
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 256

Area And Power Efficient Mac Unit

Kottapalli Nageswari1, S . Mahaboob Basha2

1P.G. Scholar, 2Head of the Department
1,2 Branch:ECE (VLSI)

1,2 Geethanjali College of Engineering and Technology, Nannur
Email Id:1,2 nageswarinandu1995@gmail.com

ABSTRACT

In the field of semiconductor design
industry which, in the contemporary times,
has observed exceptional, explosive and
exhilarating growth in the development of
portable communication devices like mobile
phones, IPADS and note books. These real
time processing systems perform high
computational operations, mainly in the
form of butterfly and Multiply Accumulate
(MAC). However, these systems are
expected to consume high power and are
characterized by high data throughput rate.
Of the two, MAC is a major component
used in portable applications and
communication sectors like Wireless Code
Division Multiple Access (WCDMA), base
station receivers, Successive Interference
Canceller (SIC), Orthogonal Frequency
Division Multiplexing (OFDM) based
wireless devices, channel estimators and
carrier synchronizers. In general the MAC
block resides in the critical path, which
governs the complete power and speed of
the system. The efficient utilization of MAC
in terms of speed and power depends upon
the type of architecture, logic technology
style, the fundamental block and primitive
cell realization. This study vividly presents
the bird eye view on the hitherto work
concerning the existing MAC unit in terms
of its power performance factors, which
helps the future researcher for opting
suitable MAC block which can be used in
Field Programmable Gate Array (FPGA)
and Application Specific Integrated Circuit

(ASIC) for signal processing applications.
The comparative analysis is based on
architecture/size, number of clock cycles,
Partial Product Reduction Tree (PPRT),
functional module, power saving method,
logic technology, fabrication process and
speed-voltage performance.

Keywords: Multiplier-and-Accumulator
(MAC), Modified Gate Diffusion Input
Technique (MGDI), Power consumption,
Digital Signal Processor (DSP)

INTRODUCTION
Overview

MAC unit is an inevitable
component in many digital signal
processing (DSP) applications involving
multiplications and/or accumulations. MAC
unit is used for high performance digital
signal processing systems. The DSP
applications include filtering, convolution,
and inner products. Most of digital signal
processing methods use nonlinear functions
such as discrete cosine transform (DCT) or
discrete wavelet transforms (DWT).
Because they are basically accomplished by
repetitive application of multiplication and
addition, the speed of the multiplication and
addition arithmetic determines the execution
speed and performance of the entire
calculation. Multiplication-and-accumulate
operations are typical for digital filters.
Therefore, the functionality of the MAC
unit enables high-speed filtering and other
processing typical for DSP applications.
Since the MAC unit operates completely

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 257

independent of the CPU, it can process data
separately and thereby reduce CPU load.
The application like optical communication
systems which is based on DSP , require
extremely fast processing of huge amount of
digital data. The Fast Fourier Transform
(FFT) also requires addition and
multiplication. 64 bit can handle larger bits
and have more memory.

A MAC unit consists of a multiplier
and an accumulator containing the sum of
the previous successive products. The MAC
inputs are obtained from the memory
location and given to the multiplier block.
The design consists of 64 bit modified
Wallace multiplier, 128 bit carry save adder
and a register.

A design of high performance 64 bit
Multiplier-and-Accumulator (MAC) is
implemented in this paper. MAC unit
performs important operation in many of
the digital signal processing (DSP)
applications. The multiplier is designed
using modified Wallace multiplier and the
adder is done with carry save adder. The
total design is coded with verilog-HDL and
the synthesis is done using Cadence RTL
complier using typical libraries of TSMC
0.18um technology. The total MAC unit
operates at 217 MHz. The total power
dissipation is 177.732 mW.

The goal of this project is to design
and implement a MAC unit and an
Arithmetic Logic Unit (ALU). The MAC
unit is a 16x16-bit 2's complement
multiplier with a 40-bit accumulator.The
ALU performs 16-bit arithmetic and
includes saturating addition/subtraction
logic. The imple-mentation includes a full
custom layout and veri_cation of all cell
necessary to complete the units.

 We perform all our simulations for
the TSMC 0.18 _m process, and the chip
that uses these units will be fabricated. The
priorities of this project, in order of

importance, are:Robust and safe
circuits.Design timeArea/speed balance.
The most important priority during this
project is to ensure that it works. Thus, the
circuits must be robust and safe, and we
must choose designs that are largely
immune to noise and generate full rail-to-
rail swing on the outputs. To be safe, all our
circuits are designed with static CMOS,
which means at every point in time, each
gate output is connected to either Vdd or
Gnd [4].
Basically, the archit ecture of MAC is
class ified as p arallel, recurs ive and
shared segment ed st ruct ure. T he
recursive archit ecture incorporates
"divide and conquer" t act ic, where t he
comput at ion of large s iz e dat a is
segment ed into smaller unit s. T he
mult ip ly-accumulat ion is achieved
us ing it erat ive calculat ion of smaller
module through several clock cycles .
The lat ency and throughput of the MAC
dep ends on t he number of mult ipliers
and adders , which are recurs ively
called for each cy cle. In the first cycle,
dat a is fet ched from the int ernal
memory, t he second cycle involves
mult ip licat ion process, during the t hird
cy cle summat ion t akes p lace, while in
the fourth cy cle t he funct ion of
A.B+Acc is performed and finally t he
last output is lat ched within t he int ernal
memory. This approach ut ilizes
minimum hardware by us ing reusability
of resources wit h increased lat ency .
These types of MAC archit ect ures are
dep loy ed in embedded Advanced RISC
(Reduced-Inst ruct ion-Set-Comput ing)
Machine (ARM) core. The p arallel
MAC archit ecture can be const ruct ed
by exp anding t he component of
recursive MAC model. T he comp lexity
of t he st ruct ure increases quadratically
wit h t he number of inputs . For inst ance,
to implement a 32 bit MAC unit
requires 32 bit mult iplier, 64 bit adder
and 128 bit accumulate unit . This type

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 258

of archit ecture support s mode
dep endent logic t o support full and half
precis ion mult iply or MAC op erat ion.
The number of clock cy cles is reduced
by t hree, when compared to recurs ive
architect ure by means of embedding t he
accumulat or module wit hin t he part ial
product summat ion net work. This MAC
architect ure is mostly used in F ield
Programmable Gat e Array (FPGA) of
Xilinx Corporat ion and as coprocessor
for t he LEON2 RISC processor. T he
shared segment ed MAC archit ecture
int egrat es the st ruct ures of sp lit p arallel
unit and recurs ive charact erist ics which
op erat e parallel wit h moderat e
resources support ing mode-dependent
logic. T his kind of architect ure lacks
from t hroughput limit at ions owing t o
compound PPRT . This architect ure is
cap able of supporting full and half
precis ion mult iply or MAC op erat ion.
This MAC operat es for SIMD (Single
Inst ruct ion Multip le Dat a) wit h reduced
clock cycle, when compared t o
recursive MAC and reduced hardware
wit h resp ect t o p arallel MAC. T his type
of archit ecture is used in MIPS
T echnologies (Million Inst ruct ions p er
Second).
1.2 PO WER PERFO RMANCE
FACTO RS O F MAC UNIT
The performance of MAC unit depends
on the following paramet ers :

