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ABSTRACT:

Advent of approximate Numerical
methods for the analysis of complicated
problems has provided platform to the
researchers and engineers. Towards this,
advent of digital computer has increased
exponentially the useful application of
approximate methods. Using Finite Element
Method, an approximate method, the
analysis over the bending of plate has been
done wusing four noded isoperimetric
elements in this thesis The element
properties and some essential criterions like
convergence, compatibility and geometric
invariance has been described. Numerical
difficulties like locking phenomenon and
stress smoothing technique has also been
overcome with Hinton & Campbell
technique [1974]. Thin plate theory i.e.
Kirchoff’s and Mindlin theory along with
Finite Element Formulation has been
described. Variation of deflection and
moments at various points on the plates with
the variation of percentage error in respect
of each variable have been shown in
graphical form with the variation of number
of elements. Effect of mess fineness and
element aspect ratio on the deflection as
well as the stress resultants have been
studied for various sizes of plates using
Lisa/Ansys.

Keywords:-Bending  Analysis, Finite
Element Method, Mindlin’s Theory

INTRODUCTION
The present study is devoted to
analyze plate with various boundary

conditions. A finite element based software
package has been developed which can
solve plates of any arbitrary shape. During
last three decades finite element procedures
have also been successfully employed to
solve these problems. As a numerical
solution to the problem a number of finite
element models have been proposed. Of
these, the present study will use four-
nodded isoperimetric plate elements.
Detailed mathematical formulation has been
presented in the following sections. The
numerical  difficulties  like  locking
phenomenon, local stress smoothing has
also been described. Vast literature based on
classical plate theory exists for solving these
commonly used structural elements. But the
classical theory is very cumbersome for the
arbitrary shape of plates and cannot be
formulated. The three methods that are used
are as

1. Functional approximation
2. Finite difference method
3. Finite element method

Out of these three methods Finite Element
Method is mostly used because of its
accuracy and simplicity than that of other
two methods.

In functional approximation, a set of
independent  functions  satisfying  the
boundary conditions is chosen and a linear
combination of a finite number of them is
taken to approximately specify the field
variable at any point.

In the finite difference method the system is
discretised by a mess of nodal points. The
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field variable is represented by the discrete
value of the variables at the nodes.

In the finite element method the body is
divided into a number of smaller elements
which are called finite elements. For each
element equilibrium equation is formulated
and then combined for whole structure and
the simultaneous equations are solved for
unknowns.

OBJECTIVES

The present study envisages fulfilling the

following objectives:

1. To use four-noded isoperimetric plate
element to analyze plates.

2. To develop a finite element based
software package for analyzing plate
bending problems.

3. Various possible boundary conditions
for various shapes of plates will be
investigated.

4. Results from analysis using above two
plate element will be compared to see
their relative performance with respect
to classical solution.

5. To study the effect of mess fineness and
element aspect ratio on finite element
solution.

FINITE ELEMENT METHOD

Finite element analysis is a method
for numerical solution of field problems. A
field problem requires that determination of
spatial  distribution of one or more
independent variables. Mathematically, a
field problem is described by differential
equations or by integral expressions.
The word finite distinguishes these pieces
from infinitesimal elements wused in
calculus. In each finite element a field
quantity is allowed to have only a simple
spatial variation. The actual variation in the
region spanned by an element is more
complicated. So, FEA provides an
approximate  solution. The particular
arrangement of an element is called mess.
Numerically an FEA mess is represented by
a system of algebraic equations to be solved
for unknowns at the nodes. The solution for
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the nodal quantities when combined with
the assumed field in any given element,
completely determines the spatial variations
of the field in that element.

ADVANTAGES OF FEA

1. FEA is applicable to all
problem.

2. There is no geometric restriction.

3. Boundary conditions and loading are not
restricted.

4. Material properties are not restricted to
isotropy and may change from one
element to other or even within an
element.

5. The components have  different
mathematical behaviour and different
mathematical  descriptions, can be
combined.

The FEA also suffers from mainly two types
of errors, i.e. modeling error and
discretization error. The modeling error can
be reduced by improving the models and
discretization error can be reduced by
increasing elements.

THEORY OF ELEMENT PROPERTIES
Isoperimetric element

For the element description, shape
functions are used to interpolate both the
displacement field and element geometry.
That is, displacement of a point within an
element can be expressed in terms of nodal
degree of freedom and shape function|[N],
which are the functions of reference
coordinates. Similarly  the global
coordinates of a point within the element
can be expressed in terms of global nodal

positions and shape functions [N] which are

also the functions of reference coordinates.
Symbolically
1. Nodal degree of freedom {d}defines

displacements [u,v,w] of a point within
the element, i.e. [u,v,w] =[NJ{d}.

types of
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2. Nodal coordinates {c}defines
coordinates [x,y,z] of a point within the
element; i.e. [x,y,z] =[N]{c}.

The shape function matrices [N]and [N |

are the functions of r,sandt. An element is

[N]and [N] are

identical. If [N is of lower degree than[N],

the element is called subparametric and if

[N|is of higher degree than[N], the
element is called super parametric.

called isoperimetric, if

Bilinear quadrilateral (Q4)

This plane element is a
generalisation of rectangular Q4 element
that removes the restriction to rectangular
shape. The locking effect also appears in
this element. In this, in physical space,
reference coordinates r&s need not be

orthogonal unlike rectangular Q4 element
and need not be parallel to Cartesian
coordinates x and y. Element sides having
coordinates r =+land s=+1 are bisected
by axes r&sregardless of the shape or
physical size of the element and regardless
of its orientation in Cartesian coordinates.
The point r =s=0is normally the element
centre, but in general it is not the centroid of
the physical element. The displacements are
directed parallel to Cartesian coordinates,
not parallel to local coordinatesr &s .

