 Up-to-date
This icon shows that the process ran

successfully with no errors or warnings
and does not need to be rerun. If the
icon is next to a report process, the
report is up-to-date; however, associated
tasks may have warnings or errors. If
this occurs, you can read the report to
determine the cause of the warnings or
errors.

 Warnings reported
This icon shows that the process ran

successfully but that warnings were
encountered.

 Errors reported

This icon shows that the process ran but
encountered an error.

 Out-of-Date
This icon shows that you made

design changes, which require that the
process be rerun. If this icon is next to a
report process, you can rerun the
associated task process to create an up-
to-date version of the report.

 No icon
If there is no icon, this shows that

the process was never run. To run a

process, you can do any of the
following:

 Double-click the process
 Right-click while positioned over the

process, and select Run from the popup
menu, as shown in the following fig 6.3

Fig 6.2.2 Running process

Select the process, and then click the Run
toolbar button.
 To run the Implement Design process

and all preceding processes on the top
module for the design, select Process
>Implement Top Module, or click the
Implement Top Module toolbar button .

When you run a process, Project Navigator
automatically processes your design as
follows:
 Automatically runs lower-level processes
 When you run a high-level process,

Project Navigator runs associated lower-
level processes or sub-processes. For
example, if you run Implement Design for
your FPGA design, all of the following
sub-processes run: Translate Map, and
Place & Route.

 Automatically runs preceding processes
 When you run a process, Project

Navigator runs any preceding processes
that are required, thereby "pulling" your
design through the design flow. For
example, to pull your design through the
entire flow, double-click Generate
Programming File.

Fig 6.2.3 Selecting properties

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 39

When you enable the advanced
properties, both standard and advanced
properties appear in the Process Properties
dialog box.
 Float
 Dock
Depending on the source file and tool you
are working with, additional tabs are
available in the Transcript window:
 Always available : Console tab, Errors

tab, Warnings tab, Tcl Shell tab, Find in
Files tab

 ISE Simulator : Simulation Console tab
 RTL and Technology Viewers : View

by Name tab, View by Category tab
Toolbars provide convenient access to
frequently used commands. Click once
on a toolbar button to execute a
command.

Creating a Project
With your project open in Project
Navigator, you can view and run processes
on all the files in your design. Project
Navigator provides a wizard to help you
create a new project, as follows.
1. Select File > New Project.
2. In the New Project Wizard Create New
Project page, do the following:
a. In the Project Name field, enter a name
for the project. Follow the naming
conventions described in File Naming
Conventions.
b. In the Project Location field, enter the
directory name or browse to the directory.
c. In the Top-Level Source Type drop-down
list, select one of the following
HDL

Select this option if your top-level
design file is a VHDL, Verilog, or ABEL
(for CPLDs) file. An HDL Project can
include lower-level modules of different file
types, such as other HDL files, schematics,
and "black boxes," such as IP cores and
EDIF files.
 Schematic

Select this option if your top-level
design file is a schematic file. A schematic
project can include lower-level modules of
different file types, such as HDL files, other
schematics, and "black boxes," such as IP
cores and EDIF files. Project Navigator
automatically converts any schematic files
in your design to structural HDL before
implementation; therefore, you must specify
a synthesis tool when working with
schematic projects.
EDIF

Select this option if you converted your
design to this file type, for example, using a
synthesis tool. Using this file type allows yo
to skip the Project Navigator synthesis
process and to start with the implementation
processes.
 NGC/NGO

Select this option if you converted your
design to this file type, for example, using a
synthesis tool. Using this file type allows
you to skip the Project Navigator synthesis
process and start with the implementation
processes.
3. Click Next.
4. If you are creating an HDL or schematic
project, skip to the next step. If you are
creating an EDIF or NGC/NGO project, do
the following in the Import EDIF/NGC
Project page:
a. In the Input Design field, enter the name
of the input design file, or browse to the
file and select it.
b .Select Copy the input design to the
project directory to copy your file to the
project directory. If you do not select this
option, your file is accessed from the remote
location.
c. In the Constraint File field, enter the
name of the constraints file, or browse to the
file and select it.
d. Select Copy the constraints file to the
project directory to copy your file to the
project directory. If you do not select this
option, your file is accessed from the remote
location.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 40

e. Click Next.
Simulator

Select one of the following simulators
and the HDL language for simulation.
 ISE Simulator (Xilinx.)