Power: The three major component s of
power are: Trans ient or dynamic, short
circuit and leakage power. The short
circuit power is owing t o the current
conduct ing p ath between GND and
VDD. T he leakage power is due to t he
reverse bias diode and sub threshold
leakage. These two powers are due t o
the logic style and t echnology , t hrough
which t he MAC is realiz ed. T he
trans ient or dy namic power is due t o
the tot al number of nodes and
cap acitors charged/discharged in a
trans it ion which is exp ressed as
follows:

(3)
where, α tra ns i t ion is the t ot al number of
nodes act ive p er t rans it ion (node
act ivity fact or), Cpd is t he dynamic
power cap acit ors , fc lk is the clock
frequency (Input /output) and VDD is
the supply volt age. So, in the MAC unit
the major p ort ion of p ower is
contribut ed due to t rans ient power t hat
mainly dep ends upon the node act ivity
fact or and dynamic capacitors .
Node act ivity fact or: The node act ivity
fact or represents t he t ot al number of
nodes act ive p er t rans it ion, which is
divided int o two parts , namely, t he
function and paras itic p art. T he

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 259

function (part) swit ching depends on
the type of archit ecture used in t he
des ign, it depends on the logic function
and block such as AND, OR, NAND,
mult ip lier and adder, the s ignal
st at ist ics and t he choice of logic style.
The second part is due to glit ches ,
which is caused due t o s ignal skews
(different input s ignal arrival t ime) and
the s ignal st at ist ics. T he p aras it ic part
in the MAC can be reduced using
balanced delay p ath, gat e s iz ing and
reducing paras it ic capacit ances .
Clock frequency: It is one of t he
s ignificant p arameters p ersuading t he
functional p ower diss ip at ion of MAC
unit. T he power fact or is direct ly
proport ional to clock frequency of t he
MAC unit , t herefore reducing clock
frequency may proport ionally reduce
power, on the other hand, t he MAC
sp eed and throughput s imultaneous ly
reduced. In order t o preserve t he
throughput for reduced clock frequency
parallelism and pip elined archit ecture
have t o be cons idered. The MAC
architect ural power (block level) is
characteriz ed in terms of bits of t he
component (mult ipliers and adders) and
their operat ing frequency which can be
exp ressed as :

(4
)

where, fin and fou t is the input and
output frequency of MAC unit and Δ 1 ,
Δ 2 are t he empirical coefficient s
derived from gat e-level s imulat ion.
Archit ecture selection: Low power
architect ure design becomes imp erat ive
in MAC block. T he archit ecture
select ion typically involves t he
organiz ation of funct ional blocks in
MAC and t he number of pip es involved
in t he comput at ion st age. In
architect ural level, low power can be
achieved through clocking strat egy ,
parallelism, pip elining and component
organiz ation. By deploying p arallelism

the t hroughput and performance of
MAC unit can be improved wit hout
increas ing t he operating frequency .
In recurs ive archit ecture, the resource
ut iliz at ion is minimum, therefore, area
reduct ion is achieved but t he
throughput of the syst em is
cons iderably very low. Due t o t he
smaller bit-siz e, component and
reusability, the dynamic power is
reduced. For parallel MAC t he number
of components will be doubled, when
comp ared to recurs ive MAC
architect ure to achieve high sp eed and
throughput at t he exp ense of increased
chip area twice that of recurs ive MAC.
To reduce the area penalty of p arallel
MAC, split -pipelined MAC archit ecture
is suit able, when t rade-off results wit h
less area overhead but more comp lexity
in controller des ign due t o mult i-mode
op erat ion. When p ipelined struct ures
are implement ed t hen t he propagation
delay is reduced t o half when comp ared
to t he recurs ive MAC. On the other
hand, considerat ion should be t aken for
pip elined MAC to maint ain t he
throughput , when it is op erat ing at
lower voltages .
Logic t echnique: T ill dat e, the majority
of the circuit des igns have been
imp lement ed us ing Complementary
Met al Oxide Semiconduct or (CMOS)
logic style. It is very attract ive due it s
reliable op erat ion at low volt ages . T he
CMOS logic style incorporat es large
PMOS (P-type Met al Oxide
Semiconductor) in circuit realiz at ion.
As a result, t he propagat ion delay is
higher, because of large node
cap acit ances . The power diss ip ation is
very high at high operat ing frequencies
due to increase in t he input loads. From
the lit erature survey it has been
observed that the MAC block has been
imp lement ed us ing st at ic
Complementary Met al Oxide
Semiconductor (CMOS), Clocked-

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 260

transmiss ion Gate Adiabat ic Logic
(CTGAL), Low Volt age Swing
Restoration T echnique (LVST), Pass
Trans ist or Logic (PTL),
Complementary Pass T rans istor Logic
(CPL), mixed st at ic CMOS-CPL and
Swing Restored PT L (SRPL).
The PTL provides improved
performance, when compared t o CMOS
logic due t o less number of trans istors ,
as a result, t he overall paras it ic
cap acit ances is reduced. T he dynamic
power diss ip ation is very minimal due
to fast er swit ching t ime. One of t he
short falls associated with t he PMOS
logic is threshold drop variation. As a
result , the noise margin of t he circuit is
reduced t his in t urn degrades t he
driving capability and leads t o
unreliable op erat ion. The st at ic p ower
diss ipat ion is very high in PTL due t o
threshold drop variat ion. The LVST
logic det ects the input volt ages even,
when it is less t han 100 mV and
performs reliable operation in low
volt ages . The logic st ructure realiz ation
is very complicat ed, wit h t hree level
st ages with t rue and complementary
inp uts, which add on the number of
invert ers in t he des ign, in turn, it
increases the st atic power diss ip at ion of
the circuit and poses moderat e noise
immunity.
The CPL logic required large number of
trans ist ors or gat es to implement s imp le
circuit. Due to large t rans ist or t he short
circuit current is high and wiring
overhead owing t o the dual-rail s ignals .
The SRPL circuit des ign is s imilar t o
LVST with t hree stages support ing true
and comp lement ary inputs, which
different iat e two low inputs and
regenerative op erat ion is est ablished
through sense amplifier. In SRPL, when
proper device scaling is not p rovided
then discharging t he output for 1-0
trans it ion becomes bottleneck and
consequently the output degrades. T he