§

1)

Fournode plate element in physical space

Fig. 3.1 An element in Natural Coordinate
System
STATIC CONDENSATION
The internal nodes of any element
do not connect with any node of adjoining

Same element in r & s space
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elements in the assemblage. So, the degrees
of freedom of such nodes do not appear in
the compatibility conditions that are used to
formulate the overall equations for the
structure. The internal degrees of freedom
can be eliminated from the equilibrium
equations of each element so that these extra
unknowns do not increase the number of
overall equations.

SOME ESSENTIAL CRITERIA
Convergence requirements
The finite element method provides

a numerical solution to a complex problem.
It is expected that the solution must
converge to exact solution under certain
circumstances. Hence as the mess is made
finer, the solution should converge to the
correct result and this would be achieved if
the three conditions are satisfied by
assumed displacement functions.

1. The displacement function must be
continuous within the element and it can
be satisfied by choosing polynomials for
the displacement model.

2. The element displacement function must
be capable of representing rigid body
displacements of the elements. That is
when nodes are given such displacements
corresponding to a rigid body motion, the
element should not experience any strain.

3. The element displacement function must
be capable of representing constant strain
states within element. For one, two or
three dimensional elasticity problems the
linear terms present in the polynomial
satisfy the requirement. However, in the
case of beam, plate and shell elements,
this condition will be referred to as
‘constant curvature’ instead of ‘constant
strains’.

Geometric invariance

Besides the convergence and
compatibility requirements, another
important consideration is choosing proper
terms in polynomials expansion is that the
element should have no preferred direction.

This isotropy is known as geometric
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isotropy or geometric invariance. Geometric
invariance is achieved if the polynomial
includes all the terms i.e. polynomial is
complete one. Invariance may also be
achieved if polynomial is balanced, in case
all the terms can not be included.

For example

U=a, +a,X+asy+a,xy (3.1)

It can be achieved from the Pascal triangle
for two dimensional elements.
NUMERICAL DIFFICULTIES

Locking phenomenon (URI & SRI)

A locking phenomenon is a well-
known event in finite element applications.
It may be due to shear locking or membrane
locking, which results when proper order of
integration is used to find out the stiffness
matrix. When Q4 element bents, it displays
shear strain as well as bending strain. When
a Q4 element is bent, its top and bottom
sides remain straight, and each node has
only horizontal displacement of certain
magnitude.

T

|
: I \ / I !
T
| | \ ] | '
f f

1

(a) b)
Fig. 3.2 (a) Deformation maode of rectangular block of material in pure
bending. (b) Deformation mode of the Q4 eleemnt under bending load

Inclusion of transverse shear strains, in
the equations presents computational
difficulties when span to thickness ratio of
plate is large.

For thin plates, the transverse shear
strains are negligible and consequently the
element stiffness matrix becomes stiff and
yields erroneous results for the generalized
displacements. This phenomenon is known
as shear locking, and it can be interpreted as
being caused by the inclusion of the
following constraint in the variational form
(Averill & Reddy, 1992)

ow oW
—=0 and —=0 (3.2
b+ #h+y =0 B2

If the plate is thick, the above condition
does not satisfied and locking does not
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occur. For thin plate the above constraints
are valid but not satisfied in the numerical
model. To avoid this locking phenomenon
URI (uniformly reduced integration) or SRI
(selective reduced integration) technique are
used. When four noded elements is used one
point gauss rule should be used for shear
energy terms while two point gauss rule
should be used for all other terms.

Stress smoothing technique

Using displacement method, it was
reported in the literature that the stresses
obtained from finite element solutions are
discontinuous between elements.

Smoothed Stress Distribution

Unsmoothed Stress Distribution

Fig. 3.3 Smoothed and Unsmoothed Stresses

Hinton & Campbell (1974) devised a
local stress smoothing technique which is a
natural method of sampling stresses in finite
element using reduced integration. Here
local smoothing is done by a bilinear
extrapolation of the stress values computed
at the Gauss points.

(3.3)

Where, o1 to o4 are the smoothed nodal
values and o, to o, are the stresses at the

2 X 2 Gauss points.
THIN PLATE THEORY
Love and Kirchhoff theory

The assumptions in classical plate
theory, which is also known as Kirchhoff
theory, are based upon the assumptions
given by Bernoulli for beams. Love and
Kirchhoff first applied these assumptions to
the plate and shells. Assumptions are as
follows:
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1. After application of the external load, a
lineal element of the plate normal to the
mid surface

(a) Undergoes at most a translation and
rotation, which indicates that lineal
element through the thickness does not
elongate or contract and

(b) Remains normal to the deformed mid-

surface. It shows that shear strains y,,
and y,, becomes zero.
2. The stresses normal to the plate can be
neglected, i.e. o, =0.
Basic Relationships
The stresses in thin plate vary
linearly across the thickness and hence the
stresses resultants can be computed as
M, =] oz
M, =]" o,z

My =M, =",z

[
0, = rna G4

Vectorial notation of external and internal forces
on the element of the middle surface

