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ABSTRACT:  

Advent of approximate Numerical 

methods for the analysis of complicated 

problems has provided platform to the 

researchers and engineers. Towards this, 

advent of digital computer has increased 

exponentially the useful application of 

approximate methods. Using Finite Element 

Method, an approximate method, the 

analysis over the bending of plate has been 

done using four noded isoperimetric 

elements in this thesis The element 

properties and some essential criterions like 

convergence, compatibility and geometric 

invariance has been described. Numerical 

difficulties like locking phenomenon and 

stress smoothing technique has also been 

overcome with Hinton & Campbell 

technique [1974]. Thin plate theory i.e. 

Kirchoff‟s and Mindlin theory along with 

Finite Element Formulation has been 

described. Variation of deflection and 

moments at various points on the plates with 

the variation of percentage error in respect 

of each variable have been shown in 

graphical form with the variation of number 

of elements. Effect of mess fineness and 

element aspect ratio on the deflection as 

well as the stress resultants have been 

studied for various sizes of plates using 

Lisa/Ansys.  

 

Keywords:-Bending Analysis, Finite 

Element Method, Mindlin’s Theory 

 

INTRODUCTION 

           The present study is devoted to 

analyze plate with various boundary 

conditions. A finite element based software 

package has been developed which can 

solve plates of any arbitrary shape. During 

last three decades finite element procedures 

have also been successfully employed to 

solve these problems. As a numerical 

solution to the problem a number of finite 

element models have been proposed. Of 

these, the present study will use four-

nodded isoperimetric plate elements. 

Detailed mathematical formulation has been 

presented in the following sections. The 

numerical difficulties like locking 

phenomenon, local stress smoothing has 

also been described. Vast literature based on 

classical plate theory exists for solving these 

commonly used structural elements. But the 

classical theory is very cumbersome for the 

arbitrary shape of plates and cannot be 

formulated. The three methods that are used 

are as 

1. Functional approximation 

2. Finite difference method 

3. Finite element method 

Out of these three methods Finite Element 

Method is mostly used because of its 

accuracy and simplicity than that of other 

two methods. 

In functional approximation, a set of 

independent functions satisfying the 

boundary conditions is chosen and a linear 

combination of a finite number of them is 

taken to approximately specify the field 

variable at any point. 

. 

In the finite difference method the system is 

discretised by a mess of nodal points. The 
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field variable is represented by the discrete 

value of the variables at the nodes.  

In the finite element method the body is 

divided into a number of smaller elements 

which are called finite elements. For each 

element equilibrium equation is formulated 

and then combined for whole structure and 

the simultaneous equations are solved for 

unknowns. 
  

OBJECTIVES  

The present study envisages fulfilling the 

following objectives: 

1. To use four-noded isoperimetric plate 

element to analyze plates. 

2. To develop a finite element based 

software package for analyzing plate 

bending problems. 

3. Various possible boundary conditions 

for various shapes of plates will be 

investigated. 

4. Results from analysis using above two 

plate element will be compared to see 

their relative performance with respect 

to classical solution. 

5. To study the effect of mess fineness and 

element aspect ratio on finite element 

solution. 
 

FINITE ELEMENT METHOD  

Finite element analysis is a method 

for numerical solution of field problems. A 

field problem requires that determination of 

spatial distribution of one or more 

independent variables. Mathematically, a 

field problem is described by differential 

equations or by integral expressions. 

The word finite distinguishes these pieces 

from infinitesimal elements used in 

calculus. In each finite element a field 

quantity is allowed to have only a simple 

spatial variation. The actual variation in the 

region spanned by an element is more 

complicated. So, FEA provides an 

approximate solution. The particular 

arrangement of an element is called mess. 

Numerically an FEA mess is represented by 

a system of algebraic equations to be solved 

for unknowns at the nodes. The solution for 

the nodal quantities when combined with 

the assumed field in any given element, 

completely determines the spatial variations 

of the field in that element.  
 

ADVANTAGES OF FEA 

1. FEA is applicable to all types of 

problem. 

2. There is no geometric restriction.  

3. Boundary conditions and loading are not 

restricted. 

4. Material properties are not restricted to 

isotropy and may change from one 

element to other or even within an 

element. 