MAC construct ed us ing SRPL ut ilizes
high trans istor count and fair noise
margin.
Funct ional blocks : T he indisp ensable
component necessary to imp lement t he
MAC blocks are adder and mult iplier
circuits. As ment ioned earlier, t he first
st age of the MAC unit involves t he
generat ion of part ial products , which
can be est ablished through mult iplier
circuits and t he second st age is
accumulat ion of PPG, which can be
accomplished us ing adder circuits .
From t he literature survey , it have been
observed that various mult iplier and
adder circuits like distribut ed
arit hmetic, p arallel, serial-parallel,
comp lement ary (Booth encoding),
Wallace using CSA, row-column
byp ass , modulo diminishing-1 and
wave pip elining mult ipliers. The MAC
architect ure with complement ary boot h
mult ip lier reduces t he generat ion of
number of part ial products . M ajor
bott le neck, when deploying boot h
mult ip lier is hardware comp lexity due
to fundament al components of encoder
and shift regist ers to produce PPG. Due
to high int erconnect the p ower
diss ipat ion is very high in this type of
MAC archit ect ure. While, deploying
Wallace mult ip lier scheme the t ime
comp lexity is reduced by N/2, when
comp ared to array struct ure but
diss ipat es high power due to irregular
int erconnects .
The accumulat ion and PP addit ion in
MAC unit are p erformed us ing, various
adder schemes . T he general struct ures
dep loy ed are Parallel Prefix Adder
(PPA), Ripple Carry Adder (RCA),
Carry Skip Adder (CSkA), Carry
Prop agat e Adder (CPA), Carry Save
Adder (CSA) and Carry Select Adder
(CSelA). T he adder structures deployed
in the final st age of MAC have been
imp lement ed us ing Carry Save Adder
(CSA), Carry Select Adder (CSelA),

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 261

Carry Look Ahead Adder CLAA) and
Parallel Prefix Adder (PPA). T hese
adders however exhibits power
diss ipat ion and delay due t o
int erconnect scheme and dat a
distribut ion.
F igure of merit : T he F igure of Merit
(FOM) is expressed as :

(5)

where, P is the t ot al power of MAC unit
for the given volt age (V) operat ing at a
given frequency and this performance
parameter should be minimum.
Throughput : The throughput of t he
MAC des ign is comput ed wit h resp ect
to t he clock frequency fc lk and lat ency
in various p ipe st ages. T he t hroughp ut
of the MAC can be expressed as

(6
)

In above Eq. 6 t he t erm parallel MAC
denotes the number of MAC unit
dep loy ed to execut e the inst ruct ion,
generally it is expressed as Mega
Op erat ion Per Second (MOPS).
1.3 MAC ARCHITECTURE
The architect ure select ion for MAC unit
generally depends up on t he type of
app licat ions. For embedded
microprocessor or microcont roller
app licat ions t he memory usage is
limit ed and the op erand s iz e is also
small and therefore, recurs ive
architect ure is suit able, when power
and area is important. This recurs ive
MAC unit is dep loy ed in image
process ing applicat ion such as Fast
Fourier Transform (FFT) and digit al
filt ering.
For high p erformance applicat ions like
not epads , laptops and desktops require
large set of dat a comp utat ion t herefore
parallel architect ure will be suit able. T o
perform multi-mode logic dependent
op erat ion, where t he speed and power
const raint is cons idered then shared
segment ed archit ecture is p referable,

which is mainly used in embedded
medical equip ments and in
communicat ion syst ems , such as
Orthogonal Frequency Division
Multip lexing (OFDM) based wireless
devices, subcarrier frequency domain
op erat ions , channel est imat or and
carrier synchronizer. The MA C
architect ure can be implement ed in
ASIC and FPGA. The imp lement ation
of MAC st ruct ure us ing FPGAs will
have limit ed resources and fixed logic
t echnology while in ASIC it is semi-
custom or full custom so t hat
opt imizat ion can be achieved from t he
architect ural level t o t rans ist or level.
Recurs ive MAC: A recursive MAC
proposed by Matsui et al. (1994) use
novel Sense-Amplifying F lip-Flop (SA-
FF) in combination with NMOS (N-
type Met al Oxide Semiconductor)
different ial logic (F ig. 2a). The MAC
unit has been embedded in 2-D DCT
which op erat es at 200 MHz with 350
mW p ower diss ip ation for the supply
volt age of 3.3 V. The macrocell was
fabricat ed us ing 0.8 μm base rule
CMOS t echnology . The SA-FF
t echnique acts as a sense amplifier t o
regenerate low-swing different ial
inp uts. The proposed MAC block
reduces t he prop agat ion t ime and
macrocell s iz e us ing SA-FF t echnique.
The MAC operat ion has been execut ed
us ing the Distribut ed Arithmet ic (DA)
on a bit-by bit dat a. T he int ermediat e
addit ion process has been implement ed
us ing convent ional RCA and Carry
Prop agat ion Adder (CPA). The final
accumulat ion and summat ion network
has been des igned t hrough Carry Skip
Adder (CSkA).
A new Swing Rest ored Pass T rans istor
Logic (SRPL) non-pip elined recurs ive
uns igned MAC has been proposed
by Parameswar et al. (1996) for
mult imedia applicat ions and it was
fabricat ed in double metal 0.4 μm

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 262

CMOS t echnology, which operat es at a
maximum sp eed of 150 MHz
consuming 34 mW with one cycle delay
of 6.7 ns for bit s ize of 16 bit wide. T he
sp eed of the MAC unit has been
imp roved us ing Gate s izing
opt imizat ion approach, where t he
asp ect rat io W/L (Width/Length) of
NMOS trans istors connect ed close t o
the output s ignal was reduced, when
comp ared to NMOS trans ist ors t hat
were far away from the output. Another
imp ort ant speed opt imiz at ion was
achieved by us ing moderat ely scaled
PMOS devices in the swing restoring
net work. T he Partial Product (PP) was
obt ained using Boot h encoding scheme
and the same is added us ing CSAs.

The funct ional block has been
imp lement ed us ing s tat ic CMOS logic.
The final st age of addit ion operation
has been construct ed us ing,
condit ional-sum addit ion t hat
incorp orat es Parallel Prefix Structure
(PPS). T he sy nchroniz at ion of clock

circuit has been implement ed wit h
s ingle rail domino logic.

What is VLSI?
 VLSI stands for "Very Large Scale
Integration". This is the field which
involves packing more and more logic
devices into smaller and smaller areas.
VLSI
 Simply we say Integrated circuit is many
transistors on one chip.
 Design/manufacturing of extremely
small, complex circuitry using modified
semiconductor material
 Integrated circuit (IC) may contain
millions of transistors, each a few mm in
size
 Applications wide ranging: most
electronic logic devices
1. 5.3 History of Scale Integration:
 late 40s Transistor invented at Bell Labs
 late 50s First IC (JK-FF by Jack Kilby at
TI)
 early 60s Small Scale Integration (SSI)
 10s of transistors on a chip
 late 60s Medium Scale
Integration (MSI)
 100s of transistors on a chip
 early 70s Large Scale Integration (LSI)
 1000s of transistor on a chip
 early 80s VLSI 10,000s of transistors on
a
 chip (later 100,000s & now 1,000,000s)
 Ultra LSI is sometimes used for
1,000,000s
 SSI - Small-Scale Integration (0-102)
 MSI - Medium-Scale Integration (102-
103)
 LSI - Large-Scale Integration (103-105)
 VLSI - Very Large-Scale Integration
(105-107)
 ULSI - Ultra Large-Scale Integration
(>=107)
Advantages of ICs over discrete
components:
While we will concentrate on integrated
circuits , the properties of integrated

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 263

circuits-what we can and cannot efficiently
put in an integrated circuit-largely
determine the architecture of the entire
system. Integrated circuits improve system
characteristics in several critical ways. ICs
have three key advantages over digital
circuits built from discrete components:
 Size. Integrated circuits are much

smaller-both transistors and wires are
shrunk to micrometer sizes, compared to
the millimeter or centimeter scales of
discrete components. Small size leads to
advantages in speed and power
consumption, since smaller components
have smaller parasitic resistances,
capacitances, and inductances.