Fig 3.4 Detailed illustration of various forces

if u, v and w be the displacements at any
point (X, y, z) then the displacement u and v
across the thickness can be expressed in
terms of the displacement w as

u:—z@ v:—z@ (3.5)
0oX oy
the strain distribution is given by
ou o°w
& =—=-1— =1k,
OX oX
ov o°w
g, :5=—z oy? :zky
ou  ov o°w
S L =7k (3.6)
Ty Ty T T Paxey T

and the shear strains y, =y, =0. Thus
problem reduced to plane stress problem.
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The general constitutive law for plane stress

is given by
Oy Cu Cp Cu|| e
Oy r= C, C, Cy &£y
Ty Cyu Cip Cyy Y xy

Conveniently in the case of plate, {M }can

be written in place of {o}.
Hence

Mx 3 Cll C12 C13 kx
{M ]h{cm C,, czaHk] (3.7)

y 12 y

Mxy Cy Cy Cy kxy

ie. Mi=lc, fik.}

In case of isotropic plates, the constitutive
matrix is given by,

s 1 u (6] (38)
[ f]:% w1 0
— ") 1—u
0 2
Mindlin’s Theory
This  theory  includes  shear

deformations in the plates, which was not

considered in the Kirchhoff’s theory. There

are three assumptions in the Mindlin’s
theory of plates as given below:

1. The deflections of plate, w, are small.

2. Normal to the plate mid surface before
deformation remains straight but is not
necessarily normal to it after
deformation.

3. Stresses normal to the mid surface are
negligible.

The average shear deformation, ¢,andg,

are given by

g _o. ™ (39
¢x—9y+ax ¢Y_HX+W (3.9)

the strain energy for the thin plate due to
shear be given as
o] Lo
U= 6 4 [[ 6+ d 6
Where, G modulus of rigidity and is equal
toE/2(1+ u).

Putting the value of ¢, and ¢, from

equation (3.9) and G in equation (3.10)
and simplifying, for an isotropic plate we
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get:

o2 s ’”)[[[ +4] +| —ewafa&
14—y K L&

The expression for the strain energy due to
bending of an isotropic plate can be

obtained as

5: Eh |céﬂ \08\\03\\i\ _,u}_ ﬁ\l iy

] *’cx/ Exﬁ@v'\é‘v' RS
The total strain energy is given by
U=U,+U,

Basic Relationships
The shear stresses 7, &7, and shear
deformations ¢, & ¢, are related as

{sz } _ |:C44 Cus }{@}
TyZ C54 C55 ¢y
the average shear deformations ¢, & ¢, are

constant all over the thickness and allowing
for warping of the x-section, the stress
resultant Q, & Q, can be computed as

o) B 0] [4)
|QJ i J L%-J o =cl 1)
Where, is numerical correction factor
used to represent the restraint of the x-
section against warping. The value of «
commonly used is 5/6 but may be assumed
between 2/3 for section having no restraint
against warping and 1.0 for sections having
complete restraint against warping.

The stress resultants {M }&{Q} can be
combined and for homogeneous plate it can
be expressed as:

13 L e 00 e <ol s
For an isometric plate, using specific values

of coefficient for the consecutive matrix, we
get

00
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1 u 0 00
Eh®
12(1-;,2){” ! 1_01 {0 0}
00 —£ 00
2
Q, 000 Eh [a 0 4,
Q, 000 21+ )| 0 « 4,

In short the above relation can be written as
{{M}} {[Cf] [0]} {{kc}}
{Q} [o]' [c.]] iz}

FINITE ELEMENT FORMULATION FOR
FOUR NODDED BILINEAR PLATE
ELEMENT.
System of Coordinate Axes
Various coordinate system used in the
present formulation are

a. Natural coordinate system

b. Local coordinate system

c. Global coordinate system
In natural coordinate system the axes are
taken as r and s and the coordinates of
elements are taken as unity.
Geometry Representation

Element Geometry and

Displacement Field: both the geometry of
the element and displacement field is
obtained using same polynomial functions
(also called shape functions in FEM
literature). Geometry is expressed by

X = iNixi
i=1
4

y= ZNiyi
i=1

and displacement field is expressed as

(3.13)

(3.14)

0, = ZA: N6,
i=1

Where, the shape function for any i
given by

N, :%(1+ rr, X1+ ss;)

node is
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Displacement Vector
The typical nodal displacement

vector for an element is given as

{d}T =[W1‘9x19y1wz 0 Hyz Wy 6x39y3 w, 0, ‘9y4] (3.15)
The shape function used for describing the
geometry of the element and displacement
variation are expressed in natural coordinate
(r,s). The relationship between two
coordinate systems can be computed by
using the chain rule of partial differentiation
and is given below:

o] |x |9 9

or{_|or or|]ox =3 OX

o |x w||2 o

ds s osloy oy
Where, [J] is Jacobian matrix. Hence, the
derivatives with respect to Cartesian
coordinate system can be given as

9 o
o -
oy os

Jacobian matrix for four nodded element
can be given as

N, &N, oN, oN,] |% W
[0]=| or ~or  or or Xz Y2

ON1 ON2 ON,; oON4

s 0s 0s s

OX OX OX OX | _13T% or or or or
ON, ON, ON, oN, ON, ON, oN; oN,

oy oy oy oy os 0s Os 0s
3.9.4 Strain displacement matrix [B]