5. The components have different 

mathematical behaviour and different 

mathematical descriptions, can be 

combined. 

The FEA also suffers from mainly two types 

of errors, i.e. modeling error and 

discretization error. The modeling error can 

be reduced by improving the models and 

discretization error can be reduced by 

increasing elements. 
 

THEORY OF ELEMENT PROPERTIES 

Isoperimetric element  

For the element description, shape 

functions are used to interpolate both the 

displacement field and element geometry. 

That is, displacement of a point within an 

element can be expressed in terms of nodal 

degree of freedom and shape function  N , 

which are the functions of reference 

coordinates. Similarly the global 

coordinates of a point within the element 

can be expressed in terms of global nodal 

positions and shape functions  N , which are 

also the functions of reference coordinates. 

Symbolically  

1. Nodal degree of freedom  d defines 

displacements  w,v,u  of a point within 

the element, i.e.     dNw,v,u
T
 . 
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2. Nodal coordinates  c defines 

coordinates  z,y,x  of a point within the 

element; i.e.     cNz,y,x
T
 . 

The shape function matrices    NN and  

are the functions of tands,r . An element is 

called isoperimetric, if     NN and  are 

identical. If  N is of lower degree than  N , 

the element is called subparametric and if 

 N is of higher degree than  N , the 

element is called super parametric.  
 

Bilinear quadrilateral (Q4) 

 This plane element is a 

generalisation of rectangular Q4 element 

that removes the restriction to rectangular 

shape. The locking effect also appears in 

this element. In this, in physical space, 

reference coordinates s&r  need not be 

orthogonal unlike rectangular Q4 element 

and need not be parallel to Cartesian 

coordinates x and y. Element sides having 

coordinates 1and1  sr  are bisected 

by axes s&r regardless of the shape or 

physical size of the element and regardless 

of its orientation in Cartesian coordinates. 

The point 0 sr is normally the element 

centre, but in general it is not the centroid of 

the physical element. The displacements are 

directed parallel to Cartesian coordinates, 

not parallel to local coordinates s&r . 

 
Fig. 3.1 An element in Natural Coordinate 

System 

STATIC CONDENSATION 

The internal nodes of any element 

do not connect with any node of adjoining 

elements in the assemblage. So, the degrees 

of freedom of such nodes do not appear in 

the compatibility conditions that are used to 

formulate the overall equations for the 

structure. The internal degrees of freedom 

can be eliminated from the equilibrium 

equations of each element so that these extra 

unknowns do not increase the number of 

overall equations. 
 

SOME ESSENTIAL CRITERIA 

Convergence requirements 

The finite element method provides 

a numerical solution to a complex problem. 

It is expected that the solution must 

converge to exact solution under certain 

circumstances. Hence as the mess is made 

finer, the solution should converge to the 

correct result and this would be achieved if 

the three conditions are satisfied by 

assumed displacement functions. 

1. The displacement function must be 

continuous within the element and it can 

be satisfied by choosing polynomials for 

the displacement model. 

2. The element displacement function must 

be capable of representing rigid body 

displacements of the elements. That is 

when nodes are given such displacements 

corresponding to a rigid body motion, the 

element should not experience any strain. 

3. The element displacement function must 

be capable of representing constant strain 

states within element. For one, two or 

three dimensional elasticity problems the 

linear terms present in the polynomial 

satisfy the requirement. However, in the 

case of beam, plate and shell elements, 

this condition will be referred to as 

„constant curvature‟ instead of „constant 

strains‟. 

Geometric invariance 

 Besides the convergence and 

compatibility requirements, another 

important consideration is choosing proper 

terms in polynomials expansion is that the 

element should have no preferred direction. 

This isotropy is known as geometric 
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isotropy or geometric invariance. Geometric 

invariance is achieved if the polynomial 

includes all the terms i.e. polynomial is 

complete one. Invariance may also be 

achieved if polynomial is balanced, in case 

all the terms can not be included. 

For example  

xyayaxaau 4321         (3.1) 

It can be achieved from the Pascal triangle 

for two dimensional elements. 

NUMERICAL DIFFICULTIES 

Locking phenomenon   (URI & SRI) 

          A locking phenomenon is a well-

known event in finite element applications. 