 Speed. Signals can be switched between
logic 0 and logic 1 much quicker within a
chip than they can between chips.
Communication within a chip can occur
hundreds of times faster than
communication between chips on a
printed circuit board. The high speed of
circuits on-chip is due to their small size-
smaller components and wires have
smaller parasitic capacitances to slow
down the signal.

 Power consumption. Logic operations
within a chip also take much less power.
Once again, lower power consumption is
largely due to the small size of circuits
on the chip-smaller parasitic capacitances
and resistances require less power to
drive them.

VLSI and Systems:
These advantages of integrated circuits

translate into advantages at the system
level:

 Smaller physical size. Smallness is often
an advantage in itself-consider portable
televisions or handheld cellular
telephones.

 Lower power consumption. Replacing a
handful of standard parts with a single
chip reduces total power consumption.
Reducing power consumption has a

ripple effect on the rest of the system: a
smaller, cheaper power supply can be
used; since less power consumption
means less heat, a fan may no longer be
necessary; a simpler cabinet with less
shielding for electromagnetic shieldin g
may be feasible, too.

 Reduced cost. Reducing the number of
components, the power supply
requirements, cabinet costs, and so on,
will inevitably reduce system cost. The
ripple effect of integration is such that
the cost of a system built from custom
ICs can be less, even though the
individual ICs cost more than the
standard parts they replace.

Understanding why integrated circuit
technology has such profound influence
on the design of digital systems requires
understanding both the technology of IC
manufacturing and the economics of ICs
and digital systems.

Applications
 Electronic system in cars.
 Digital electronics control VCRs
 Transaction processing system,

ATM
 Personal computers and

Workstations

 Medical electronic systems.
 Etc….
Applications of VLSI:
Electronic systems now perform a wide

variety of tasks in daily life. Electronic
systems in some cases have replaced
mechanisms that operated mechanically,
hydraulically, or by other means ;
electronics are usually smaller, more
flexible, and easier to service. In other
cases electronic systems have created
totally new applications. Electronic
systems perform a variety of tasks, some
of them visible, some more hidden:

 Personal entertainment systems such as
portable MP3 players and DVD players

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 264

perform sophisticated algorithms with
remarkably little energy.

 Electronic systems in cars operate stereo
systems and displays; they also control
fuel injection systems, adjust suspensions
to varying terrain, and perform the
control functions required for anti-lock
braking (ABS) systems.

 Digital electronics compress and
decompress video, even at high-
definition data rates, on-the-fly in
consumer electronics.

 Low-cost terminals for Web browsing
still require sophisticated electronics,
despite their dedicated function.

 Personal computers and workstations
provide word-processing, financial
analysis, and games. Computers include
both central processing units (CPUs) and
special-purpose hardware for disk access,
faster screen display, etc.

 Medical electronic systems measure

bodily functions and perform complex
processing algorithms to warn about
unusual conditions. The availability of
these complex systems, far from
overwhelming consumers, only creates
demand for even more complex systems.

The growing sophistication of applications
continually pushes the design and
manufacturing of integrated circuits and
electronic systems to new levels of
complexity. And perhaps the most amazing
characteristic of this collection of systems is
its variety-as systems become more
complex, we build not a few general-
purpose computers but an ever wider range
of special-purpose systems. Our ability to
do so is a testament to our growing mastery
of both integrated circuit manufacturing and
design, but the increasing demands of
customers continue to test the limits of
design and manufacturing

1.1.1. 5.7 ASIC:
An Application-Specific Integrated Circuit
(ASIC) is an integrated circuit (IC)
customized for a particular use, rather than
intended for general-purpose use. For
example, a chip designed solely to run a cell
phone is an ASIC. Intermediate between
ASICs and industry standard integrated
circuits, like the 7400 or the 4000 series, are
application specific standard products
(ASSPs).
As feature sizes have shrunk and design
tools improved over the years, the
maximum complexity (and hence
functionality) possible in an ASIC has
grown from 5,000 gates to over 100 million.
Modern ASICs often include entire 32-bit
processors, memory blocks including ROM,
RAM, EEPROM, Flash and other large
building blocks. Such an ASIC is often
termed a SoC (system-on-a-chip). Designers
of digital ASICs use a hardware description
language (HDL), such as Verilog or VHDL,
to describe the functionality of ASICs.
Field-programmable gate arrays (FPGA) are
the modern-day technology for building a
breadboard or prototype from standard
parts; programmable logic blocks and
programmable interconnects allow the same
FPGA to be used in many different
applications. For smaller designs and/or
lower production volumes, FPGAs may be
more cost effective than an ASIC des ign
even in production.
 An application-specific integrated
circuit (ASIC) is an integrated circuit (IC)
customized for a particular use, rather than
intended for general-purpose use.
 A Structured ASIC falls between an
FPGA and a Standard Cell-based ASIC
 Structured ASIC’s are used mainly for
mid-volume level design. The design task
for structured ASIC’s is to map the circuit
into a fixed arrangement of known cells.
INTRODUCTION TO XILINX

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 265

Migrating Projects from Previous ISE
Software Releases:
When you open a project file from a
previous release, the ISE® software
prompts you to migrate your project. If you
click Backup and Migrate or Migrate Only,
the software automatically converts your
project file to the current release. If you
click Cancel, the software does not convert
your project and, instead, opens Project
Navigator with no project loaded.
Note: After you convert your project, you
cannot open it in previous versions of the
ISE software, such as the ISE 11 software.
However, you can optionally create a
backup of the original project as part of
project migration, as described below.

To Migrate a Project

1. In the ISE 12 Project Navigator, select
File > Open Project.

2. In the Open Project dialog box, select
the .xise file to migrate.

Note : You may need to change the
extension in the Files of type field to
display .npl (ISE 5 and ISE 6 software) or
.ise (ISE 7 through ISE 10 software)
project files.
3. In the dialog box that appears, select

Backup and Migrate or Migrate Only.
4. The ISE software automatically converts

your project to an ISE 12 project.
Note : If you chose to Backup and Migrate,
a backup of the original project is created at
project_name_ise12migration.zip.
5. Implement the design using the new
version of the software.