The element curvature and shear
deformation {¢},and nodal displacement

N, N, N, oN,1(3.16)
[J]{ }

er N, ON, oN,

{d}are related as
e}, =[Blid}
For getting the each terms of {g}p
differentiate Eq. (3.14) w. r. t. x and y. we
get
2 ON,
k=204

i=1

4 oN, & ON,
K, =iZ:1:9yi 7—;“@ v
¢x*iz:1‘,a)i Ox +§6yiNi
4 ON, 4
¢y:Za)i _zgxiNi
oy i—1

i=1

(3.17)
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Where ON; and N are to be computed
OX oy

from Eq. (3.16)
Eq. (3.17) shows that the elements of vector

{e}, are expressed in terms of nodal
displacements, w, 6, and 6,;. Hence

@,
K 0.
k- “ (3.18)
e}, = {iey L= [BY .
&,
¢y 8><4
(2

This equation can be expressed as

)
{s}p=;[8i]{di} (3.19)
Where ° o . (3.20)
oy
[B,]=| © % %
6(;\)1(, (0] N;

and @;
[d;1=16,
49yi

The stress resultant {o |, can be expressed in

terms of nodal displacements as following
M

M,
o}, =M, [ =[], te},
Q

X

Q,
—[c], > (B, Jid,}° (3.21)
or (o}, =[C],[B{d} (3.22)
Where, Bl- > [e ] (3.23)

Element stifflr;ess matrix
The element stiffness matrix [k] is given by
- JfEr e, (3.24)

The above expression in local coordinate is
written as

[B] dx dy

2
[kl=[[[eI €], (3:25)

[B] |3] dr ds
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The matrix |k|can be written as sum of
bending and shear contributions.

k=[], + kL (3.26)
Substituting k| for [BT [c],[B] in
Eq. (3 25), the stiffness matrix is given by

+1+1

”[k] J|drds

-1-1
+1+1

”[[k] +kl] jojaras  @.27)

-1-1
Gauss quadrature rule is used to compute

the stiffness matrix [k].
Element nodal load vector
The nodal load {Q,}at the node i for a

uniformly distributed load q is given by

{FZ} q (3.28)
Qil=1M, =HN.{0}Jdrds
M A (0]

y

The element load vector {Q} can be
calculated by combining the nodal load

vectors Q} as

o, -
<=
<o
<.
<.
<. S
—a=_=_WwW.wW,|J|
< — =
<=
<s
<o
[ 3
(S 3

B

N

{o) =

A

00lo0Zo0Z00?

(3.29)
Gauss quadrature of 2x2 sampling points is
used to evaluate Eq. 3.29
3.9 RECTANGULAR AND CIRCULAR
PLATE THEORY FOR ANALYTICAL
SOLUTION

The equation for vertical deflection
and moment resultants i.e. My, My, and M,y
are given in the book ‘Theory of Plates and
Shells’ by S. Timoshenko and S. W. Krieger
second edition (1959). These equations for
rectangular simply supported plates are
given as

1 & & a,,
W=——

e e (330

ﬁ4Dm§5,,n:§s,., m? n?
7_'_7
-2

sm—sm—
a b
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Where
ab

a % | jsm—s ngydxdy—mq" (3.31)
00

and m and n are odd integers. If m and n are
both even numbers then a,, =0.

Moment My s represented  as

mt | (3:32)
S 16%[ a2 M J mx . n
d o T
M= > S |2 8 lein M MY
m=135...n=135. 2 m?n? n?n? a b
mnm —+—
a b
m?n®  n’n?
. = |
M > > | —5 sin X gjn 1Y
m135..n o m2x n?r? a b
mnrn > 2
a b
I..- Y
= = 16g, 11— ) :
Moy = Z Z o Ll - cos 2 pos T
mal35 reld s 22 wix? @
|am + 5 |
) ) (3.34)

The defectlon equatlon for simply supported
circular plate is
w = a(a _"2)[5+’”a2 —rzj
64D 1+ 4
Radial moment M, and M is given as

(3.35)

(3.36)
(3.37)

M, =f—6(3+,u)(a2 —rz)

M, :%[(3+,u)a2 —r2(1+3u)]

The deflection and moments for clamped
circular plate are given as

woa@ —rJ (3.38)
64D

M, = %[(1+ waz —r2(3+ #)] (3.39)

M, =1q—6[(l+ wa? —r?1+ 3,u)] (3.40)

Where r is the radial distance of any point
from centre of the plate and a is the radius
of the circular plate.

DESCRIPTION

GENERAL

The present study employs the Computer
program PLATEFEM as provided by
Krishnamoorthy (1994). The program is
written in  the standard FORTRAN
language. Program presented here is only
for the plate bending calculations, which
includes deflections and stress resultants.
The skyline concept has been used in this
program for simplifying the cumbersome
calculation procedure and associated storage
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problems. An effective column storage
scheme is adapted to store the global
stiffness  matrix elements as  one
dimensional array SK. This program is
something different from a finite element
program SAP in view of their capability to
print the shear components , which is not
included in SAP. The various subroutines
are subroutine PASSIN, FELIB, COLUMH,
CADNUM, PASSEM, PASOLV, PASLOD
and DISP.