It may be due to shear locking or membrane 

locking, which results when proper order of 

integration is used to find out the stiffness 

matrix. When Q4 element bents, it displays 

shear strain as well as bending strain. When 

a Q4 element is bent, its top and bottom 

sides remain straight, and each node has 

only horizontal displacement of certain 

magnitude. 

 
Inclusion of transverse shear strains, in 

the equations presents computational 

difficulties when span to thickness ratio of 

plate is large. 

          For thin plates, the transverse shear 

strains are negligible and consequently the 

element stiffness matrix becomes stiff and 

yields erroneous results for the generalized 

displacements. This phenomenon is known 

as shear locking, and it can be interpreted as 

being caused by the inclusion of the 

following constraint in the variational form 

(Averill & Reddy, 1992) 

 

00 










y

w
and

x

w
yx     (3.2) 

If the plate is thick, the above condition 

does not satisfied and locking does not 

occur. For thin plate the above constraints 

are valid but not satisfied in the numerical 

model. To avoid this locking phenomenon 

URI (uniformly reduced integration) or SRI 

(selective reduced integration) technique are 

used. When four noded elements is used one 

point gauss rule should be used for shear 

energy terms while two point gauss rule 

should be used for all other terms.      

 

Stress smoothing technique 

           Using displacement method, it was 

reported in the literature that the stresses 

obtained from finite element solutions are 

discontinuous between elements. 

 
 Hinton & Campbell (1974) devised a 

local stress smoothing technique which is a 

natural method of sampling stresses in finite 

element using reduced integration. Here 

local smoothing is done by a bilinear 

extrapolation of the stress values computed 

at the Gauss points.  
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(3.3) 

Where, 1  to 4  are the smoothed nodal 

values and I  to IV  are the stresses at the 

2 x 2 Gauss points. 

THIN PLATE THEORY 

Love and Kirchhoff theory 

The assumptions in classical plate 

theory, which is also known as Kirchhoff 

theory, are based upon the assumptions 

given by Bernoulli for beams. Love and 

Kirchhoff first applied these assumptions to 

the plate and shells. Assumptions are as 

follows: 
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1. After application of the external load, a 

lineal element of the plate normal to the 

mid surface 

(a) Undergoes at most a translation and 

rotation, which indicates that  lineal 

element through the thickness does not 

elongate or contract and 

(b) Remains normal to the deformed mid-

surface. It shows that   shear strains xz  

and yz  becomes zero.  

2. The stresses normal to the plate can be 

neglected, i.e. 0z .  

Basic Relationships 

The stresses in thin plate vary 

linearly across the thickness and hence the 

stresses resultants can be computed as  

 

 
if u, v and w be the displacements at any 

point (x, y, z) then the displacement u and v 

across the thickness can be expressed in 

terms of the displacement w as                    

y
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the strain distribution is given by                           
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and the shear strains 0 yzxz  . Thus 

problem reduced to plane stress problem. 

The general constitutive law for plane stress 

is given by                       
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Conveniently in the case of plate,  M can 

be written in place of  . 

Hence         
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  (3.7) 

i.e.                     cf kCM                                                                                   

In case of isotropic plates, the constitutive 

matrix is given by, 
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 Mindlin’s Theory 

           This theory includes shear 

deformations in the plates, which was not 

considered in the Kirchhoff‟s theory. There 

are three assumptions in the Mindlin‟s 

theory of plates as given below: 

1. The deflections of plate, w , are small. 

2. Normal to the plate mid surface before 

deformation remains straight but is not 

necessarily normal to it after 

deformation. 

3. Stresses normal to the mid surface are 

negligible.  

The average shear deformation, yxand  

are given by  

    
y

w

x

w
xyyx









       (3.9)           

the strain energy for the thin plate due to 

shear be given as             

 
 Where, G  modulus of rigidity and is equal 

to )1(2/ E . 

Putting the value of x  and y  from 

equation (3.9) and G   in equation (3.10) 

and simplifying, for an isotropic plate we 
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get:

 
The expression for the strain energy due to 

bending of an isotropic plate can be 

obtained as  

 
 The total strain energy is given by  

        sb UUU                                                    

Basic Relationships 

The shear stresses xz & yz  and shear 

deformations yx  &  are related as                                
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the average shear deformations yx  & are 

constant all over the thickness and allowing 

for warping of the x-section, the stress 

resultant yx QQ & can be computed as  

 
Where,  is numerical correction factor 

used to represent the restraint of the x-

section against warping. The value of 
commonly used is 5/6 but may be assumed 

between 2/3 for section having no restraint 

against warping and 1.0 for sections having 

complete restraint against warping. 