This simulator allows you to run
integrated simulation processes as part of
your ISE design flow. For more
information, see the ISE Simulator Help.
 ModelSim (Mentor Graphics.)

You can run integrated simulation
processes as part of your ISE design flow
using any of the following ModelSim
editions: ModelSim Xilinx Edition (MXE),
ModelSim MXE Starter, ModelSim PE, or
ModelSim SE
 NC-Sim (Cadence.)

The NC-Sim simulator is not integrated
with ISE and must be run standalone. For
more information, see the documentation
provided with the simulator.
Preferred Language
 The Preferred Language project
property controls the default setting for
process properties that generate HDL
output. If both the Synthesis Tool and
Simulator options are set to mixed-language
(VHDL/Verilog) tools, you can use the
Preferred Language property to select the
language in which generated HDL output
will be created.
 Verilog

Select this option if both Synthesis Tool
and Simulation are set to mixed language
and you want the default language to be
Verilog.
 VHDL

Select this option if both Synthesis Tool
and Simulation are set to mixed language
and you want the default language to be
VHDL.
 N/A

This option will appear if both Synthesis
Tool and Simulation are set to a single
language.
Enable Enhanced Design Summary

 Select this option to show the
number of errors and warnings for each of
the Detailed Reports in the Design
Summary.
6. If you are creating an EDIF or
NGC/NGO project, skip to step 8. If you are
creating an HDL or schematic project,
7. Click Next, and optionally, add existing
source files to your project in the Add
Existing Sources page.
8. Click Next to display the Project
Summary page.
9. Click Finish to create the project.
You can perform any of the following:
 Create and add source files to your

project.
 Add existing source files to your project.
 Run processes on your source files

Creating a Source File
 A source file is any file that contains
information about a design. Project
Navigator provides a wizard to help you
create new source files for your project.
Open a project in Project Navigator.
To Create a Source File
1. Select Project > New Source.
2. In the New Source Wizard, select the
type of source you want to create.
Different source types are available
depending on your project properties (top-
level module type, device type, synthesis
tool, and language).
3. Enter a name for the new source file in
the File Name field. Follow the naming
conventions described in File Naming
Conventions.
4. In the Location field, enter the directory
name or browse to the directory.
5. Select Add to Project to automatically
add this source to the project.
6. Click Next.
7. If you are creating a source file that needs
to be associated with an existing source file,
select the appropriate source file, and click
Next. If this does not apply, skip to the next
step.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 41

8. In the New Source Wizard - Summary
window, verify the information for the new
source, and click Finish.
Adding a Source File to a Project:
 Project Navigator allows you to add
an existing source file to a project. The
source file can reside in the project directory
or in a remote directory. If you generated
your source file using the New Source
wizard and selected Add to Project, you do
not need to add the source file to your
project; it is automatically part of your
project.

FPGA Design Flow Overview:
 The ISE design flow comprises the
following steps: design entry, design
synthesis, design implementation, and
Xilinx device programming.

This section describes what to do
during each step. For additional details on
each design step, click a box in the
following fig 6.6

Fig 6.6 FPGA design flow

Create an ISE project as follows:
1. Create a project.
2. Create files and add them to your project,

including a user constraints (UCF) file.
3. Add any existing files to your project.
4. Assign constraints such as timing

constraints, pin assignments, and area
constraints.