Note : Implementation status is not
maintained after migration.

Properties:

For information on properties that have
changed in the ISE 12 software, see ISE 11
to ISE 12 Properties Conversion.

6.3 IP Modules:

If your design includes IP modules that
were created using CORE Generator™
software or Xilinx® Platform Studio (XPS)
and you need to modify these modules, you
may be required to update the core.
However, if the core netlist is present and
you do not need to modify the core,
updates are not required and the existing
netlist is used during implementation.

6.4 Obsolete Source File Types:

The ISE 12 software supports all of the
source types that were supported in the
ISE 11 software.

If you are working with projects from
previous releases, state diagram source files
(.dia), ABEL source files (.abl), and test
bench waveform source files (.tbw) are no
longer supported. For state diagram and
ABEL source files, the software finds an
associated HDL file and adds it to the
project, if possible. For test bench
waveform files, the software automatically
converts the TBW file to an HDL test bench
and adds it to the project. To convert a
TBW file after project migration, see
Converting a TBW File to an HDL Test
Bench
6.5 Using ISE Example Projects:
To help familiarize you with the ISE®
software and with FPGA and CPLD
designs, a set of example designs is
provided with Project Navigator. The
examples show different design techniques
and source types, such as VHDL, Verilog,
schematic, or EDIF, and include different
constraints and IP.

To Open an Example

1. Select File > Open Example.
2. In the Open Example dialog box,
select the Sample Project Name.
Note To help you choose an example
project, the Project Description field
describes each project. In addition, you can
scroll to the right to see additional fields,
which provide details about the project.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 266

3. In the Destination Directory field,
enter a directory name or browse to the
directory.
4. Click OK.

The example project is extracted to the
directory you specified in the Destination
Directory field and is automatically opened
in Project Navigator. You can then run
processes on the example project and save
any changes.
Note : If you modified an example project
and want to overwrite it with the original
example project, select File > Open
Example, select the Sample Project Name,
and specify the same Destination Directory
you originally used. In the dialog box that
appears, select Overwrite the existing
project and click OK.
6.6 Creating a Project:
Project Navigator allows you to manage
your FPGA and CPLD designs using an
ISE® project, which contains all the source
files and settings specific to your design.
First, you must create a project and then,
add source files, and set process properties.
After you create a project, you can run
processes to implement, constrain, and
analyze your design. Project Navigator
provides a wizard to help you create a
project as follows.
Note : If you prefer, you can create a
project using the New Project dialog box
instead of the New Project Wizard. To use
the New Project dialog box, deselect the
Use New Project wizard option in the ISE
General page of the Preferences dialog
box.

To Create a Project

1. Select File > New Project to launch the
New Project Wizard.

2. In the Create New Project page, set the
name, location, and project type, and
click Next.

3. For EDIF or NGC/NGO projects only:
In the Import EDIF/NGC Project

page, select the input and constraint file
for the project, and click Next.

4. In the Project Settings page, set the
device and project properties, and click
Next.

5. In the Project Summary page, review
the information, and click Finish to
create the project

Project Navigator creates the project file

(project_name.xise) in the directory you
specified. After you add source files to
the project, the files appear in the
Hierarchy pane of the

6.7 Design panel:
Project Navigator manages your project
based on the design properties (top-level
module type, device type, synthesis tool,
and language) you selected when you
created the project. It organizes all the parts
of your design and keeps track of the
processes necessary to move the design
from design entry through implementation
to programming the targeted Xilinx®
device.
Note For information on changing design
properties, see Changing Design
Properties.
You can now perform any of the following:

 Create new source files for your project.
 Add existing source files to your project.

Run processes on your source files.
Modify process properties.

6.8 Creating a Copy of a Project:
You can create a copy of a project to
experiment with different source options
and implementations. Depending on your
needs, the design source files for the copied
project and their location can vary as
follows:

 Design source files are left in their
existing location, and the copied project
points to these files.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 267

 Design source files, including generated
files, are copied and placed in a
specified directory.

 Design source files, excluding generated
files, are copied and placed in a
specified directory.

Copied projects are the same as other
projects in both form and function. For
example, you can do the following with
copied projects:

 Open the copied project using the File >
Open Project menu command.

 View, modify, and implement the
copied project.

 Use the Project Browser to view key
summary data for the copied project and
then, open the copied project for further
analysis and implementation, as
described in

Using the Project Browser:
 Alternatively, you can create an archive of

your project, which puts all of the
project contents into a ZIP file.
Archived projects must be unzipped
before being opened in Project
Navigator. For information on
archiving, see Creating a Project
Archive.

To Create a Copy of a Project

1. Select File > Copy Project.
2. In the Copy Project dialog box, enter the

Name for the copy.
Note The name for the copy can be the

same as the name for the project, as long
as you specify a different location.

3. Enter a directory Location to store the
copied project.

4. Optionally, enter a Working directory.
By default, this is blank, and the working

directory is the same as the project
directory. However, you can specify a
working directory if you want to keep
your ISE® project file (.xise extension)
separate from your working area.

5. Optionally, enter a Description for the
copy.

The description can be useful in identifying
key traits of the project for reference
later.

6. In the Source options area, do the
following:

Select one of the following options:
 Keep sources in their current locations

- to leave the design source files in their
existing location.

If you select this option, the copied project
points to the files in their existing
location. If you edit the files in the
copied project, the changes also appear in
the original project, because the source
files are shared between the two projects.

 Copy sources to the new location - to
make a copy of all the design source files
and place them in the specified Location
directory.

If you select this option, the copied project
points to the files in the specified
directory. If you edit the files in the
copied project, the changes do not appear
in the original project, because the source
files are not shared between the two
projects.

Optionally, select Copy files from Macro
Search Path directories to copy files
from the directories you specify in the
Macro Search Path property in the
Translate Properties dialog box. All
files from the specified directories are
copied, not just the files used by the
design.

Note: If you added a net list source file
directly to the project as described in
Working with Net list-Based IP, the
file is automatically copied as part of
Copy Project because it is a project
source file. Adding net list source files to
the project is the preferred method for
incorporating net list modules into your
design, because the files are managed
automatically by Project Navigator.

Optionally, click Copy Additional Files to
copy files that were not included in the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 268

original project. In the Copy Additional
Files dialog box, use the Add Files and
Remove Files buttons to update the list
of additional files to copy. Additional
files are copied to the copied project
location after all other files are copied.To
exclude generated files from the copy,
such as implementation results and
reports, select

 6.10 Exclude generated files from the
copy:

When you select this option, the copied
project opens in a state in which
processes have not yet been run.

7. To automatically open the copy
after creating it, select Open the copied
project.

Note By default, this option is disabled. If
you leave this option disabled, the
original project remains open after the
copy is made.

Click OK.
6.11 Creating a Project Archive:
A project archive is a single, compressed

ZIP file with a .zip extension. By default,
it contains all project files, source files,
and generated files, including the
following:

 User-added sources and associated
files

 Remote sources
 Verilog `include files
 Files in the macro search path
 Generated files
 Non-project files

 To Archive a Project:

1. Select Project > Archive.
2. In the Project Archive dialog box,

specify a file name and directory for the
ZIP file.