       The stress resultants    QM &  can be 

combined and for homogeneous plate it can 

be expressed as:
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For an isometric plate, using specific values 

of coefficient for the consecutive matrix, we 

get 
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In short the above relation can be written as                           
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FINITE ELEMENT FORMULATION FOR 

FOUR NODDED BILINEAR PLATE 

ELEMENT. 

 System of Coordinate Axes 

 Various coordinate system used in the 

present formulation are  

a. Natural coordinate system  

b. Local coordinate system  

c. Global coordinate system  

In natural coordinate system the axes are 

taken as r and s and the coordinates of 

elements are taken as unity. 

 Geometry Representation  

Element Geometry and 

Displacement Field: both the geometry of 

the element and displacement field is 

obtained using same polynomial functions 

(also called shape functions in FEM 

literature). Geometry is expressed by                 

i

i

i xNx 



4

1

                                                                               

i

i

i yNy 



4

1

                                (3.13)                                 

and displacement field is expressed as 





4

1i

ii wNw                                                   

ix

i

ix N 



4

1

 

    yi

i

iy N  



4

1

             (3.14)                

Where, the shape function for any i
th

 node is 

given by  

    iii ssrrN  11
4

1
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 Displacement Vector 

  The typical nodal displacement 

vector for an element is given as  

   444333222111 yxyxyxyx

T
wwwwd    (3.15) 

The shape function used for describing the 

geometry of the element and displacement 

variation are expressed in natural coordinate 

(r,s). The relationship between two 

coordinate systems can be computed by 

using the chain rule of partial differentiation 

and is given below: 
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Where, [J] is Jacobian matrix. Hence, the 

derivatives with respect to Cartesian 

coordinate system can be given as  
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Jacobian matrix for four nodded element 

can be given as  
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3.9.4 Strain displacement matrix [B] 

The element curvature and shear 

deformation  p and nodal displacement 

 d are related as   

                  dBp                                                            

For getting the each terms of  p

differentiate Eq. (3.14) w. r. t. x and y. we 

get 
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Where 
y

N

x

N ii








and  are to be computed 

from Eq. (3.16) 

Eq. (3.17) shows that the elements of vector 

 p  are expressed in terms of nodal 

displacements, .θθ,w yixi and Hence 
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This equation can be expressed as 
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and      
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The stress resultant  p can be expressed in 

terms of nodal displacements as following                                     
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or      dBC pp               (3.22)           

Where,
   




4

1i

iBB
                (3.23) 

Element stiffness matrix 

The element stiffness matrix  k  is given by 

 
        dydxBCBk

A

p

T

 
         (3.24) 

The above expression in local coordinate is 

written as  

        dsdrJBCBk
A

p

T
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   (3.25)                                                      
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The matrix  k can be written as sum of 

bending and shear contributions. 

     sb kkk                              (3.26) 

Substituting  k  for      BCB p

T
 in 

Eq.(3.25), the stiffness matrix is given by  
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Gauss quadrature rule is used to compute 

the stiffness matrix  k . 

Element nodal load vector 

The nodal load  iQ at the node i for a 

uniformly distributed load q is given by  
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The element load vector {Q} can be 

calculated by combining the nodal load 

vectors  iQ  as
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(3.29)     

Gauss quadrature of 2x2 sampling points is 

used to evaluate Eq. 3.29  

3.9 RECTANGULAR AND CIRCULAR 

PLATE THEORY FOR ANALYTICAL 

SOLUTION 

 The equation for vertical deflection 

and moment resultants i.e. Mx, My, and Mxy 

are given in the book „Theory of Plates and 

Shells‟ by S. Timoshenko and S. W. Krieger 

second edition (1959). These equations for 

rectangular simply supported plates are 

given as 
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and m and n are odd integers. If m and n are 

both even numbers then .amn 0  

Moment Mx is represented as 
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The defection equation for simply supported 

circular plate is 

 













 22

22

1

5

64
ra

D

raq
w



   (3.35) 

Radial moment Mr and Mt is given as  
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The deflection and moments for clamped 

circular plate are given as 
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Where r is the radial distance of any point 

from centre of the plate and a is the radius 

of the circular plate.      
 

