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Abstract 

The binary adder is the critical 
element in most digital circuit designs 
including digital signal processors (DSP) 
and microprocessor data path units. As 
such, extensive research continues to be 
focused on improving the power delay 
performance of the adder.  
 

Parallel-prefix adders (also known 
as carry-tree adders) are known to have the 
best performance in VLSI designs. This 
paper investigates three types of carry-tree 
adders (the Kogge-Stone, sparse Kogge-
Stone, and spanning tree adder) and 
compares them to the simple Ripple Carry 
Adder (RCA) and Carry Skip Adder (CSA). 
These designs of varied bit-widths were 
implemented on a Xilinx Spartan 3E FPGA 
and delay measurements were made with a 
high-performance logic analyzer. Due to the 
presence of a fast carry-chain, the RCA 
designs exhibit better delay performance up 
to 128 bits. The carry-tree adders are 
expected to have a speed advantage over the 
RCA as bit widths approach 256. 
 
Keywords : - Adders, Delay, Routing, 
Table lookup, Software, Simulation 
 
INTRODUCTION 
 Motivation 

However, in digital systems, such as 
a microprocessor, DSP (Digital Signal 
Processor) or ASIC (Application-Specific 
Integrated Circuit), binary numbers are 
more pragmatic for a given computation.  

This occurs because binary values 
are optimally efficient at representing many 
values. Binary adders are one of the most 
essential logic elements within a digital 
system. In addition, binary adders are also 
helpful in units other than Arithmetic Logic 
Units (ALU), such as multipliers, dividers 
and memory addressing. Therefore, binary 
addition is essential that any improvement 
in binary addition can result in a 
performance boost for any computing 
system and, hence, help improve the 
performance of the entire system. The major 
problem for binary addition is the carry 
chain. As the width of the input operand 
increases, the length of the carry chain 
increases. Figure 1.1 demonstrates an 
example of an 8- bit binary add operation 
and how the carry chain is affected.  

 

 
Figure 1.1: Binary Adder  
However, because of the structure of 

the configurable logic and routing resources 
in FPGAs, parallel-prefix adders will have a 
different performance than VLSI 
implementations. In this work , the practical 
issues involved in designing and 
implementing tree-based adders on FPGAs 
are described. Several tree-based adder 
structures are implemented and 
characterized on a FPGA and compared 



  International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 06 Issue 13 
December 2019 

  
 

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 29  
 

with the Ripple Carry Adder (RCA) and the 
Carry Skip Adder (CSA). Finally, some 
conclusions and suggestions for improving 
FPGA designs to enable better tree-based 
adder performance are given. 
 
Carry-Propagate Adders 

Binary carry-propagate adders have 
been extensively published, heavily 
attacking problems related to carry chain 
problem. Binary adders evolve from linear 
adders, which have a delay approximately 
proportional to the width of the adder, e.g. 
ripple-carry adder (RCA), to logarithmic-
delay adder, such as the carry-lookahead 
adder (CLA). There are some additional 
performance enhancing schemes, including 
the carry-increment adder and the Ling 
adder that can further enhance the carry 
chain, however, in Very Large Scale 
Integration (VLSI) digital systems, the most 
efficient way of offering binary addition 
involves utilizing parallel-prefix trees, this 
occurs because they have the regular 
structures that exhibit logarithmic delay. 

 
This happens within VLSI 

architectures because a carry-lookahead 
adder, such as the one implemented in one 
of Motorola's processors , tends to 
implement the carry chain in the vertical 
direction instead of a horizontal one, which 
has a tendency to increase both wire density 
and fan-in/out dependence.  
BINARY ADDER SCHEMES 

Adders are one of the most essential 
components in digital building blocks, 
however, the performance of adders become 
more critical as the technology advances. 
The problem of addition involves 
algorithms in Boolean algebra and their 
respective circuit implementation. 
Algorithmically, there are linear-delay 
adders like ripple-carry adders (RCA), 
which are the most straightforward but 
slowest. Adders like carry-skip adders 
(CSKA), carry-select adders (CSEA) and 

carry-increment adders (CINA) are linear-
based adders with optimized carry-chain 
and improve upon the linear chain within a 
ripple-carry adder. Carry-lookahead adders 
(CLA) have logarithmic delay and currently 
have evolved to parallel-prefix structures. 
Other schemes, like Ling adders, 
NAND/NOR adders and carry-save adders 
can help improve performance as well. 
Binary Adder Notations and Operations 
 As mentioned previously, adders in 
VLSI digital systems use binary notation. In 
that case, add is done bit by bit using 
Boolean equations. Consider a simple 
binary add with two n-bit inputs A;B and a 
one-bit carry-in cin along with n-bit output 
S. 
 

 
Figure 3.1: 1-bit Half Adder. 

S = A + B + Cin 
where A = an-1, an-2……a0; B = bn-1, bn-
2……b0. 

The + in the above equation is the 
regular add operation. However, in the 
binary world, only Boolean algebra works. 
For add related operations, AND, OR and 
Exclusive-OR (XOR) are required. In the 
following documentation, a dot between 
two variables (each with single bit), e.g. a _ 
b denotes 'a AND b'. Similarly, a + b 
denotes 'a OR b' and a _ b denotes 'a XOR 
b'. 
Considering the situation of adding two bits, 
the sum s and carry c can be expressed 
using Boolean operations mentioned above. 

si = ai^bi 
ci+1 = ai.bi 

The Equation of ci+1 can be 
implemented as shown in Figure 2.1. In the 
figure, there is a half adder, which takes 
only 2 input bits. The solid line highlights 
the critical path, which indicates the longest 
path from the input to the output. 
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Equation of ci+1 can be extended to 
perform full add operation, where there is a 
carry input. 
si = ai ^ bi ^ ci 
ci+1 = ai . bi + ai . ci + bi . ci 
 

 
Figure 3.1.2: 1-bit Full Adder. 

 
A full adder can be built based on 

Equation above. The block diagram of a 1-
bit full adder is shown in Figure 2.2. The 
full adder is composed of 2 half adders and 
an OR gate for computing carry-out.  
Using Boolean algebra, the equivalence can 
be easily proven. 