Synthesize your design.
Implement your design as follows:
1. Implement your design, which includes
the following steps:
 Translate
 Map

 Place and Route
2. Review reports generated by the
Implement Design process, such as the Map
Report or Place & Route Report, and
change any of the following to improve
your design:
 Process properties
 Constraints
 Source files
3. Synthesize and implement your design
again until design requirements are met.
You can verify the timing of your design at
different points in the design flow as
follows:
 Run static timing analysis at the

following points in the design flow:
 After Map
 After Place & Route
 Run timing simulation at the following

points in the design flow:
 After Map (for a partial timing analysis

of CLB and IOB delays)
 After Place and Route (for full timing

analysis of block and net delays)
Program your Xilinx device as follows:
1. Create a programming file (BIT) to

program your FPGA.
2. Generate a PROM, ACE, or JTAG file

for debugging or to download to your
device.

3. Use IMPACT to program the device with
a programming cable.

FPGA Basic Flow:
 With designs of low to moderate
complexity, you can process your design
using the ISE™ Basic Flow as follows:
1. Create an ISE project as follows:
a. Create a project.
b. Create files and add them to your project,
including a user constraints (UCF) file.
c. Add any existing files to your project.
d. Edit the design files to specify design
functionality.
e. Optionally, use the Language Templates
to assist in coding of the design.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 42

f. Edit the design test bench or waveform
files to drive stimulus for testing the design
files. Optionally, do the following:
 Use the Test Bench Waveform Editor to

specify stimulus for the design.
 Use the Language Templates to assist in

coding of the test bench.
g. Assign constraints such as timing
constraints, pin assignments, and area
constraints.
2. Run behavioral simulation (also known as
RTL simulation).
3. Repeat steps 1 and 2 until desired
functionality is achieved.
4. Synthesize your design.
5. Implement your design as follows:
Run timing simulation to verify end
functionality and timing of the design.
Program your Xilinx® device as follows:
c. Create a programming file (BIT) to

program your FPGA.
d. Generate a PROM, ACE, or JTAG file

for debugging or to download to your
device.
e. Program the device with a programming

cable
FPGA IMPLEMENTATION
Introduction to FPGA

FPGA contains a two-dimensional
arrays of logic blocks and interconnections
between logic blocks. Both the logic blocks
and interconnects are programmable.Now,
to get our desired design (CPU), all the sub
functions implemented in logic blocks must
be connected and this is done by
programming the internal structure of an
FPGA which is depicted in the following
figure 7.1.

Figure 7.1: FPGA interconnections

FPGAs, alternative to the custom
ICs, can be used to implement an entire
System On one Chip (SOC). The main

advantage of FPGA is ability to reprogram.
User can reprogram an FPGA to implement
a design and this is done after the FPGA is
manufactured.

Figure 7.1.2 shows a 4-input LUT

based implementation of logic block
LUT based design provides for

better logic block utilization. A k-input LUT
based logic block can be implemented in
number of different ways with tradeoff
between performance and logic density.
Interconnects

A wire segment can be described as
two end points of an interconnection with
no programmable switch between them.
FPGA DESIGN FLOW

In this part of tutorial we are going
to have a short intro on FPGA design flow.
A simplified version of design flow is given
in the flowing diagram.

Figure 7.2 FPGA Design Flow

 Design Entry
If the designer wants to deal more

with Hardware, then Schematic entry is the
better choice. When the design is complex
or the designer thinks the design in an
algorithmic way then HDL is the better
choice. Language based entry is faster but
lag in performance and density.
 Synthesis

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 43

Figure 7.2.2 FPGA Synthesis
The process that translates VHDL/

Verilog code into a device netlist format i.e.
a complete circuit with logical elements
(gates flip flop, etc…) for the design. The
resulting netlist(s) is saved to an NGC
(Native Generic Circuit) file (for Xilinx®
Synthesis Technology (XST)).
Implementation

This process consists of a sequence of
three steps
 Translate
 Map
 Place and Route
Translate:

Process combines all the input
netlists and constraints to a logic design file.
This information is saved as a NGD (Native
Generic Database) file. This can be done
using NGD Build program.