DESCRIPTION 

GENERAL 

The present study employs the Computer 

program PLATEFEM as provided by 

Krishnamoorthy (1994). The program is 

written in the standard FORTRAN 

language. Program presented here is only 

for the plate bending calculations, which 

includes deflections and stress resultants. 

The skyline concept has been used in this 

program for simplifying the cumbersome 

calculation procedure and associated storage 
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problems. An effective column storage 

scheme is adapted to store the global 

stiffness matrix elements as one 

dimensional array SK. This program is 

something different from a finite element 

program SAP in view of their capability to 

print the shear components , which is not 

included in SAP. The various subroutines 

are subroutine PASSIN, FELIB, COLUMH, 

CADNUM, PASSEM, PASOLV, PASLOD 

and DISP. 

MAIN PROGRAM 

The main program controls the various tasks 

of the program. It reads the control 

information namely the number of structure 

nodes (NSN), number of element types 

(NET), number of material property group 

(NMP) and number of load cases (NLC). It 

stores the dataset of all variables in the 

master array A and NA. The execution stops 

if the sum total of dimensions of all the 

variables i.e. floats or integer exceeds that 

of the master arrays A and NA. Three 

scratch files ISTRESS, NDARAY and 

LEARAY to store stress displacement 

matrix, degree of freedom and number of 

elements at particular nodes respectively. 

After reading the data execution is done in 

three segments according to the value of 

flag IND. The flow chart of main routine is 

given in Fig. 4.1 

 
Fig. 4.1 Main Routine of the Program 

 Subroutine PASSIN 

This subroutine is used to read, generate and 

print the nodal data. This subroutine is set 

up at maximum of six degree of freedom. 

Corresponding to each nodal point, it must 

then be identified which of these degrees of 

freedom shall actually be used in the finite 

element assemblage. The flow chart of this 

subroutine is given in Fig.2. 
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Subroutine COLUMH 

The subroutine COLUMH computes the 

height of each column of the global stiffness 

matrix. The column height refers to the 

number of elements in each column below 

the sky line and above the leading diagonal 

excluding the diagonal element of the global 

stiffness matrix. 

 
Subroutine CADNUM  

Subroutine CADNUM calculates the 

number of the diagonal element of the 

global stiffness matrix. The numbers of the 

diagonal elements of the global stiffness 

matrix are stored in a separate array called 

NDS. The number of diagonal element is 

obtained by adding the preceding column 

height one to its diagonal number, the 

number of first diagonal element being 

taken as 1. The flow chart is given below. 

 
Subroutine PASSEM 

Subroutine PASSEM is called at the second 

stage i.e. at IND=2, by each element shape 

routine. It assembles the element stiffness 

matrix to global stiffness matrix in the form 

of one dimensional array SK. The flow 

chart of this subroutine is given below 

 
Subroutine PASOLV 

Subroutine PASOLV is a direct solution 

routine, based on Gauss elimination 

technique. It solves the simultaneous 

equation for deflection of nodes along the 

free degree of freedom. The flow chart is 

given below in Fig.7. 
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Subroutine PASLOD 

The subroutine PASLOD is called by 

main routine for each load case to read and 

add the concentrated load in the direction of 

each degree of freedom of the node. These 

lodes are added to the structure load vector 

from the element shapes. 

Subroutine DISP 

Subroutine DISP prints out the 

displacements of each node. The 

displacement of each node is computed 

from the global displacement vector 

 
TYPICAL DETAILS OF INPUT DATA 

 This section describes a sample 

input for analysis of plates using computer 

program PLATEFEM. A typical input data 

has been presented in Appendix A. Herein 

the brief description of variables along with 

their format is presented.  

 

 
OUTPUT DETAILS 

 The output of program gives 

problem title, the controlling parameters 

like, number of structure nodes, element 

types, material groups and loading 

conditions. The nodal degrees of freedom 
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and the coordinates for each node is printed. 

The number of total equations and the total 

number of elements in global stiffness 

matrix are printed.  