To help the computation of the carry 
for each bit, two binary literals are 
introduced. They are called carry generate 
and carry propagate, denoted by gi and pi. 
Another literal called temporary sum ti is 
employed as well. There is relation between 
the inputs and these literals. 

gi = ai . bi 
pi = ai + bi 
ti = ai ^  bi 

where i is an integer and 0 _ i < n. 
With the help of the literals above, output 
carry and sum at each bit can be written as 

ci+1 = gi + pi . ci 
si = ti ^ ci 

In some literatures, carry-propagate 
pi can be replaced with temporary sum ti in 
order to save the number of logic gates. 
Here these two terms are separated in order 
to clarify the concepts. For example, for 
Ling adders, only pi is used as carry-
propagate. 

The single bit carry 
generate/propagate can be extended to 
group version G and P. The following 
equations show the inherent relations. 

Gi:k = Gi:j + Pi:j . Gj-1:k 
Pi:k = Pi:j .  Pj-1:k 

where i : k denotes the group term from i 
through k. Using group carry 
generate/propagate, carry can be expressed 
as expressed in the following equation. 
ci+1 = Gi:j + Pi:j . cj 
Ripple-Carry Adders (RCA) 

The simplest way of doing binary 
addition is to connect the carry-out from the 
previous bit to the next bit's carry-in. Each 
bit takes carry-in as one of the inputs and 
outputs sum and carry-out bit and hence the 
name ripple-carry adder. This type of adders 
is built by cascading 1-bit full adders. A 4-
bit ripple-carry adder is shown in Figure 
3.2. Each trapezoidal symbol represents a 
single-bit full adder. At the top of the figure, 
the carry is rippled through the adder from 
cin to cout. 

 
Figure 3.2: Ripple-Carry Adder. 

It can be observed in Figure 3.2 that 
the critical path, highlighted with a solid 
line, is from the least significant bit (LSB) 
of the input (a0 or b0) to the most 
significant bit (MSB) of sum (sn-1). 
Assuming each simple gate, including 
AND, OR and XOR gate has a delay of 2/\ 
and NOT gate has a delay of 1/\. All the 
gates have an area of 1 unit. Using this 
analysis and assuming that each add block is 
built with a 9-gate full adder, the critical 
path is calculated as follows. 
ai , bi  si = 10/\ 
ai , bi  ci+1 = 9/\ 
ci  si = 5/\ 
ci  ci+1 = 4/\ 
The critical path, or the worst delay is 

trca  = {9 + (n- 2) x 4 + 5}/\ = {f4n + 6}/\ 
As each bit takes 9 gates, the area is simply 
9n for a n-bit RCA. 
Carry-Select Adders (CSEA) 

Simple adders, like ripple-carry 
adders, are slow since the carry has to to 
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travel through every full adder block.  The 
method is based on the conditional sum 
adder and extended to a carry-select adder. 
With two RCA, each computing the case of 
the one polarity of the carry-in, the sum can 
be obtained with a 2x1 multiplexer with the 
carry-in as the select signal. An example of 
16-bit carry-select adder is shown in Figure 
3.3.1 . In the figure, the adder is grouped 
into four 4-bit blocks. The 1-bit 
multiplexors for sum selection can be 
implemented as Figure 3.3.2 shows. 
Assuming the two carry terms are utilized 
such that the carry input is given as a 
constant 1 or 0: 

 
Figure 3.3 : Carry-Select Adder. 

In Figure 3.3, each two adjacent 4-
bit blocks utilizes a carry relationship 
ci+4 = c0 i+4 + c1 i+4 . ci 
The relationship can be verified with 
properties of the group carry 
generate/propagate and c0 i+4 can be 
written as 
c0 i+4 = Gi+4:i + Pi+4:i . 0  = Gi+4:i 
Similarly, c1 i+4 can be written as 
c1 i+4 = Gi+4:i + Pi+4:i .1= Gi+4:i + Pi+4:i 
Then 
c0 i+4 + c1 i+4 . ci = Gi+4:i + (Gi+4:i + Pi+4:i) . 
ci 
= Gi+4:i + Gi+4:i . ci + Pi+4:i . ci 

= Gi+4:i + Pi+4:i . ci= ci+4 

 
Figure 3.3.1 : 2-1 Multiplexor. 

 
Varying the number of bits in each 

group can work as well for carry-select 

adders. temporary sums can be defined as 
follows. 

s0 i+1 = ti+1 . c0 i 
s1 i+1 = ti+1 . c1 i 

The final sum is selected by carry-in 
between the temporary sums already 
calculated. 

si+1 = cj . s0 i+1 + cj . s1 i+1 
Assuming the block size is fixed at 

r-bit, the n-bit adder is composed of k 
groups of r-bit blocks, i.e. n = r x k. The 
critical path with the first RCA has a delay 
of (4r + 5)/\ from the input to the carry-out, 
and there are k - 2 blocks that follow, each 
with a delay of 4/\ for carry to go through. 
The final delay comes from the multiplexor, 
which has a delay of 5/\, as indicated in 
Figure 2.5. The total delay for this CSEA is 
calculated as 

tcsea = 4r + 5 + 4(k - 2) + 5/\ 
= {4r + 4k + 2}/\ 

The area can be estimated with (2n - r) FAs, 
(n - r) multiplexors and (k - 1) AND/OR 
logic. As mentioned above, each FA has an 
area of 9 and a multiplexor takes 5 units of 
area. The total area can be estimated 
9(2n - r) + 2(k - 1) + 4(n - r) = 22n - 13r + 2k - 2 
The delay of the critical path in CSEA is 
reduced at the cost of increased area. For 
example, in Figure 2.4, k = 4, r = 4 and n = 
16. The delay for the CSEA is 34/\ 
compared to 70/\ for 16-bit RCA. The area 
for the CSEA is 310 units while the RCA 
has an area of 144 units. The delay of the 
CSEA is about the half of the RCA. But the 
CSEA has an area more than twice that of 
the RCA.  
 
Carry-Skip Adders (CSKA) 

There is an alternative way of 
reducing the delay in the carry-chain of a 
RCA by checking if a carry will propagate 
through to the next block. This is called 
carry-skip adders. 
ci+1 = Pi:j _ Gi:j + Pi:j . cj 
Figure 3.4  shows an example of 16-bit 
carry-skip adder. 
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Figure 3.4 : Carry-Skip Adder. 