MAIN PROGRAM

The main program controls the various tasks
of the program. It reads the control
information namely the number of structure
nodes (NSN), number of element types
(NET), number of material property group
(NMP) and number of load cases (NLC). It
stores the dataset of all variables in the
master array A and NA. The execution stops
if the sum total of dimensions of all the
variables i.e. floats or integer exceeds that
of the master arrays A and NA. Three
scratch files ISTRESS, NDARAY and
LEARAY to store stress displacement
matrix, degree of freedom and number of
elements at particular nodes respectively.
After reading the data execution is done in
three segments according to the value of
flag IND. The flow chart of main routine is
given in Fig. 4.1
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START

3

|-

rﬁ;::x MET. 3OMP, 3LC. MEDMAY, MODEY
CALL PASID

DL CALL FELIE

REWIND NDARAY, REWIND BETRESS, REWDIND 1EARAY
i

| READ EIFWENT LOAD MULTIFLIERS AND NUMBER OF LOADED

SIWIESL TOVR 411 TMAT ©ASTL

L]
15 THERE ANY LODED ¥ODES! ==

1

REWDD MDARAY, REWDID IZTRESS, REWDID LEARAY

~==T 5 THEREANY MORE LOAD CASE! ==
L .m.mm:.;::.a.\'.u\-‘sm i
Fig. 4.1 Main Routine of the Program
Subroutine PASSIN
This subroutine is used to read, generate and
print the nodal data. This subroutine is set
up at maximum of six degree of freedom.
Corresponding to each nodal point, it must
then be identified which of these degrees of
freedom shall actually be used in the finite
element assemblage. The flow chart of this
subroutine is given in Fig.2.

Il
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number of first diagonal element being
taken as 1. The flow chart is given below.
J
b
e i s = Aeee T e
| — 1 _
P DIDES J=b) — '.r.-n;-::l_- =TT ) =t
Y
[ IF LIt CI.‘I_‘LI“J_A.']’E ] -
- <L FTE > -
== é
. Fig.3. Subroutine FELIE Fis 5. Subroutine CATDNLNL
Subroutine COLUMH Subroutine PASSEM

The subroutine COLUMH computes the
height of each column of the global stiffness
matrix. The column height refers to the
number of elements in each column below
the sky line and above the leading diagonal
excluding the diagonal element of the global
stiffness matrix.

SET LS—THE SMAIIEST EQUIATION MNiDJIBER OF A11
THE DEGREE OF FREEDCN] OF THE ELEWENT

=

L

SET D-EQUATION NUMBER CORRESFONDING T DU FLI)

Fig.4. SUBFROUTINE COLTURELD

Subroutine CADNUM

Subroutine  CADNUM calculates  the
number of the diagonal element of the
global stiffness matrix. The numbers of the
diagonal elements of the global stiffness
matrix are stored in a separate array called
NDS. The number of diagonal element is
obtained by adding the preceding column
height one to its diagonal number, the

Subroutine PASSEM s called at the second
stage i.e. at IND=2, by each element shape
routine. It assembles the element stiffness
matrix to global stiffness matrix in the form
of one dimensional array SK. The flow
chart of this subroutine is given below

SET -EQUATION MNUMBER CORRESPCMDING TO
THE DLOF. (@)

SET D-EQUIATICN NITUEER CORREIFONDDNG |

To TIEE DLOF. i)

-

i
< BDoF acTvE >
]

[ =3xeog -sxgog-=can

|

-

RETURM

Fiz 6. Snbrontine PASSER

Subroutine PASOLV

Subroutine PASOLV is a direct solution
routine, based on Gauss elimination
technique. It solves the simultaneous
equation for deflection of nodes along the
free degree of freedom. The flow chart is
given below in Fig.7.
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[ mEccososE pgoaro mama s |

RETLURN

REDUCE THE LOAD VECT i}
DITS ) 30 THAT 01 37} — o}

COMPUTE THE MNODAL M‘]’s.‘:: BY
BACK SUBSTITUTION FROM LT =D &'}

RETLURMN

Fig 7. Snbrontin= PASOL W

I'E:l?ca&-cz\mmm ATTHE XOXE |

| AMCCD-CE\'J’I‘_A.TEDMTOM STRIOCTIREOADVECKER |

ARE THERE AN mma;}

m".w_\

Fiz . Snbroutin= PAST. Oy

Subroutine PASLOD

The subroutine PASLOD is called by
main routine for each load case to read and
add the concentrated load in the direction of
each degree of freedom of the node. These
lodes are added to the structure load vector
from the element shapes.
Subroutine DISP
Subroutine  DISP  prints out the
displacements of each node. The
displacement of each node is computed
from the global displacement vector

FIND OUT THE CORRESPONDDNG DISFLACEIENTFROR THE
S1LOEAL DISFLACEENT VECTOR UISDNG MDF ARRAY

] N

15 Ma—aET

FEINT HE X0ODAL DISFLACEMWEDS |

. L
ARE A1l STRUCTLRE ¥0DES PROCESED ==

Fig®. Eanbroutins DIEP
TYPICAL DETAILS OF INPUT DATA
This section describes a sample
input for analysis of plates using computer
program PLATEFEM. A typical input data
has been presented in Appendix A. Herein

Volume 06 Issue 13
December 2019

the brief description of variables along with
their format is presented.

Rezd  Description Format
Statement
Na
1 Title (20A4)
2 NEN, NET.NAE, NLC, NEDMAX, MDOF, IPR Unformatid
whers,

WEN is Totzl Number af Nadss In Stmctuss
WET is Numher af Ele=ment Types=1 for plats slement
WA is Nomber of Materizls Propertiss
WL is Number of Load Cases
NEDMAX i Degres of Freadom At Each Nade =3 far NET=1
IFR.is countss ta print ont nodzl data
(if [PR.= 0, print out; if = 0, suppsess
3 NN, {TRT)I=1.6), ETH), YN, I, NL NCYL

whare,
NN is Node Number
JRILI=146  Six Boundary Conditions

=1, ifdpf isrestrainsd

=0, ifdanf isnotr=streinsd
X({MH) is X ogr coosdinate of nods number

Unformatied

Y{MH) is Y of & coordinats of nods number
INN) is Zcoordinate of nods number
NI is node numhering increment batwesn two nodes for
Futomatic generation of nodzl coardinates zlonzz
3irzizhi line
NYCL {if =1, coordinates input a2 in cylindrical system)
4 LED, PRI, WIND) Unformanad
PRIy Poisson satio of the materiz]
WIDNT) Weight density af materiz]
5 MEL  Totzl nnmber of slements
§ LNURL MG, (MNC(TI=1 4, TH, UL, EI
where,
LNUM  is ElementNomber
MG i3 materizl group to which element belonss