Figure 7.2.3 FPGA Translate

Map:
 Process divides the whole circuit

with logical elements into sub blocks such
that they can be fit into the FPGA logic
blocks. That means map process fits the
logic defined by the NGD file into the
targeted FPGA elements (Combinational
Logic Blocks (CLB), Input Output Blocks
(IOB)) and generates an NCD (Native
Circuit Description) file which physically
represents the design mapped to the
components of FPGA. MAP program is
used for this purpose.

Figure 7.2.3.2 FPGA map

Place and Route:
PAR program is used for this

process. The place and route process places
the sub blocks from the map process into
logic blocks according to the constraints and
connects the logic blocks. The PAR tool
takes the mapped NCD file as input and
produces a completely routed NCD file as
output.

Figure 7.2.3.3 FPGA Place and route

Schematic Diagrams
To investigate the advantages of

using our technique in terms of area
overhead against “Fully ECC” and against
the partially protection, we implemented
and synthesized for a Xilinx XC3S500E
different versions of a 32-bit, 32-entry, dual
read ports, single write port register file.
Once the functional verification is done, the
RTL model is taken to the synthesis process
using the Xilinx ISE tool.
RTL Schematic
 The RTL (Register Transfer Logic)
can be viewed as black box after synthesize
of design is made. It shows the inputs and
outputs of the system. By double-clicking
on the diagram we can see gates, flip-flops
and MUX.
The corresponding schematics of the adders
after synthesis is shown below.

Figure 7.3.1: Top-level of Ripple-Carry

Adder

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 44

Figure 7.3.2 : Internal block of Ripple-

Carry Adder

Figure 7.3.3 : Internal block of above

figure

Figure 7.3.4: Internal block of cout

Figure 7.3.5: Area occupied by Ripple-

Carry Adder

Figure 7.3.6: Top-level of Carry-Select

Adder

Figure 7.3.7 : Internal block of Carry-

Select Adder

Figure 7.3.8 : Instance of the above block

Figure 7.3.9 : Area occupied by Carry-

Select Adder

Figure 7.3.10 : Top-level of Carry-Skip

Adder

Figure 7.3.11 : internal block of Carry-

Skip Adder

Figure 7.3.12 : Area occupied by 16-bit

Carry-Skip Adder

Figure 7.3.13 : Top level of Black Cell

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 45

Figure 7.3.14 : Internal block of Black

Cell

Figure 7.3.15 : Top level of Gray Cell

Figure 7.3.16 : Internal block of Gray

Cell

Figure 7.3.16 : Top-level of Kogge-Stone

Adder

Figure 7.3.17 : Internal block of Kogge-

Stone Adder

Figure 7.3.18 : Instance of the above

block

Figure 7..3.19 : Area occupied by 16-bit

Kogge-Stone Adder

Figure 7.3.20 : Top-level of Sparse

Kogge-Stone Adder

Figure 7.3.21 : Internal block of Sparse

Kogge-Stone Adder

Figure 7.3.22 : Area occupied by 16-bit

Sparse Kogge-Stone Adder

Figure 7.3.23 : Top-level of Spanning

Tree Adder

Figure 7.3.24: Internal block of Spanning

Tree Adder

Figure 7.3.25 : Area occupied by 16-bit

Spanning Tree Adder
Synthesis Result

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 46

This device utilization includes the
following.
 Logic Utilization
 Logic Distribution
 Total Gate count for the Design

The device utilization summery is
shown above in which its gives the details
of number of devices used from the
available devices and also represented in %.
Hence as the result of the synthesis process,
the device utilization in the used device and
package is shown below.
Table 7-4-1: Synthesis report of Ripple-

Carry Adder

Table 7-4-2: Synthesis report of Carry-

Select Adder

Table 7-4-3: Synthesis report of Carry-

Skip Adder

Table 7-4-4: Synthesis report of Kogge-

Stone Adder

Table 7-4-5: Synthesis report of Sparse

Kogge-Stone Adder

Table 7-4-6: Synthesis report of Spanning

Tree Adder

SIMULATION RESULTS
8.1 SIMULATION RESULTS

The Simulation Inputs are Taken A
has 16 bits taken as 0011001100110011 and
B has 16 bits taken as 0011001100110011
and Carry input is taken as 0 then All
Adders Simulation Results are Shown in the
below figures.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 47