The carry-out of each block is 
determined by selecting the carry-in and 
Gi:j using Pi:j. When Pi:j = 1, the carry-in cj 
is allowed to get through the block 
immediately. Otherwise, the carry-out is 
determined by Gi:j. The CSKA has less 
delay in the carry-chain with only a little 
additional extra logic. Further improvement 
can be achieved generally by making the 
central block sizes larger and the two-end 
block sizes smaller. 

Assuming the n-bit adder is divided 
evenly to k r-bit blocks, part of the critical 
path is from the LSB input through the 
MSB output of the final RCA. The first 
delay is from the LSB input to carry-out, 
which is 4r + 5. Then, there are k - 2 skip 
logic blocks with a delay of 3/\. Each skip 
logic block includes one 4-input AND gate 
for getting Pi+3:i and one AND/OR logic. 
The final RCA has a delay from input to 
sum at MSB, which is 4r+6. The total delay 
is calculated as follows. 
tcska = {4r + 5 + 3(k - 2) + 4r + 6}/\ 
= {8r + 3k + 5}/\ 
 
The CSKA has n-bit FA and k - 2 skip logic 
blocks. Each skip logic block has an area of 
3 units. Therefore, the total area is estimated 
as 9n + 3(k - 2) = 9n + 3k – 6. 
 
Carry-Look-ahead Adders (CLA) 
               The carry-chain can also be 
accelerated with carry generate/propagate 
logic. Carry-lookahead adders employ the 
carry generate/propagate in groups to 
generate carry for the next block. In other 
words, digital logic is used to calculate all 
the carries at once. The carry 
generate/propagate signals gi/pi feed to 

carry-lookahead generator (CLG) for carry 
inputs to RFA. 

 
Figure 3.5.1 : Reduced Full Adder. 

The theory of the CLA is based on 
next Equations. Figure 3.5.2 shows an 
example of 16-bit carry-lookahead adder. In 
the figure, each block is fixed at 4-bit. 
BCLG stands for Block Carry Lookahead 
Carry Generator, which generates 
generate/propagate signals in group form. 
For the 4-bit BCLG, the following equations 
are created. 
Gi+3:i = gi+3 + pi+3 . gi+2 + pi+3 . pi+2 . gi+1 + 

pi+3 . pi+2 . pi+1 . gi 
Pi+3:i = pi+3 . pi+2 . pi+1 . pi 

The group generate takes a delay of 4/\, 
which is an OR after an AND, therefore, the 
carry-out can be computed, as follows. 
ci+3 = Gi+3:i + Pi+3:i . ci 

 
Figure 3.5.2 : Carry-Lookahead Adder. 

The carry computation also has a 
delay of 4/\, which is an OR after an AND. 
The 4-bit BCLG has an area of 14 units. 

The critical path of the 16-bit CLA 
can be observed from the input operand 
through 1 RFA, then 3 BCLG and through 
the final RFA. That is, the critical path 
shown in Figure 3.5.2 is from a0/b0 to s7. 
The delay will be the same for a0/b0 to s11 
or s15, however, the critical path traverses 
logarithmically, based on the group size.  
The delays are listed below. 

a0 , b0  p0 , g0 = 2/\ 
p0 , g0  G3,0 = 4/\ 
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G3,0  c4 = 4/\ 
c4  c7 = 4/\ 
c7  s7 = 5/\ 

a0 , b0  s7 = 19/\ 
 
The 16-bit CLA is composed of 16 RFAs 
and 5 BCLGs, which amounts to an area of 
16 x 8 + 5 x 14 = 198 units . 

Assume the CLA has n-bits, which 
is divided into k groups of r-bit blocks. It 
requires dlogrne logic levels. The critical 
path starts from the input to p0/g0 
generation, BLCG logic and the carry-in to 
sum at MSB. The generation of (p; g) takes 
a delay of 2/\. The group version of (p; g) 
generated by the BCLG has a delay of 4/\. 
From next BCLG, there is a 4/\ delay from 
the CLG generation and 4/\ from the BCLG 
generation to the next level, which totals to 
8/\. Finally, from ck+r to sk+r, there is a 
delay of 5/\. Thus, the total delay is 
calculated as follows. 
tcla = {2 + 8(dlogrn - 1) + 4 + 5}/\ 

= {3 + 8dlogrn}/\ 
PARALLEL-PREFIX STRUCTURES 
Introduction 

To resolve the delay of carry-
lookahead adders, the scheme of multilevel-
lookahead adders or parallel-prefix adders 
can be employed. These adders have tree 
structures within a carry-computing stage 
similar to the carry propagate adder. 
However, the other two stages for these 
adders are called pre-computation and post-
computation stages.  

In the prefix stage, the group carry 
generate/propagate signals are computed to 
form the carry chain and provide the carry-
in for the adder below. 
Gi:k = Gi:j + Pi:j . Gj-1:k 
Pi:k = Pi:j .  Pj-1:k 

In the post-computation stage, the 
sum and carry-out are finally produced. The 
carry-out can be omitted if only a sum needs 
to be produced. 
si = ti  ^  Gi:-1 
cout = gn-1 + pn-1 _ Gn-2:-1 

where Gi:-1 = ci with the assumption g-1 = 
cin.  

       
Figure 4.1.1 : 8-bit Parallel-Prefix 

Structure with carry save notation. 
 

To illustrate a sample prefix 
structure, an 8-bit Sklansky prefix tree is 
shown in Figure 4.1.1. Although Sklansky 
created this prefix structure with 
relationship to adders, it is typically referred 
to as a member of the Ladner-Fischer prefix 
family. More details about prefix structures, 
including how to build the prefix structures 
and the performance comparison, will be 
described the next chapter of this 
dissertation. 

 
Figure 4.1.2: Sklansky Parallel-Prefix 

 
4.2 Building Prefix Structures 

Parallel-prefix structures are found 
to be common in high performance adders 
because of the delay is logarithmically 
proportional to the adder width. Such 
structures can usually be divided into three 
stages, pre-computation, prefix tree and 
post-computation.  