Unformated
Unformated

AN (T, J=14 is Nodal Connectivity of tha slement nodas
TH  is Thickness of Element
UDL isuniformly load zpplisd in vertical disection
EI  isincrement over each element for antomatic data
EEERlAN
ELMT, T=1,NLC
whers
ELM  is ElzmentLosd Multplisr, maybe separze for zach
Samant
] NLN{T.T=1NLC
where,
NLN  is the Loaded Node Number
g NODE. (CNL{I. F1.5)
whars,
NODE is Nods Number
CHL(Ty is Concentraied Load atthe Node Corresponding ta six
deoress of freedomi e B B B ML ML B

OUTPUT DETAILS

The output of program gives
problem title, the controlling parameters
like, number of structure nodes, element
types, material groups and loading
conditions. The nodal degrees of freedom

Unformated

Unformated

Unformated
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and the coordinates for each node is printed.
The number of total equations and the total
number of elements in global stiffness
matrix are printed.

This program also prints the
deflection at each node along three degrees
of freedom i.e. one vertical deflection w and
two rotations and . At each node the
moments i.e. Mx, My and Mxy are also
printed. The constant shear force for each
element is also printed in output file. A
sample of output file is shown in Appendix
A.
PROGRAM
SOLUTION

For analytical solution a FORTRAN
program has been written for simply
supported rectangular plate and another
program in FORTRAN is written in for
simply supported and fixed circular plate.
This program prints deflection and moments
at any location as per requirements. The
units of output file depend upon the units
used in input data. These programs are
shown in Appendix C.

RESULTS AND DISCUSSION

In this chapter the problem for the
validation of programme has been
described. The results obtained from
computer programme are compared with the
solution obtained from analytical solution.
The exact analytical solution procedure for
plates of Timoshenko and Krieger (1959)
has been used.

FOR ANALYTICAL

PROBLEM FOR VALIDATION OF
COMPUTER PROGRAM

A simply supported square plate of
4.0m dimension is taken and analysed for
the vertical deflection (w) and moments Mx,
My, and Mxy. The thickness of plate is
0.12m and modulus of elasticity of material
is taken as 2x107 kN/m2. This result has
been compared with the results obtained
from the exact solution and it was found
that computer programme is giving results
close to those obtained from exact solution
method. The discretisation scheme used is

Volume 06 Issue 13
December 2019

shown in Fig. 5.1 and results for w, Mx and
Mxy are shown in Table 1(a) & (b).

PLATE PROBLEMS ANALYSED

For further analysis the rectangular plate
of least dimension 4.0m with thickness
0.12m are taken with simply supported and
fix boundary conditions. Other dimension of
rectangular plate is decided on the basis of
aspect ratios, viz., 1.0, 1.2, 1.4, 1.6, 1.8 and
2.0. A set of circular plates of 4.0m
diameter and thickness 0.12m are also
analysed. The modulus of elasticity is taken
as 2.0 x 107 kN/m2.

Plate boundaries and support conditions

The different plate boundaries which
are taken for the analysis are square,
rectangular and circular, with all edges
simply supported and all edges built-in. The
plate boundaries are shown in Figures from
Fig. 1 to Fig. 8. Support conditions for
rectangular plate are shown in Fig. 5.1-5.4.
Fig. 5.5 shows the one quadrant of the plate
for both simply supported and fixed
boundary. Fig. 6 shows the circular
boundary for both simply supported and
fixed boundary conditions.
Discretization scheme

The discretization schemes adopted
for rectangular plate are 4x4, 6x6, 8x8 &
10x10. This means that the plate is divided
into four parts in X and Y both directions
for the discretisation of 4x4. Similarly for
6x6, 8x8 & 10x10 schemes the plate is
divided into 6, 8 and 10 parts in both the
directions. These different schemes are
presented in Fig. 5.1 to Fig. 5.5 for
rectangular plates and from Fig. 5.6 to Fig.
5.8 for circular plate. In Fig. 5.6, Fig. 5.7
and Fig. 5.8, the discretisation is shown for
the one quadrant of circular plate. The
actual boundary is shown in these figures in
arc form, passing through outer nodes
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2 21 22 23 24 4 21 22 23 24 3%
6 1B 1 6 8
11 12 1 14 1 1 1 1, 1, 1
6 7 9 1 6 7 9 1
1 3] 4] 5 1 4 5
7/
(a) Simply Supported Plate (b) Fixed Edge Plate e Thougho
Fig. 5.1 Rectangular Plate (4x4 discretisation) Fig. 5.6 Discretisation of circular plate of 4.0m dia.
13 44 4! 4 47 4 4 43 44 4! 4

SS
sS

T 2 4 5 7

(a) All Edges Simply Supported (b) All Edges Built in

Fig. 5.2 Rectangular Plate (6x6 discretisation)

3 18,705,708 9 80 75,76, 9

64
55

46
4l

37

28

19

10

g 6 7

5 6 7
(a) All Edges Simply Supported (b) All Edges Built-in

Fig. 5.3 Rectangular Plate (8x8 discretisation)

10

Idealised Boundary

b - -
Circular Plate (Simply Supported and Fixed)
(20 Elements)

Fig. 5.7 Discretization of one quadrant of circular
plate of 4.0m dia

Actual Boundary

11 112 113 114 115 116 117 118 119 120 121

110

10

Circular plate (simply supported and fixed) x

(28 elements)

(36 elements)

Fig. 5.8 Discretization of one quadrant of circular
plate of 4.0m dia.