8.1.1 Brent – Kung Adder

Figure 8.1.1 : Brent – Kung Adder

8.1.2 Kogge Stone Adder

Figure 8.1.2 : Kogge Stone Adder

8.1.3 Ladner – Fischer Adder

Figure 8.1.3 : Ladner – Fischer Adder

8.1.4 Sklansky Adder

Figure 8.1.4 : Sklansky Adder

CONCLUSION AND FUTURE SCOPE
Both measured and simulation

results from this study have shown that
parallel-prefix adders are not as effective as
the simple ripple-carry adder at low to
moderate bit widths. This is not unexpected
as the Xilinx FPGA has a fast carry chain
which optimizes the performance of the
ripple carry adder. However, contrary to
other studies, we have indications that the
carry-tree adders eventually surpass the
performance of the linear adder designs at

high bit-widths, expected to be in the 128 to
256 bit range. This is important for large
adders used in precision arithmetic and
cryptographic applications where the
addition of numbers on the order of a
thousand bits is not uncommon. Because the
adder is often the critical element which
determines to a large part the cycle time and
power dissipation for many digital signal
processing and cryptographical
implementations, it would be worthwhile
for future FPGA designs to include an
optimized carry path to enable tree based
adder designs to be optimized for place and
routing.

This would improve their
performance similar to what is found for the
RCA. We plan to explore possible FPGA
architectures that could implement a “fast-
tree chain” and investigate the possible
trade-offs involved. The built-in redundancy
of the Kogge-Stone carry-tree structure and
its implications for fault tolerance in FPGA
designs is being studied.
REFERENCES
[1] N. H. E. Weste and D. Harris, CMOS

VLSI Design, 4th edition, Pearson–
Addison-Wesley, 2011.

[2] R. P. Brent and H. T. Kung, “A regular
layout for parallel adders,” IEEE Trans.
Comput., vol. C-31, pp. 260-264, 1982.

[3] D. Harris, “A Taxonomy of Parallel
Prefix Networks,” in Proc. 37th
Asilomar Conf. Signals Systems and
Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A
Parallel Algorithm for the Efficient
Solution of a General Class of
Recurrence Equations,” IEEE Trans. on
Computers, Vol. C-22, No 8, August
1973.

[5] P. Ndai, S. Lu, D. Somesekhar, and K.
Roy, “Fine- Grained Redundancy in
Adders,” Int. Symp. on Quality
Electronic Design, pp. 317-321, March
2007.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 06 Issue 13
December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 48

[6] T. Lynch and E. E. Swartzlander, “A
Spanning Tree Carry Lookahead
Adder,” IEEE Trans. on Computers, vol.
41, no. 8, pp. 931-939, Aug. 1992.

[7] D. Gizopoulos, M. Psarakis, A.
Paschalis, and Y. Zorian, “Easily
Testable Cellular Carry Lookahead
Adders,” Journal of Electronic Testing:
Theory and Applications 19, 285-298,
2003.

[8] S. Xing and W. W. H. Yu, “FPGA
Adders: Performance Evaluation and
Optimal Design,” IEEE Design & Test
of Computers, vol. 15, no. 1, pp. 24-29,
Jan. 1998.

[9] M. Bečvář and P. Štukjunger, “Fixed-
Point Arithmetic in FPGA,” Acta
Polytechnica, vol. 45, no. 2, pp. 67- 72,
2005.

[10] K. Vitoroulis and A. J. Al-Khalili,
“Performance of Parallel Prefix Adders
Implemented with FPGA technology,”
IEEE Northeast Workshop on Circuits
and Systems, pp. 498-501, Aug. 2007.
172