An example of an 8-bit parallel-
prefix structure is shown in Figure 4.2. In 
the prefix tree, group generate/propagate are 
the only signals used. The group 
generate/propagate equations are based on 
single bit generate/propagate, which are 
computed in the pre-computation stage. 
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gi = ai . bi 
pi = ai ^ bi 
where 0 < I < n. g -1 = cin and p -1 = 0. 
Sometimes, pi can be computed with OR 
logic instead of an XOR gate. The OR logic 
is mandatory especially when Ling's scheme 
is applied. Here, the XOR logic is utilized to 
save a gate for temporary sum ti. 
In the prefix tree, group generate/propagate 
signals are computed at each bit. 
Gi:k = Gi:j + Pi:j . Gj-1:k 
Pi:k = Pi:j .  Pj-1:k 

More practically, the above equation 
can be expressed using a symbol " o " 
denoted by Brent and Kung . Its function is 
exactly the same as that of a black cell. That 
is 
(Gi:k; Pi:k) = (Gi:j; Pi:j) o (Gj-1:k; Pj-
1:k); or 

 
Figure 4.2 : Cell Definitions. 

 
Gi:k = (gi; pi) o (gi-1; pi-1) o …………o (gk; pk) 
Pi:k = pi . pi-1 .  ……  . pk 
The "o" operation will help make the rules 
of building prefix structures. In the post-
computation, the sum and carry-out are the 
final output. 
si = pi .  Gi-1:-1 
cout = Gn:-1 
where “-1” is the position of carry-input. 
 
Preparing Prefix Tree 

The synthesis rules apply to any type 
of prefix tree. In this section, the 
methodology utilized to build fixed prefix 
structures is discussed.  

The l level refers to the logic row where 
group generate G and propagate P are 
computed. u=v are the maximum output bit 
span and input bit span of the logic cells. If 
the logic level is not the last of the prefix 

tree, the output of the current logic level 
will be the input to the next logic level. The 
maximum bit span sets the limit of the bit 
span at a certain logic level. The relations 
between these terms are described by the 
following equations 

u = 2 l level, v = 2 l level-1 
  The value of v is 1/2 of the value of 
u. To further ease the illustration, the term 
(Gi:m; Pi:m) is briefed as GPi:m. For 
example, 

GP6:3 = GP6:5 o GP4:3 
which is equal to 

G6:3 = G6:5 + P6:5 . G4:3 
P6:3 = P6:5 . P4:3 

For this case, l level = 2; u = 4; v = 2. The 
inputs are GP6:3 and GP4:3 that have a bit 
span of 2, as the subscripts of GP indicate. 
The output is GP6:3, which has a bit span of 
4. 
Figure 4.3.1 shows an 8-bit example of an 
empty matrix with only bit lines and dashed 
boxes filled in. The inputs gi/pi go from the 
top and the outputs ci are at the bottom. The 
LSB is labeled as -1 where the carry-input 
(cin) locates. The objective is to obtain all 
ci's in the form of Gi-1:-1's, 
Where  c0 = G-1:-1; c1 = G0:-1; c2 = G1:-
1; ……….; cn-1 = Gn-2:-1 

 
Figure 4.3.1 : 8-bit Empty Prefix Tree. 

The way of building a prefix tree can be 
processed as the arrows indicate (i.e. from 
LSB to MSB horizontally and then from top 
logic level down to bottom logic level 
vertically). 
 Kogge-Stone Prefix Tree 

Kogge-Stone prefix tree is among 
the type of prefix trees that use the fewest 
logic levels. A 16-bit example is shown in 
Figure 4.3.2. In fact, Kogge-Stone is a 
member of Knowles prefix tree. The 16-bit 
prefix tree can be viewed as Knowels 
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[1,1,1,1]. The numbers in the brackets 
represent the maximum branch fan-out at 
each logic level. The maximum fan-out is 2 
in all logic levels for all width Kogge-Stone 
prefix trees. 

 
Figure 4.3.2 : 16-bit Kogge-Stone Prefix 

Tree. 
For the Kogge-Stone prefix tree, at the logic 
level 1, the inputs span is 1 bit (e.g. group 
(4:3)  take the inputs at bit 4 and bit 3). 
Group (4:3) will be taken as inputs and 
combined with group (6:5) to generate 
group (6:3) at logic level 2.  

 

 
Figure 4.3.3 : 16-bit Kogge-Stone Prefix 

Tree with Buffers. 
The number cells for a Kogge-Stone 

prefix tree can be counted as follows. Each 
logic level has n-m cells, where m = 2 l level - 

1. That is, each logic level is missing m 
cells. That number is the sum of a geometric 
series starting from 1 to n/2 which totals to 
n-1. The total number of cells will be nlog 
2n subtracting the total number of cells 
missing at each logic level , which winds up 
with nlog 2n-n +1. When n = 16, the area is 
estimated as 49. 
Brent-Kung Adder 

Brent-Kung adder is a very well-
known logarithmic adder architecture that 
gives an optimal number of stages from 
input to all outputs but with asymmetric 
loading on all intermediate stages. The cost 
and wiring complexity is less in brent kung 
adders. But the gate level depth of Brent-
Kung adders is 0 (log2(n)), so the speed is 
lower. The block diagram of 4-bit Brent-
Kung adder is shown in Fig. 

 
Fig.  4.4 : Block Diagram of 4-Bit Brent 

Kung Adder 
CARRY-TREE ADDER DESIGNS 
Kogge-Stone Adder 

Parallel-prefix adders, also known as 
carry-tree adders, pre-compute the 
propagate and generate signals. These 
signals are variously combined using the 
fundamental carry operator (fco). 

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR) 
            Due to associative property of the 
fco, these operators can be combined in 
different ways to form various adder 
structures. For, example the four-bit carry-
lookahead generator is given by: 

c4 = (g4, p4) ο [ (g3, p3) ο [(g2, p2) ο (g1, p1)] ] 
            A simple rearrangement of the order 
of operations allows parallel operation, 
resulting in a more efficient tree structure 
for this four bit example: 

c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2 ) ο (g1, p1)] 
It is readily apparent that a key 

advantage of the tree structured adder is that 
the critical path due to the carry delay is on 
the order of log2N for an N-bit wide adder. 
The arrangement of the prefix network 
gives rise to various families of adders. For 
this study, the focus is on the Kogge-Stone 
adder, known for having minimal logic 
depth and fanout see Figure (5.1). Here we 
designate BC as the black cell which 
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generates the ordered pair in equation (1); 
the gray cell (GC) generates the left signal 
only.  