RESULTS IN TABULAR FORM

The results obtained from the finite

4 9 10 I 4 7 8 9 10 1

(a) All Edges Simply Supported (b) All Edges Built-in

Fig. 5.4 Rectangular Plate (10x10 discretisation)
.

- 41

31

(10x 12 discretizatiom)

Fig. 5.5 Discretised figure of 4.0m x 4.8m size plate
(one quadrant)

element analysis and analytical analysis for
vertical deflections, moment resultants Mx
and Mxy for simply supported and fixed
edges rectangular plate are presented in
tabular form in Table 1 to Table 13. Table 1
to Table 6 are the results for simply
supported rectangular plate with the aspect
ratio 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. Table 7
presents the deflections and moments at
various points in SS rectangular plate for
plate aspect ratio 1.2 to 2.0, when elements
aspect ration is taken as 1.0. The results for
fixed edges rectangular plate with the aspect
ratios 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 are
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shown in Table 8 to Table 13. In Tablel4
&15 the vertical deflections and moment
resultants Mr & Mt obtained from finite
element solution and analytical solution are
presented for circular plate with simply
supported edges and fixed edges. The units
used for vertical deflection (w), moment
resultants Mx and Mxy, in case of
rectangular plates and Mr and Mt in case of
circular plates are millimetre (mm) and kN-
m.

My is not presented here because in
square plate My is same as Mx. For
rectangular plates the maximum value of
My is same as the value of Mx of a square
plate of dimension same as the shorter
dimension of rectangular plates.

Table 5.1(a): Simply Supported plate with aspect ratio = 1.0, =015

Finite Element Solution Analvytical solution

x(m) 4 x4 discretisation 6 x 6 discretisation

w M, My w M My W M My
0.00 0.00 16 310 | 0.00 120 | -330 | 0000 | 000 | 370
0.67 -110 [ 230 | -2.80 | -110 | 260 | -2.90
100 | -140 290 | -2.10 -150 | 330 | 230
134 -180 [ 360 | -1.50 | -1.80 | 3.70 | -1.60
200 | 200 | 400 [ 000 | 210 [ 400 000 | 210 | 400 [ 0.00

Table 5.1(b): Simply Supported plate with aspect
ratio=1.0, £ =0.15

Finite Element Solution Analytical solution

x(m) 8 x 8 discretisation 10 x 10 discretisation

w Msx Mey w M Mey w M- Myy
0.00 0.00 0.99 -3.50 0.00 0.83 -3.50 | 0.000 0.00 -3.70
0.40 -0.67 1.70 -3.30 | -0.67 1.80 -3.40
0.50 -0.82 1.90 -3.10 -0.83 2.10 -3.20
0.80 -130 2.80 260 | -130 2.90 -2.70
1.00 -1.50 320 -2.20 -1.50 330 -2.30
120 -1.70 3.50 -1.80 | -1.70 3.60 -1.80
1.50 -1.90 3.80 -1.20 -1.90 3.80 -1.20
1.60 3.90 -093 -2.00 3.90 -0.94
2.00 -2.10 4.00 0.00 4.00 0.00 -2.10 4.00 0.00

Table 5.2(a): Simply Supported plate with aspect
ratio=1.2, x=0.15

Finite Element Solution Analytical solution

xm) | 4 x 4 discretisation 6 x b discretisation

Ww M; Mz Ww M; Mg W M; My
000 | 000 | 220 | -360 | 000 | 160 | -390 | 000 | 000 | 430
0.67 150 | 300 | 330 | -150 | 330 | 350
100 | 200 | 380 | -2.50 210 | 430 | 270
134 250 | 480 | -180 | 250 | 490 | -190
200 | -280 | 530 | 000 | -290 | 540 | 000 | -290 | 540 | 000

Table 5.2(b): Simply Supported plate with aspect
ratio =1.2, 4 =0.15

Finite Element Solution Analytical solution

x(m) § x § discretisation 10 x 10 discretisation

w M; My W M; My w M; My
0.00 0.00 130 | 410 | 000 110 | 410 | 000 000 | 430
040 092 | 210 | -390 | 092 | 230 | 400
050 | -1.10 | 250 | 370 -110 ) 270 | 380
0.80 -170 ] 370 | 310 | -L70 | 380 | 320
1.00 210 | 420 | 2270 210 | 430 | 270
120 240 | 470 | 220 | 240 | 470 | 220
1.50 270 | 500 | -140 270 ) 510 | -140
1.60 280 | 520 | -110 | 270 | 520 | -110
2.00 290 | 540 | 000 | -290 | 540 | 000 | 290 | 540 | 000
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Table 3.3(a): Simply Supported plate with aspect ratio =1.4, p=0.13