  This program also prints the 

deflection at each node along three degrees 

of freedom i.e. one vertical deflection w and 

two rotations   and . At each node the 

moments i.e. Mx, My and Mxy are also 

printed. The constant shear force for each 

element is also printed in output file. A 

sample of output file is shown in Appendix 

A. 

PROGRAM FOR ANALYTICAL 

SOLUTION 

 For analytical solution a FORTRAN 

program has been written for simply 

supported rectangular plate and another 

program in FORTRAN is written in for 

simply supported and fixed circular plate. 

This program prints deflection and moments 

at any location as per requirements. The 

units of output file depend upon the units 

used in input data. These programs are 

shown in Appendix C.    

RESULTS AND DISCUSSION 

 In this chapter the problem for the 

validation of programme has been 

described. The results obtained from 

computer programme are compared with the 

solution obtained from analytical solution. 

The exact analytical solution procedure for 

plates of Timoshenko and Krieger (1959) 

has been used. 

 

PROBLEM FOR VALIDATION OF 

COMPUTER PROGRAM 

 A simply supported square plate of 

4.0m dimension is taken and analysed for 

the vertical deflection (w) and moments Mx, 

My, and Mxy. The thickness of plate is 

0.12m and modulus of elasticity of material 

is taken as 2x107 kN/m2. This result has 

been compared with the results obtained 

from the exact solution and it was found 

that computer programme is giving results 

close to those obtained from exact solution 

method. The discretisation scheme used is 

shown in Fig. 5.1 and results for w, Mx and 

Mxy are shown in Table 1(a) & (b).  

 

PLATE PROBLEMS ANALYSED 

For further analysis the rectangular plate 

of least dimension 4.0m with thickness 

0.12m are taken with simply supported and 

fix boundary conditions. Other dimension of 

rectangular plate is decided on the basis of 

aspect ratios, viz., 1.0, 1.2, 1.4, 1.6, 1.8 and 

2.0. A set of circular plates of 4.0m 

diameter and thickness 0.12m are also 

analysed. The modulus of elasticity is taken 

as 2.0 x 107 kN/m2. 

 

Plate boundaries and support conditions 

 The different plate boundaries which 

are taken for the analysis are square, 

rectangular and circular, with all edges 

simply supported and all edges built-in. The 

plate boundaries are shown in Figures from 

Fig. 1 to Fig. 8. Support conditions for 

rectangular plate are shown in Fig. 5.1-5.4. 

Fig. 5.5 shows the one quadrant of the plate 

for both simply supported and fixed 

boundary. Fig. 6 shows the circular 

boundary for both simply supported and 

fixed boundary conditions. 

Discretization scheme 

 The discretization schemes adopted 

for rectangular plate are 4x4, 6x6, 8x8 & 

10x10. This means that the plate is divided 

into four parts in X and Y both directions 

for the discretisation of 4x4. Similarly for 

6x6, 8x8 & 10x10 schemes the plate is 

divided into 6, 8 and 10 parts in both the 

directions. These different schemes are 

presented in Fig. 5.1 to Fig. 5.5 for 

rectangular plates and from Fig. 5.6 to Fig. 

5.8 for circular plate. In Fig. 5.6, Fig. 5.7 

and Fig. 5.8, the discretisation is shown for 

the one quadrant of circular plate. The 

actual boundary is shown in these figures in 

arc form, passing through outer nodes 
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Fig. 5.1 Rectangular Plate (4x4 discretisation) 
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 Fig. 5.2 Rectangular Plate (6x6 discretisation) 
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 Fig. 5.3 Rectangular Plate (8x8 discretisation) 
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Fig. 5.4 Rectangular Plate (10x10 discretisation) 

 
Fig. 5.5 Discretised figure of 4.0m x 4.8m size plate 

(one quadrant) 
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Fig. 5.6 Discretisation of circular plate of 4.0m dia. 

 
Fig. 5.7 Discretization of one quadrant of circular 

plate of 4.0m dia 
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Fig. 5.8 Discretization of one quadrant of circular 

plate of 4.0m dia. 