Figure 5.1: 16 bit Kogge-Stone adder 

 
Figure 5.1.2: Sparse 16 bit Kogge-Stone 

adder 
Another carry-tree adder known as 

the spanning tree carry-lookahead (CLA) 
adder is also examined [6]. Like the sparse 
Kogge-Stone adder, this design terminates 
with a 4- bit RCA. As the FPGA uses a fast 
carry-chain for the RCA, it is interesting to 
compare the performance of this adder with 
the sparse Kogge-Stone and regular Kogge-
Stone adders. Also of interest for the 
spanning-tree CLA is its testability features 
[7]. 

 
Figure 5.1.3: 16-bit Spanning Tree Carry 

Lookahead Adder 
Modification 

Han-Carlson adder constitutes a 
good trade-off between fanout, number of 
logic levels and number of black cells. 
Because of this, Han-Carlson adder can 
achieve equal speed performance respect to 
Kogge-Stone adder, at lower power 
consumption and area .  

Therefore it is interesting to 
implement a speculative Han-Carlson adder. 
Moved by these reasons, we have generated 
a Han-Carlson speculative prefix-processing 
stage by deleting the last rows of the 
Kogge-Stone part of the adder. As an 
example, the Fig. 10 shows the Han-Carlson 
adder  in which the two BrentKung rows at 

the beginning and at the end of the graph are 
unchanged, while the last Kogge-Stone row 
is pruned.  

As it can be observed in Fig., the 
length of the propagate chains is only for , 
while for the propagate chain length is . In 
general, the computed propagate and 
generate signals for the speculative Han-
Carlson architecture are: 

 
As it will be apparent in the following, 
having the propagate lengths equal to for 
half of the outputs greatly simplifies the 
error detection. 

 
Figure 5.2 : Han-Carlson speculative 

prefix-processing stage. 
XILINX TOOLS 
Xilinx ISE Overview 

The Integrated Software 
Environment (ISE) is the Xilinx design 
software suite that allows you to take your 
design from design entry through Xilinx 
device programming. The ISE Project 
Navigator manages and processes your 
design through the following steps in the 
ISE design flow. 
Project Navigator Overview 

Project Navigator organizes your design 
files and runs processes to move the design 
from design entry through implementation 
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to programming the targeted Xilinx device. 

 
Fig 6.2 Project Navigator window 

1. Toolbar 
2. Sources window 
3. Processes window 
4. Workspace 
5. Transcript window 

The first step in implementing your 
design for a Xilinx FPGA or CPLD is to 
assemble the design source files into a 
project. For information on creating projects 
and source files, see Creating a Project and 
Creating a Source File. 

 
Fig 6.2.1 Design view drop down list 

 
The Design View ("Sources for") 

drop-down list at the top of the Sources tab 
allows you to view only those source files 
associated with the selected Design View 
(for example, Synthesis/Implementation). 
The "Number of" drop-down list, Resources 
column, and Preserve column are available 
for designs that use Partitions. 

You can change the project properties, 
such as the device family to target, the top-
level module type, the synthesis tool, the 
simulator, and the generated simulation 
language Depending on the source file and 

tool you are working with, additional tabs 
are available in the Sources window: 
 Always available: Sources tab, 

Snapshots tab, Libraries tab 
 Constraints Editor: Timing Constraints 

tab 
 Floorplan Editor: Translated Netlist tab, 

Implemented Objects tab 
 IMPACT: Configuration Modes tab 
 Schematic Editor: Symbols tab 
 RTL and Technology Viewers: Design 

tab 
 Timing Analyzer: Timing tab 

The Processes tab in the Processes 
window allows you to run actions or 
"processes" on the source file you select in 
the Sources tab of the Sources window. The 
Process tab shows the available processes in 
a hierarchical view. You can collapse and 
expand the levels by clicking the plus (+) or 
minus (-) icons. Processes are arranged in 
the order of a typical design flow: project 
creation, design entry, constraints 
management, synthesis, implementation, 
and programming file creation. Depending 
on the source file and tool you are working 
with, additional tabs are available in the 
Processes window: 
 Always available: Processes tab 
 Floor plan Editor: Design Objects tab, 

Implemented - Selection tab 
 IMPACT: Configuration Operations tab 
 ISE Simulator: Hierarchy Browser tab 
 Schematic Editor: Options tab 
 Timing Analyzer: Timing Objects tab 

The following types of processes are 
available as you work on your design: 

 Tasks 
When you run a task process, the 

ISE software runs in "batch mode," that 
is, the software processes your source 
file but does not open any additional 
software tools in the Workspace.  

 Reports 
Most tasks include report sub-

processes, which generate a summary or 
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status report, .for example, the Synthesis 
Report or Map Report. When you run a 
report process, the report appears in the 
Workspace. 

 Tools 
When you run a tools process, the 

related tool launches in standalone mode 
or appears in the Workspace where you 
can view or modify your design source 
files. . As you work on your design, you 
may make changes that require some or 
all of the processes to be rerun. Project 
Navigator keeps track of the changes 
you make and shows the status of each 
process with the following status icons: 

 Running 
This icon shows that the process is 
running. 

 Up-to-date 
This icon shows that the process ran 

successfully with no errors or warnings 
and does not need to be rerun. If the 
icon is next to a report process, the 
report is up-to-date; however, associated 
tasks may have warnings or errors. If 
this occurs, you can read the report to 
determine the cause of the warnings or 
errors. 

 Warnings reported 
This icon shows that the process ran 

successfully but that warnings were 
encountered. 

 
 Errors reported 

This icon shows that the process ran but 
encountered an error. 

 Out-of-Date 
This icon shows that you made 

design changes, which require that the 
process be rerun. If this icon is next to a 
report process, you can rerun the 
associated task process to create an up-
to-date version of the report. 