3. Optionally, select Exclude generated
files from the archive to exclude
generated files and non-project files
from the archive.

4. Click OK.

A ZIP file is created in the specified
directory. To open the archived project,
you must first unzip the ZIP file, and
then, you can open the project.

Note Sources that reside outside of the
project directory are copied into a
remote_sources subdirectory in the project
archive. When the archive is unzipped and
opened, you must either specify the location
of these files in the remote_sources
subdirectory for the unzipped project, or
manually copy the sources into their
original location.
INTRODUCTION TO VERILOG
In the semiconductor and electronic
design industry, Verilog is a hardware
description language(HDL) used to
model electronic systems. Verilog HDL, not
to be confused with VHDL (a competing
language), is most commonly used in the
design, verification, and implementation
ofdigital logic chips at the register-transfer
level of abstraction. It is also used in the
verification ofanalog and mixed-signal
circuits.

Overview
Hardware description languages such as
Verilog differ from software programming
languages because they include ways of
describing the propagation of time and
signal dependencies (sensitivity). There are
two assignment operators, a blocking
assignment (=), and a non-blocking (<=)
assignment. The non-blocking assignment
allows designers to describe a state-machine
update without needing to declare and use
temporary storage variables (in any general
programming language we need to define
some temporary storage spaces for the
operands to be operated on subsequently;
those are temporary storage variables).
Since these concepts are part of Verilog's
language semantics, designers could quickly
write descriptions of large circuits in a
relatively compact and concise form. At the
time of Verilog's introduction (1984),
Verilog represented a tremendous

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 269

productivity improvement for circuit
designers who were already using
graphical schematic capturesoftware and
specially-written software programs to
document and simulate electronic circuits.
The designers of Verilog wanted a language
with syntax similar to the C programming
language, which was already widely used in
engineering software development. Verilog
is case-sensitive, has a
basic preprocessor (though less
sophisticated than that of ANSI C/C++),
and equivalent control
flow keywords (if/else, for, while, case,
etc.), and compatible operator precedence.
Syntactic differences include variable
declaration (Verilog requires bit-widths on
net/reg types[clarification needed]), demarcation of
procedural blocks (begin/end instead of
curly braces {}), and many other minor
differences.
A Verilog design consists of a hierarchy of
modules. Modules encapsulate design
hierarchy, and communicate with other
modules through a set of declared input,
output, and bidirectional ports. Internally, a
module can contain any combination of the
following: net/variable declarations (wire,
reg, integer, etc.), concurrent and sequential
statement blocks, and instances of other
modules (sub-hierarchies). Sequential
statements are placed inside a begin/end
block and executed in sequential order
within the block. But the blocks themselves
are executed concurrently, qualifying
Verilog as a dataflow language.
Verilog's concept of 'wire' consists of both
signal values (4-state: "1, 0, floating,
undefined") and strengths (strong, weak,
etc.). This system allows abstract modeling
of shared signal lines, where multiple
sources drive a common net. When a wire
has multiple drivers, the wire's (readable)
value is resolved by a function of the source
drivers and their strengths.

A subset of statements in the Verilog
language is synthesizable. Verilog modules

that conform to a synthesizable coding style,
known as RTL (register-transfer level), can
be physically realized by synthesis software.
Synthesis software algorithmically
transforms the (abstract) Verilog source into
a net list, a logically equivalent description
consisting only of elementary logic
primitives (AND, OR, NOT, flip-flops, etc.)
that are available in a
specific FPGA or VLSI technology. Further
manipulations to the net list ultimately lead
to a circuit fabrication blueprint (such as
a photo mask set for an ASIC or a bit
stream file for an FPGA).

History

Beginning
Verilog was the first modern hardware
description language to be invented. It was
created by Phil Moorby and Prabhu
Goel during the winter of 1983/1984. The
wording for this process was "Automated
Integrated Design Systems" (later renamed
to Gateway Design Automation in 1985) as
a hardware modeling language. Gateway
Design Automation was purchased
by Cadence Design Systems in 1990.
Cadence now has full proprietary rights to
Gateway's Verilog and the Verilog-XL, the
HDL-simulator that would become the de-
facto standard (of Verilog logic simulators)
for the next decade. Originally, Verilog was
intended to describe and allow simulation;
only afterwards was support for synthesis
added.

Verilog-95
With the increasing success of VHDL at the
time, Cadence decided to make the language
available for open standardization. Cadence
transferred Verilog into the public domain
under the Open Verilog International (OVI)
(now known as Accellera) organization.
Verilog was later submitted to IEEE and
became IEEE Standard 1364-1995,
commonly referred to as Verilog-95.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 270

In the same time frame Cadence initiated
the creation of Verilog-A to put standards
support behind its analog simulator Spectre.
Verilog-A was never intended to be a
standalone language and is a subset
of Verilog-AMS which encompassed
Verilog-95.

Verilog 2001
Extensions to Verilog-95 were submitted
back to IEEE to cover the deficiencies that
users had found in the original Verilog
standard. These extensions
became IEEE Standard 1364-2001 known
as Verilog-2001.

Verilog-2001 is a significant upgrade from
Verilog-95. First, it adds explicit support for
(2's complement) signed nets and variables.
Previously, code authors had to perform
signed operations using awkward bit-level
manipulations (for example, the carry-out
bit of a simple 8-bit addition required an
explicit description of the Boolean algebra
to determine its correct value). The same
function under Verilog-2001 can be more
succinctly described by one of the built-in
operators: +, -, /, *, >>>. A
generate/endgenerate construct (similar to
VHDL's generate/endgenerate) allows
Verilog-2001 to control instance and
statement instantiation through normal
decision operators (case/if/else). Using
generate/endgenerate, Verilog-2001 can
instantiate an array of instances, with
control over the connectivity of the
individual instances. File I/O has been
improved by several new system tasks. And
finally, a few syntax additions were
introduced to improve code readability (e.g.
always @*, named parameter override, C-
style function/task/module header
declaration).

Verilog-2001 is the dominant flavor of
Verilog supported by the majority of
commercial EDA software packages.

Verilog 2005
Not to be confused
with SystemVerilog, Verilog
2005 (IEEE Standard 1364-2005) consists
of minor corrections, spec clarifications, and
a few new language features (such as the
uwire keyword).
A separate part of the Verilog
standard, Verilog-AMS, attempts to
integrate analog and mixed signal modeling
with traditional Verilog.

SystemVerilog
SystemVerilog is a superset of Verilog-
2005, with many new features and
capabilities to aid design verification and
design modeling. As of 2009, the
SystemVerilog and Verilog language
standards were merged into SystemVerilog
2009 (IEEE Standard 1800-2009).