 

RESULTS IN TABULAR FORM    

The results obtained from the finite 

element analysis and analytical analysis for 

vertical deflections, moment resultants Mx 

and Mxy for simply supported and fixed 

edges rectangular plate are presented in 

tabular form in Table 1 to Table 13. Table 1 

to Table 6 are the results for simply 

supported rectangular plate with the aspect 

ratio 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. Table 7 

presents the deflections and moments at 

various points in SS rectangular plate for 

plate aspect ratio 1.2 to 2.0, when elements 

aspect ration is taken as 1.0.  The results for 

fixed edges rectangular plate with the aspect 

ratios 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 are 
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shown in Table 8 to Table 13. In Table14 

&15 the vertical deflections and moment 

resultants Mr & Mt obtained from finite 

element solution and analytical solution are 

presented for circular plate with simply 

supported edges and fixed edges. The units 

used for vertical deflection (w), moment 

resultants Mx and Mxy, in case of 

rectangular plates and Mr and Mt in case of 

circular plates are millimetre (mm) and kN-

m.  

 My is not presented here because in 

square plate My is same as Mx. For 

rectangular plates the maximum value of 

My is same as the value of Mx of a square 

plate of dimension same as the shorter 

dimension of rectangular plates. 

 
Table 5.1(b): Simply Supported plate with aspect 

ratio = 1.0,  = 0.15 

 
Table 5.2(a): Simply Supported plate with aspect 

ratio =1.2,  = 0.15 

 
Table 5.2(b): Simply Supported plate with aspect 

ratio =1.2,  = 0.15 
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RESULTS IN FIGURES 

 The results tabulated are presented 

in graphical form for variation of 

deflections and moments along the central 

line of the square and circular plates only 

with simply supported and fix boundary 

conditions for the sake of convenience. 

Descriptions of Figures for deflection and 

moment patterns are given below from Fig. 

5.9 to Fig. 5.19. 

Variation of deflection 

Fig. 5.9 shows the variation of vertical 

deflection w along central line in SS 

rectangular plate with various 

discretisations. It shows very close variation 

of finite element solution with analytical 

solution. Fig. 5.12 shows the variation of 

displacements along central line in fixed 

square plate. Fig. 5.14 represents the 

variation of vertical deflection along radius 

of simply supported circular plate. Fig. 5.17 

shows the variation of deflection along the 

radius of circular plate with fixed 

boundaries. This graph represents that the 

deflections are close to analytical values but 

not tend to converge with increasing the 

number of elements. 

Variation of Moment (Mx and Mxy) 

Fig. 5.10 shows the variation of Mx along 

central line in SS rectangular plate with 

different discretisation. This figure 

represents the convergence of FEM value to 

analytical value with increasing the number 

of elements. Fig 5.13 represents the 

variation of moments Mx in fixed 

rectangular plate. For positive moment the 

value from FEM is very close to analytical 

value but for support moment these values 

differ considerably. Fig. 5.11 represents the 

variation of Mxy along the SS edge. This 

represents that the results from FEM 

converges to analytical solution with 

increasing the number of elements. 

 

Variation of radial moment (Mr) 

The variation of radial moment Mr along 

radius is presented in Fig 5.15. The results 

obtained from FEM are very near to 

analytical solution but to not fully converge 

with increasing the number of elements. 

Fig. 5.18 represents the variation of Mr 

along the radius of fix circular plate.  

 

Variation of tangential moment (Mt) 

Fig. 5.16 shows the variation of tangential 

moment Mt along radius in SS circular 

plate. The FE solution follow the same 

pattern as exact solution but have 

approximately uniform difference between 

the FEM values and exact values. Variation 

of Mt along radius of fixed circular plate is 

presented in Fig. 5.19.  

 
Fig. 5.9 Variation of displacement w, along mid-line 

(Simply supported rectangular plate) 
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Fig. 5.10 Variation of Mx along mid-line 

(Simply supported rectangular plate) 

 

 
Fig. 5.11 Variation of moment about X-axis along 

edges 

(Simply supported rectangular plate) 

 
Fig. 5.12 Variation of w along mid-line 

(Clamped Rectangular plate) 

 
Fig. 5.13 Variation of Mx along mid-line 

(Clamped Rectangular plate) 

 
Fig. 5.14 Variation of vertical deflection w along 

radius 

(Simply supported circular plate) 

 
Fig. 5.15 Variation of radial moment Mr, along 

radius 

(Simply supported circular plate) 

 
Fig. 5.16 Variation of tangential moment Mt along 

radius 

(Simply supported circular plate) 

 
Fig. 5.17 Variation of vertical deflection w along 

radius 

(Fixed circular plate) 

 
Fig. 5.18 Variation of radial moment Mr along radius 

(Fixed circular plate) 

 
Fig. 5.19 Variation of tangential moment along 

radius 

(Fixed circular plate) 
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VARIATION OF VALUES AT 

SELECTED POINTS 

The description of figures from Fig. 