 No icon 
If there is no icon, this shows that 

the process was never run. To run a 

process, you can do any of the 
following: 

 Double-click the process 
 Right-click while positioned over the 

process, and select Run from the popup 
menu, as shown in the following fig 6.3 

 
Fig 6.2.2 Running process 

Select the process, and then click the Run 
toolbar button. 
 To run the Implement Design process 

and all preceding processes on the top 
module for the design, select Process 
>Implement Top Module, or click the 
Implement Top Module toolbar button . 
  

When you run a process, Project Navigator 
automatically processes your design as 
follows: 
 Automatically runs lower-level processes 
 When you run a high-level process, 

Project Navigator runs associated lower-
level processes or sub-processes. For 
example, if you run Implement Design for 
your FPGA design, all of the following 
sub-processes run: Translate Map, and 
Place & Route. 

 Automatically runs preceding processes 
 When you run a process, Project 

Navigator runs any preceding processes 
that are required, thereby "pulling" your 
design through the design flow. For 
example, to pull your design through the 
entire flow, double-click Generate 
Programming File. 

 
Fig 6.2.3 Selecting properties 
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When you enable the advanced 
properties, both standard and advanced 
properties appear in the Process Properties 
dialog box. 
 Float 
 Dock 
Depending on the source file and tool you 
are working with, additional tabs are 
available in the Transcript window: 
 Always available : Console tab, Errors 

tab, Warnings tab, Tcl Shell tab, Find in 
Files tab 

 ISE Simulator : Simulation Console tab  
 RTL and Technology Viewers : View 

by Name tab, View by Category tab 
Toolbars provide convenient access to 
frequently used commands. Click once 
on a toolbar button to execute a 
command.  
 

Creating a Project 
With your project open in Project 
Navigator, you can view and run processes 
on all the files in your design. Project 
Navigator provides a wizard to help you 
create a new project, as follows. 
1. Select File > New Project. 
2. In the New Project Wizard Create New 
Project page, do the following: 
a. In the Project Name field, enter a name 
for the project. Follow the naming 
conventions described in File Naming 
Conventions. 
b. In the Project Location field, enter the 
directory name or browse to the directory. 
c. In the Top-Level Source Type drop-down 
list, select one of the following 
HDL 

Select this option if your top-level 
design file is a VHDL, Verilog, or ABEL 
(for CPLDs) file. An HDL Project can 
include lower-level modules of different file 
types, such as other HDL files, schematics, 
and "black boxes," such as IP cores and 
EDIF files. 
 Schematic 

Select this option if your top-level 
design file is a schematic file. A schematic 
project can include lower-level modules of 
different file types, such as HDL files, other 
schematics, and "black boxes," such as IP 
cores and EDIF files. Project Navigator 
automatically converts any schematic files 
in your design to structural HDL before 
implementation; therefore, you must specify 
a synthesis tool when working with 
schematic projects. 
EDIF 

Select this option if you converted your 
design to this file type, for example, using a 
synthesis tool. Using this file type allows yo 
to skip the Project Navigator synthesis 
process and to start with the implementation 
processes. 
 NGC/NGO 

Select this option if you converted your 
design to this file type, for example, using a 
synthesis tool. Using this file type allows 
you to skip the Project Navigator synthesis 
process and start with the implementation 
processes. 
3. Click Next. 
4. If you are creating an HDL or schematic 
project, skip to the next step. If you are 
creating an EDIF or NGC/NGO project, do 
the following in the Import EDIF/NGC 
Project page: 
a. In the Input Design field, enter the name 
of the input design file, or browse to the 
file and select it. 
b .Select Copy the input design to the 
project directory to copy your file to the 
project directory. If you do not select this 
option, your file is accessed from the remote 
location. 
c. In the Constraint File field, enter the 
name of the constraints file, or browse to the 
file and select it. 
d. Select Copy the constraints file to the 
project directory to copy your file to the 
project directory. If you do not select this 
option, your file is accessed from the remote 
location. 



  International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 06 Issue 13 
December 2019 

  
 

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 40  
 

e. Click Next. 
Simulator 

Select one of the following simulators 
and the HDL language for simulation. 
 ISE Simulator (Xilinx.) 

This simulator allows you to run 
integrated simulation processes as part of 
your ISE design flow. For more 
information, see the ISE Simulator Help. 
 ModelSim (Mentor Graphics.) 

You can run integrated simulation 
processes as part of your ISE design flow 
using any of the following ModelSim 
editions: ModelSim Xilinx Edition (MXE), 
ModelSim MXE Starter, ModelSim PE, or 
ModelSim SE 
 NC-Sim (Cadence.) 

The NC-Sim simulator is not integrated 
with ISE and must be run standalone. For 
more information, see the documentation 
provided with the simulator. 
Preferred Language 
 The Preferred Language project 
property controls the default setting for 
process properties that generate HDL 
output. If both the Synthesis Tool and 
Simulator options are set to mixed-language 
(VHDL/Verilog) tools, you can use the 
Preferred Language property to select the 
language in which generated HDL output 
will be created. 
 Verilog 

Select this option if both Synthesis Tool 
and Simulation are set to mixed language 
and you want the default language to be 
Verilog. 
 VHDL 

Select this option if both Synthesis Tool 
and Simulation are set to mixed language 
and you want the default language to be 
VHDL. 
 N/A 

This option will appear if both Synthesis 
Tool and Simulation are set to a single 
language. 
Enable Enhanced Design Summary 

 Select this option to show the 
number of errors and warnings for each of 
the Detailed Reports in the Design 
Summary. 
6. If you are creating an EDIF or 
NGC/NGO project, skip to step 8. If you are 
creating an HDL or schematic project, 
7. Click Next, and optionally, add existing 
source files to your project in the Add 
Existing Sources page. 
8. Click Next to display the Project 
Summary page. 
9. Click Finish to create the project. 
You can perform any of the following: 
 Create and add source files to your 

project. 
 Add existing source files to your project. 
 Run processes on your source files 