The advent of hardware verification
languages such as OpenVera,
and Verisity's e language encouraged the
development of Superlog by Co-Design
Automation Inc. Co-Design Automation Inc
was later purchased by Synopsys. The
foundations of Superlog and Vera were
donated to Accellera, which later became
the IEEE standard P1800-2005:
SystemVerilog.

In the late 1990s, the Verilog Hardware
Description Language (HDL) became the
most widely used language for describing
hardware for simulation and synthesis.
However, the first two versions
standardized by the IEEE (1364-1995 and
1364-2001) had only simple constructs for
creating tests. As design sizes outgrew the
verification capabilities of the language,
commercial Hardware Verification
Languages (HVL) such as Open Vera and e
were created. Companies that did not want
to pay for these tools instead spent hundreds
of man-years creating their own custom
tools. This productivity crisis (along with a
similar one on the design side) led to the
creation of Accellera, a consortium of EDA

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 271

companies and users who wanted to create
the next generation of Verilog. The donation
of the Open-Vera language formed the basis
for the HVL features of
SystemVerilog.Accellera’s goal was met in
November 2005 with the adoption of the
IEEE standard P1800-2005 for
SystemVerilog, IEEE (2005).
The most valuable benefit of SystemVerilog
is that it allows the user to construct
reliable, repeatable verification
environments, in a consistent syntax, that
can be used across multiple projects
Some of the typical features of an HVL that
distinguish it from a Hardware Description
Language such as Verilog or VHDL are
 Constrained-random stimulus
generation
 Functional coverage
 Higher-level structures, especially
Object Oriented Programming
 Multi-threading and interprocess
communication
 Support for HDL types such as
Verilog’s 4-state values
 Tight integration with event-
simulator for control of the design
There are many other useful features, but
these allow you to create test benches at a
higher level of abstraction than you are able
to achieve with an HDL or a programming
language such as C.
System Verilog provides the best
framework to achieve coverage-driven
verification (CDV). CDV combines
automatic test generation, self-checking
testbenches, and coverage metrics to
significantly reduce the time spent verifying
a design. The purpose of CDV is to:
 Eliminate the effort and time spent
creating hundreds of tests.

 Ensure thorough verification using
up-front goal setting.

 Receive early error notifications and
deploy run-time checking and error analysis
to simplify debugging.

 Examples

Ex1: A hello world program looks like this:

module main;
 initial
 begin
 $display("Hello

world!");
 $finish;
 end
endmodule
Ex2: A simple example of two flip-

flops follows:

module toplevel(clock,reset);
 input clock;
 input reset;

 reg flop1;
 reg flop2;

 always @ (posedge reset or posedge

clock)
 if (reset)
 begin
 flop1 <= 0;
 flop2 <= 1;
 end
 else
 begin
 flop1 <= flop2;
 flop2 <= flop1;
 end
endmodule
The "<=" operator in Verilog is another

aspect of its being a hardware description
language as opposed to a normal
procedural language. This is known as a
"non-blocking" assignment. Its action
doesn't register until the next clock cycle.
This means that the order of the
assignments are irrelevant and will
produce the same result: flop1 and flop2
will swap values every clock.

The other assignment operator, "=", is
referred to as a blocking assignment.
When "=" assignment is used, for the
purposes of logic, the target variable is

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 272

updated immediately. In the above
example, had the statements used the "="
blocking operator instead of "<=", flop1
and flop2 would not have been swapped.
Instead, as in traditional programming,
the compiler would understand to simply
set flop1 equal to flop2 (and
subsequently ignore the redundant logic
to set flop2 equal to flop1.)

Ex3: An example counter circuit follows:

module Div20x (rst, clk, cet, cep, count, tc);
// TITLE 'Divide-by-20 Counter with

enables'
// enable CEP is a clock enable only
// enable CET is a clock enable and
// enables the TC output
// a counter using the Verilog language
parameter size = 5;
parameter length = 20;
input rst; // These inputs/outputs represent
input clk; // connections to the module.
input cet;
input cep;
output [size-1:0] count;
output tc;
reg [size-1:0] count; // Signals assigned
 // within an always
 // (or initial)block
 // must be of type reg
 wire tc; // Other signals are of type wire
 // The always statement below is a parallel
// execution statement that
// executes any time the signals
// rst or clk transition from low to high
 always @ (posedge clk or posedge rst)
 if (rst) // This causes reset of the cntr
 count <= {size{1'b0}};
 else
 if (cet && cep) // Enables both true
 begin
 if (count == length-1)
 count <= {size{1'b0}};
 else
 count <= count + 1'b1;
 end
 // the value of tc is continuously assigned
// the value of the expression

assign tc = (cet && (count == length-1));
endmodule
Ex4: An example of delays:...reg a, b, c, d;

wire e;
...
always @(b or e)
 begin
 a = b & e;
 b = a | b;
 #5 c = b;
 d = #6 c ^ e;
 end
The always clause above illustrates the
other type of method of use, i.e. the always
clause executes any time any of the entities
in the list change, i.e. the b or e change.
When one of these changes, immediately a
is assigned a new value, and due to the
blocking assignment b is assigned a new
value afterward (taking into account the
new value of a.) After a delay of 5 time
units, c is assigned the value of b and the
value of c ^ e is tucked away in an invisible
store. Then after 6 more time units, d is
assigned the value that was tucked away.

Signals that are driven from within a
process (an initial or always block) must be
of type reg. Signals that are driven from
outside a process must be of type wire. The
keyword reg does not necessarily imply a
hardware register.
7.3 Constants

The definition of constants in Verilog
supports the addition of a width
parameter. The basic syntax is:

<Width in bits>'<base letter><number>
Examples:

 12'h123 - Hexadecimal 123 (using
12 bits)

 20'd44 - Decimal 44 (using 20 bits -
0 extension is automatic)

 4'b1010 - Binary 1010 (using 4 bits)
 6'o77 - Octal 77 (using 6 bits)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 273

7.4 Synthesizable Constructs
There are several statements in Verilog that

have no analog in real hardware, e.g.
$display. Consequently, much of the
language can not be used to describe
hardware. The examples presented here
are the classic subset of the language that
has a direct mapping to real gates.

// Mux examples - Three ways to do the
same thing.

 // The first example uses continuous
assignment

wire out;
assign out = sel ? a : b;
 // the second example uses a procedure
// to accomplish the same thing.
 reg out;
always @(a or b or sel)
 begin
 case(sel)
 1'b0: out = b;
 1'b1: out = a;
 endcase
 end
 // Finally - you can use if/else in a
// procedural structure.
reg out;
always @(a or b or sel)
 if (sel)
 out = a;
 else
 out = b;
The next interesting structure is
a transparent latch; it will pass the input to
the output when the gate signal is set for
"pass-through", and captures the input and
stores it upon transition of the gate signal to
"hold". The output will remain stable
regardless of the input signal while the gate
is set to "hold". In the example below the
"pass-through" level of the gate would be
when the value of the if clause is true, i.e.
gate = 1. This is read "if gate is true, the din
is fed to latch_out continuously." Once the
if clause is false, the last value at latch_out
will remain and is independent of the value
of din.