20 to Fig. 31 for the values of deflections 

and moments at particular points are given 

below.  

Deflection variation 

Fig. 5.20 shows the variation of deflection 

at the centre of SS rectangular plate with 

number of elements. This figure shows that 

the FEM values converge to exact solution 

with increasing the number of elements. 

Fig. 5.23 represents the values of deflection 

at the centre of fixed rectangular plate. This 

figure represents the rapid convergence of 

deflection values obtained by FEM to exact 

analysis solution. Both values differ but not 

converge with increasing the number of 

elements. Fig. 5.29 represents the variation 

of vertical deflection at centre of the 

clamped circular plate. But here results are 

out of trends. The FEM results differ 

increasingly from exact value with 

increasing the number of elements. This 

may be due to approximate geometry and 

mess discretization technique adopted near 

the central zone. 

Bending and torsion moments variation 

Fig. 5.21 represents that the value of Mx at 

the centre of SS rectangular plate fully 

converge with exact solution, for increasing 

the number of elements from 16 to 100. Fig. 

5.24 represents the values of Mx at the 

centre of fixed rectangular plate and 

converges to exact value with increasing the 

number of elements. Fig. 5.25 represents the 

values of Mx at the support at central line in 

fix edges rectangular plate. The 

convergence of values is shown in the 

Figure. Fig. 5.22 represents the value of Mxy 

obtained from FEM at the corner node of SS 

rectangular plate converges with increasing 

the number of elements. 

Variation of radial moment Mr 

Fig. 5.27 represents the variation of Mr at 

the centre of SS circular plate. These values 

converge slowly with increasing the number 

of elements. Fig. 5.30 shows the variation of 

Mr at the centre of clamped circular plate. 

Here the FEM results converge to exact 

value with increasing the number of 

elements.   

Variation of tangential moment Mt 

Fig. 5.28 represents the variation of Mt at 

the supports with the number of elements. 

This figure shows the convergence of FEM 

value to exact value with increasing the 

number of elements from 12 to 36. Fig. 5.31 

shows the variation of Mr at support of 

clamped circular plate. The FEM result 

converges to exact value on increasing the 

number of elements. 

 

CONCLUSIONS 

On the basis of results obtained from 

analysis the following significant 

conclusions are drawn. 

 The study of rectangular and circular 

shape plate with simply supported and 

fixed boundary conditions shows the 

potentiality of computer program 

developed especially to analyse the 

plates. This program is applicable to thin 

plates of any shape with all possible 

boundary conditions. 

 The difference in the results obtained 

from FEM and exact solution, shows the 

effect of discretization and this type of 

error can be reduced by increasing the 

number of elements. 

 The results confirm the shear locking 

effect in the Q4 element, which reduces 

with decreasing the size of elements. 

Because shear force is computed at the 

central Gauss point of the element and 

are constant throughout the element. 

Smaller elements show smaller shear 

forces and hence better results are 

obtained. 

 The aspect ratio of the element does not 

show any effect on the nodal values. 

Numbers of element affect the nodal 

values. 
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 For fix boundaries the element shows 

their non usability for calculation of 

negative moments at supports. 

 

FUTURE SCOPE OF STUDIES 

 The same analysis can be done using 

eight noded, three noded and six noded 

isoparametric element, which confirm the 

geometry of curved boundary and 

quadratic interpolation. The relative 

performance of these elements can be 

compared and suitability of the elements 

can be checked for the bending analysis. 

 Results obtained from analysis for 

various shapes of plates can be compared 

for their relative stability at different 

parameters.  

 The best four noded element is square 

element, so the effect of the shape of four 

noded elements at centre of the circular 

plate can be analysed. 
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