Creating a Source File 
        A source file is any file that contains 
information about a design. Project 
Navigator provides a wizard to help you 
create new source files for your project. 
Open a project in Project Navigator. 
To Create a Source File 
1. Select Project > New Source. 
2. In the New Source Wizard, select the 
type of source you want to create. 
Different source types are available 
depending on your project properties (top-
level module type, device type, synthesis 
tool, and language).  
3. Enter a name for the new source file in 
the File Name field. Follow the naming 
conventions described in File Naming 
Conventions. 
4. In the Location field, enter the directory 
name or browse to the directory. 
5. Select Add to Project to automatically 
add this source to the project. 
6. Click Next. 
7. If you are creating a source file that needs 
to be associated with an existing source file, 
select the appropriate source file, and click 
Next. If this does not apply, skip to the next 
step. 
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8. In the New Source Wizard - Summary 
window, verify the information for the new 
source, and click Finish. 
Adding a Source File to a Project: 
             Project Navigator allows you to add 
an existing source file to a project. The 
source file can reside in the project directory 
or in a remote directory. If you generated 
your source file using the New Source 
wizard and selected Add to Project, you do 
not need to add the source file to your 
project; it is automatically part of your 
project. 

FPGA Design Flow Overview: 
            The ISE design flow comprises the 
following steps: design entry, design 
synthesis, design implementation, and 
Xilinx device programming.  

This section describes what to do 
during each step. For additional details on 
each design step, click a box in the 
following fig 6.6 

 
Fig 6.6 FPGA design flow 

 
Create an ISE project as follows: 
1. Create a project. 
2. Create files and add them to your project, 

including a user constraints (UCF) file. 
3. Add any existing files to your project. 
4. Assign constraints such as timing 

constraints, pin assignments, and area 
constraints. 

Synthesize your design. 
Implement your design as follows: 
1. Implement your design, which includes 
the following steps: 
 Translate 
 Map 

 Place and Route 
2. Review reports generated by the 
Implement Design process, such as the Map 
Report or Place & Route Report, and 
change any of the following to improve 
your design: 
 Process properties 
 Constraints 
 Source files 
3. Synthesize and implement your design 
again until design requirements are met. 
You can verify the timing of your design at 
different points in the design flow as 
follows: 
 Run static timing analysis at the 

following points in the design flow: 
 After Map 
 After Place & Route 
 Run timing simulation at the following 

points in the design flow: 
 After Map (for a partial timing analysis 

of CLB and IOB delays) 
 After Place and Route (for full timing 

analysis of block and net delays) 
Program your Xilinx device as follows: 
1. Create a programming file (BIT) to 

program your FPGA. 
2. Generate a PROM, ACE, or JTAG file 

for debugging or to download to your 
device. 

3. Use IMPACT to program the device with 
a programming cable. 

FPGA Basic Flow: 
 With designs of low to moderate 
complexity, you can process your design 
using the ISE™ Basic Flow as follows: 
1. Create an ISE project as follows: 
a. Create a project. 
b. Create files and add them to your project, 
including a user constraints (UCF) file. 
c. Add any existing files to your project. 
d. Edit the design files to specify design 
functionality. 
e. Optionally, use the Language Templates 
to assist in coding of the design. 
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f. Edit the design test bench or waveform 
files to drive stimulus for testing the design 
files. Optionally, do the following:     
 Use the Test Bench Waveform Editor to 

specify stimulus for the design. 
 Use the Language Templates to assist in 

coding of the test bench. 
g. Assign constraints such as timing 
constraints, pin assignments, and area 
constraints. 
2. Run behavioral simulation (also known as 
RTL simulation). 
3. Repeat steps 1 and 2 until desired 
functionality is achieved. 
4. Synthesize your design. 
5. Implement your design as follows: 
Run timing simulation to verify end 
functionality and timing of the design. 
Program your Xilinx® device as follows: 
c. Create a programming file (BIT) to 

program your FPGA. 
d. Generate a PROM, ACE, or JTAG file 

for debugging or to download to your 
device. 
e. Program the device with a programming 

cable 
FPGA IMPLEMENTATION 
Introduction to FPGA 

FPGA contains a two-dimensional 
arrays of logic blocks and interconnections 
between logic blocks. Both the logic blocks 
and interconnects are programmable.Now, 
to get our desired design (CPU), all the sub 
functions implemented in logic blocks must 
be connected and this is done by 
programming the internal structure of an 
FPGA which is depicted in the following 
figure 7.1. 

 
Figure 7.1: FPGA interconnections 

FPGAs, alternative to the custom 
ICs, can be used to implement an entire 
System On one Chip (SOC). The main 

advantage of FPGA is ability to reprogram. 
User can reprogram an FPGA to implement 
a design and this is done after the FPGA is 
manufactured.  

 
Figure 7.1.2 shows a 4-input LUT 

based implementation of logic block 
LUT based design provides for 

better logic block utilization. A k-input LUT 
based logic block can be implemented in 
number of different ways with tradeoff 
between performance and logic density.  
Interconnects 

A wire segment can be described as 
two end points of an interconnection with 
no programmable switch between them.  
FPGA DESIGN FLOW 

In this part of tutorial we are going 
to have a short intro on FPGA design flow. 
A simplified version of design flow is given 
in the flowing diagram. 

 
Figure 7.2 FPGA Design Flow 

 Design Entry 
If the designer wants to deal more 

with Hardware, then Schematic entry is the 
better choice. When the design is complex 
or the designer thinks the design in an 
algorithmic way then HDL is the better 
choice. Language based entry is faster but 
lag in performance and density. 
 Synthesis 
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Figure 7.2.2 FPGA Synthesis 
The process that translates VHDL/ 

Verilog code into a device netlist format i.e. 
a complete circuit with logical elements 
(gates flip flop, etc…) for the design. The 
resulting netlist(s) is saved to an NGC 
(Native Generic Circuit) file (for Xilinx® 
Synthesis Technology (XST)). 
Implementation 

This process consists of a sequence of 
three steps  
 Translate 
 Map 
 Place and Route 
Translate: 

Process combines all the input 
netlists and constraints to a logic design file. 
This information is saved as a NGD (Native 
Generic Database) file. This can be done 
using NGD Build program.  