EX6: // Transparent latch example
 reg out;
always @(gate or din)
 if(gate)
 out = din; // Pass through state
 // Note that the else isn't required here.

The variable
 // out will follow the value of din while

gate is high.
 // When gate goes low, out will remain

constant.
The flip-flop is the next significant

template; in Verilog, the D-flop is the
simplest, and it can be modeled as:

reg q;
always @(posedge clk)
 q <= d;
The significant thing to notice in the

example is the use of the non-blockin g
assignment. A basic rule of thumb is to
use <= when there is a
posedge or negedge statement within the
always clause.

A variant of the D-flop is one with an
asynchronous reset; there is a convention
that the reset state will be the first if
clause within the statement.

reg q;
always @(posedge clk or posedge reset)
 if(reset)
 q <= 0;
 else
 q <= d;
The next variant is including both an

asynchronous reset and asynchronous set
condition; again the convention comes
into play, i.e. the reset term is followed
by the set term.

reg q;
always @(posedge clk or posedge reset or

posedge set)
 if(reset)
 q <= 0;
 else
 if(set)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 274

 q <= 1;
 else
 q <= d;
Note: If this model is used to model a
Set/Reset flip flop then simulation errors
can result. Consider the following test
sequence of events. 1) reset goes high 2) clk
goes high 3) set goes high 4) clk goes high
again 5) reset goes low followed by 6) set
going low. Assume no setup and hold
violations.

In this example the always @ statement
would first execute when the rising edge of
reset occurs which would place q to a value
of 0. The next time the always block
executes would be the rising edge of clk
which again would keep q at a value of 0.
The always block then executes when set
goes high which because reset is high forces
q to remain at 0. This condition may or may
not be correct depending on the actual flip
flop. However, this is not the main problem
with this model. Notice that when reset goes
low, that set is still high. In a real flip flop
this will cause the output to go to a 1.
However, in this model it will not occur
because the always block is triggered by
rising edges of set and reset - not levels. A
different approach may be necessary for
set/reset flip flops.

Note that there are no "initial" blocks
mentioned in this description. There is a
split between FPGA and ASIC synthesis
tools on this structure. FPGA tools allow
initial blocks where reg values are
established instead of using a "reset" signal.
ASIC synthesis tools don't support such a
statement. The reason is that an FPGA's
initial state is something that is downloaded
into the memory tables of the FPGA. An
ASIC is an actual hardware implementation.

7.5 Initial Vs Always:
There are two separate ways of declaring a
Verilog process. These are the always and
the initial keywords. The always keyword
indicates a free-running process.

The initial keyword indicates a process
executes exactly once. Both constructs
begin execution at simulator time 0, and
both execute until the end of the block.
Once an always block has reached its end, it
is rescheduled (again). It is a common
misconception to believe that an initial
block will execute before an always block.
In fact, it is better to think of the initial-
block as a special-case of the always-block,
one which terminates after it completes for
the first time.

//Examples:
initial
 begin
 a = 1; // Assign a value to reg a at time 0
 #1; // Wait 1 time unit
 b = a; // Assign the value of reg a to reg b
 end

always @(a or b) // Any time a or b

CHANGE, run the process
begin
 if (a)
 c = b;
 else
 d = ~b;
end // Done with this block, now return to

the top (i.e. the @ event-control)

always @(posedge a)// Run whenever reg a

has a low to high change
 a <= b;
These are the classic uses for these two

keywords, but there are two significant
additional uses. The most common of
these is an alwayskeyword without
the @(...) sensitivity list. It is possible to
use always as shown below:

always
 begin // Always begins executing at time 0

and NEVER stops
 clk = 0; // Set clk to 0
 #1; // Wait for 1 time unit
 clk = 1; // Set clk to 1
 #1; // Wait 1 time unit

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 275

 end // Keeps executing - so continue back
at the top of the begin

The always keyword acts similar to the "C"
construct while(1) {..} in the sense that it
will execute forever.

The other interesting exception is the use of
the initial keyword with the addition of
the forever keyword.

7.6 Race Condition

The order of execution isn't always
guaranteed within Verilog. This can best
be illustrated by a classic example.
Consider the code snippet below:

initial
 a = 0;
initial
 b = a;
initial
 begin
 #1;
 $display("Value a=%b Value of

b=%b",a,b);
 end
What will be printed out for the values of a
and b? Depending on the order of execution
of the initial blocks, it could be zero and
zero, or alternately zero and some other
arbitrary uninitialized value. The $display
statement will always execute after both
assignment blocks have completed, due to
the #1 delay.
System Tasks:

System tasks are available to handle
simple I/O, and various design measurement
functions. All system tasks are prefixed with
$ to distinguish them from user tasks and
functions. This section presents a short list
of the most often used tasks. It is by no
means a comprehensive list.
$display - Print to screen a line followed by

an automatic newline.
$write - Write to screen a line without the

newline.
$swrite - Print to variable a line without the

newline.

$sscanf - Read from variable a format-
specified string. (*Verilog-2001)

$fopen - Open a handle to a file (read or
write)

$fdisplay - Write to file a line followed by
an automatic newline.

$fwrite - Write to file a line without the
newline.

$fscanf - Read from file a format-specified
string. (*Verilog-2001)

$fclose - Close and release an open file
handle.

$readmemh - Read hex file content into a
memory array.

$readmemb - Read binary file content into a
memory array.

$monitor - Print out all the listed variables
when any change value.

$time - Value of current simulation time.
$dumpfile - Declare the VCD (Value

Change Dump) format output file name.
$dumpvars - Turn on and dump the

variables.
$dumpports - Turn on and dump the

variables in Extended-VCD format.
$random - Return a random value.

CONCLUSION

High Performance MAC(Multiplier
Accumulator Unit) Is Designed With High
Speed, Low power , Less Delay By
reducing the number of gates By using
Wallace tree algorithm to implement the
multiplier and also we are using Carry save
adder to implement the adder with less
number of gates. This implemented By
using Verilog HDL
REFERENCES
1. Baugh, C.R. and B.A. Wooley, 1973. A

two's complement parallel array
multiplication algorithm. IEEE Trans.
Comput., C-22: 1045-1047.

2. Berkeman, A., V. Owall and M.
Torkelson, 2000. A low logic depth
complex multiplier using distributed
arithmetic. IEEE J. Solid-State Circ., 35:
656-659.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 06 Issue 13

December 2019

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 276

3. Brent, R.P. and H.T. Kung, 1982. A
regular layout for parallel adders. IEEE
Trans. Comput., C-31: 260-264.

4. Chang, J.K., H. Lee and C.S. Choi,
2009. A power-aware variable-precision
multiply-accumulate unit. Proceedings
of the 9th International Symposium on
Communications and Information
Technology, September 28-30, 2009,
Icheon, pp: 1336-1339.

5. Chang, T.Y. and M.J. Hsiao, 1998.
Carry-select adder using single ripple-
carry adder. Electron. Lett., 34: 2101-
2103.