 
Figure 7.2.3 FPGA Translate 

Map:  
 Process divides the whole circuit 

with logical elements into sub blocks such 
that they can be fit into the FPGA logic 
blocks. That means map process fits the 
logic defined by the NGD file into the 
targeted FPGA elements (Combinational 
Logic Blocks (CLB), Input Output Blocks 
(IOB)) and generates an NCD (Native 
Circuit Description) file which physically 
represents the design mapped to the 
components of FPGA. MAP program is 
used for this purpose. 

 
Figure 7.2.3.2 FPGA map 

Place and Route: 
PAR program is used for this 

process. The place and route process places 
the sub blocks from the map process into 
logic blocks according to the constraints and 
connects the logic blocks. The PAR tool 
takes the mapped NCD file as input and 
produces a completely routed NCD file as 
output.  

 
Figure 7.2.3.3 FPGA Place and route 

Schematic Diagrams 
To investigate the advantages of 

using our technique in terms of area 
overhead against “Fully ECC” and against 
the partially protection, we implemented 
and synthesized for a Xilinx XC3S500E 
different versions of a 32-bit, 32-entry, dual 
read ports, single write port register file. 
Once the functional verification is done, the 
RTL model is taken to the synthesis process 
using the Xilinx ISE tool.  
RTL Schematic 
 The RTL (Register Transfer Logic) 
can be viewed as black box after synthesize 
of design is made. It shows the inputs and 
outputs of the system. By double-clicking 
on the diagram we can see gates, flip-flops 
and MUX. 
The corresponding schematics of the adders 
after synthesis is shown below. 

 
Figure 7.3.1: Top-level of Ripple-Carry 

Adder 
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Figure 7.3.2 : Internal block of Ripple-

Carry Adder 

 
Figure 7.3.3 : Internal block of above 

figure 

 
Figure 7.3.4: Internal block of cout 

 
Figure 7.3.5: Area occupied by Ripple-

Carry Adder 

 
Figure 7.3.6: Top-level of Carry-Select 

Adder 

 
Figure 7.3.7 : Internal block of Carry-

Select Adder 

 
Figure 7.3.8 : Instance of the above block 

 
Figure 7.3.9 : Area occupied by Carry-

Select Adder 

 
Figure 7.3.10 : Top-level of Carry-Skip 

Adder 

 
Figure 7.3.11 : internal block of Carry-

Skip Adder 

 
Figure 7.3.12 : Area occupied by 16-bit 

Carry-Skip Adder 

 
Figure 7.3.13 : Top level of Black Cell 
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Figure 7.3.14 : Internal block of Black 

Cell 

 
Figure 7.3.15 : Top level of Gray Cell 

 
Figure 7.3.16 : Internal block of Gray 

Cell 

 
Figure 7.3.16 : Top-level of Kogge-Stone 

Adder 

 
Figure 7.3.17 : Internal block of Kogge-

Stone Adder 

 
Figure 7.3.18 : Instance of the above 

block 

 
Figure 7..3.19 : Area occupied by 16-bit 

Kogge-Stone Adder 

 
Figure 7.3.20 : Top-level of Sparse 

Kogge-Stone Adder 

 
Figure 7.3.21 : Internal block  of Sparse 

Kogge-Stone Adder 

 
Figure 7.3.22 : Area occupied by 16-bit 

Sparse Kogge-Stone Adder 

 
Figure 7.3.23 : Top-level of Spanning 

Tree Adder 

 
Figure 7.3.24: Internal block of Spanning 

Tree Adder 

 
Figure 7.3.25 : Area occupied by 16-bit 

Spanning Tree Adder 
Synthesis Result 
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This device utilization includes the 
following. 
 Logic Utilization 
 Logic Distribution 
 Total Gate count for the Design 

The device utilization summery is 
shown above in which its gives the details 
of number of devices used from the 
available devices and also represented in %. 
Hence as the result of the synthesis process, 
the device utilization in the used device and 
package is shown below. 
Table 7-4-1: Synthesis report of Ripple-

Carry Adder 

 
Table 7-4-2: Synthesis report of Carry-

Select Adder 

 
Table 7-4-3: Synthesis report of Carry-

Skip Adder 

 
Table 7-4-4: Synthesis report of Kogge-

Stone Adder 

 
Table 7-4-5: Synthesis report of Sparse 

Kogge-Stone Adder 

 
Table 7-4-6: Synthesis report of Spanning 

Tree Adder 

 
 
SIMULATION RESULTS 
8.1 SIMULATION RESULTS 

The Simulation Inputs are Taken A 
has 16 bits taken as 0011001100110011 and 
B has 16 bits taken as 0011001100110011 
and Carry input is taken as 0 then All 
Adders Simulation Results are Shown in the 
below figures. 
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8.1.1 Brent – Kung Adder 

 
Figure 8.1.1 : Brent – Kung Adder 

8.1.2 Kogge Stone Adder  

 
Figure 8.1.2 : Kogge Stone Adder 

8.1.3 Ladner – Fischer Adder 

 
Figure 8.1.3 : Ladner – Fischer Adder 

8.1.4 Sklansky Adder 

 
Figure 8.1.4 : Sklansky Adder 

CONCLUSION AND FUTURE SCOPE 
Both measured and simulation 

results from this study have shown that 
parallel-prefix adders are not as effective as 
the simple ripple-carry adder at low to 
moderate bit widths. This is not unexpected 
as the Xilinx FPGA has a fast carry chain 
which optimizes the performance of the 
ripple carry adder. However, contrary to 
other studies, we have indications that the 
carry-tree adders eventually surpass the 
performance of the linear adder designs at 

high bit-widths, expected to be in the 128 to 
256 bit range. This is important for large 
adders used in precision arithmetic and 
cryptographic applications where the 
addition of numbers on the order of a 
thousand bits is not uncommon. Because the 
adder is often the critical element which 
determines to a large part the cycle time and 
power dissipation for many digital signal 
processing and cryptographical 
implementations, it would be worthwhile 
for future FPGA designs to include an 
optimized carry path to enable tree based 
adder designs to be optimized for place and 
routing.  

This would improve their 
performance similar to what is found for the 
RCA. We plan to explore possible FPGA 
architectures that could implement a “fast-
tree chain” and investigate the possible 
trade-offs involved. The built-in redundancy 
of the Kogge-Stone carry-tree structure and 
its implications for fault tolerance in FPGA 
designs is being studied.  
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