Firute Element Solution Analytical solution
¥im) | 4 & 4 discretisation | 6 x 6 diseretisation
W M, | My W M, | My | w M, | My
000 [ 000 | 270 [-380 | 000 | 180 | 430 | 000 | 000 | 470
067 180 | 360 | 360 | -L70 | 400 | 380
100 | -230 [ 470 | 170 -260 | 320 | 300
134 310 | 390 | 200 | 310 ] 600 | 210
200 [ 350 | 630 | 000 | 360 | 660 | 000 | 360 | 670 | 000
Table 5.3(b): Simply Supported plate with aspect ratio =1.4, u=0.13
Fmite Element Sohtion Analytical solution
x(m) | 8 x § discretisaion | 10 x 10 discretisation
W M, M, W M, M, W M, My
0.00 [ 0.00 130 | 440 | 0.0 130 [ 430 | 000 [ 000 [ 470
040 10 230 [ 420 ] 10| 270 | 440
030 [ -140 | 300 | 400 140 ] 320 | 420
0.80 220 ] 440 [ 330 ] 220 450 | 330
100 | -260 | 310 | 290 260 | 320 ] 300
120 300 ] 370 | 240 ] 290 | 380 | 230
130 | 330 | 630 | -130 330 630 ] -1.60
1.60 340 120 | 340 640 ] 130
200 [ 360 | 660 | 0.00 | -3.60 0.00 | -360 | 670 | 000
Table 3.4(a): Simply Supported plate with aspect ratio =16, =013
Firate Element Solution Analytical solution
xm) | 4 x 4 discretisation | 6 x 6 discreisation
wo | My | Mg | w | My | Mg | w M | My
000 | 000 | 310 | 400 | 000 | 220 | 440 | 000 | 000 | -5.00
0467 10 | 410 ) 380 | 220 | 4530 | 410
100 | 5300 | 340 | 280 300 | 600 | 320
134 70| 680 | 210 [ 370 | 700 | 220
200 0 420 [ 730 [ 000 [ 420 [ 770 [ 000 | 420 [ 770 | 0400
[Table 3 4(b): Simply Supported plate with aspact ratio =16, p=0.13
Fmnite Element Solution Analytical solution
x(m) | § x 8 discretisation | 10 x 10 discretisation
w | M, | My, | w | M, | M. | w | M, | M.
000 | 000 [ 180 | 460 | 000 | 1.50 | 480 | 00 0.00 | -3.00
040 -130 | 280 | 440 | <130 | 300 | 460
030 | -160 | 340 | 420 70| 360 | 440
0.80 230 ) 3010 | 2360 | 250 | 320 | 370
100 | -3.00 | 380 | 310 S00 | 600 | 320
120 330 [ 660 [ 260 | 330 ] 660 | -2.60
130 | 390 [ 720 | -160 380 730 [-170
1.60 400 [ 740 [-130 ] 400 ] 730 | -130
200 [ 420 [ 770 [ 000 [ 420 [ 770 [ 000 [ 420 770 | 0.00

Table 3.3(a): Simply Supported plate with aspect ratio =1.8, p=0.13

Table 5.5(a): Simply Supported plate with aspsct ratio =1.8, u=0.13

Finite Element Solution Analytical solution

x(m) 4 x 4 discretization 6 x 6 discrehization

W M, My w M, M. W M, M.
0.00 0.00 350 | 400 0.00 250 [ 450 [ 000 000 | 53320
0.67 240 | 460 | 380 | 240 500 | 420
1.00 330 [ 600 | -280 -340 660 | 330
134 4.10 730 | -2.10 [ 410 770 | 230
200 470 | 840 0.00 470 350 000 [ 470 3.60 0.00

Table 5.5(b): Simply Supported plate with aspect ratio =1.8, p=0.15

Finite Element Sohiton

Analytical solution

x(m) 8 x & discretization 10 x 10 discretization

W M, M. W M, M., W M, M.
0.00 0.00 100 | 480 [ 0.00 160 | 490 [ 0.00 0.00 | 330
0.40 -150 [ 310 | 460 [ -T50 [ 330 | 480
030 -1.80 [ 370 | 430 -190 | 390 [ 460
080 280 [ 560 [ 380 280 [ 570 [ 350
1.00 340 [ 640 [ 320 340 [ 660 [ 330
1.20 300 | 730 | 260 | 380 | T30 [ 270
150 -4.40 8.00 -1.70 -4.40 8.10 -1.70
1.60 430 [ 830 [ -140 [ 430 [ 830 | -140
2.00 470 | 8460 0.00 480 [ 860 0.00 470 | 860 0.00

Table 5.6(a): Simply Supported plate with aspect ratio =2.0, x=0.13

Finite Element Solution Analytical solution

x(m) 4 x 4 discretization 6 x 6 discrehization

W M, My w M, My W M, M.
0.00 0.00 380 [ 040 0.00 I70 [ 460 [ 000 000 | 5330
067 260 [ 490 [ 390 | -260 530 | 430
1.00 -3.60 630 | -2.80 370 710 | 340
134 430 $10 | 220 | 430 330 | 230
200 -5.10 5.10 0.00 -3.10 920 000 [ 520 930 0.00
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Table 5 6(b): Simply Supported plate with aspect ratio =2.0, x=0.153 Table 5.10(b): Clamped plate with aspect ratio =1.4, 4=0.30
Finite Element Solution Analytical sohution _ F‘ﬂi_m Element Solution B Analytical solution
x(m) % x 8 discretisation 10 x 10 discretisation x(m) 8 x % discretisation 10 x 10 discretization
" M., | ML " M, | ML ” M, | L, W M, | M. W WM, [ M. W WM, | M.
D00 | 000 | 210 | 480 | 000 | 1.70 | 490 | 000 | 000 | 330 000 | 000 | 440 | 000 | 000 | 490 | 000 | 000 | 683
040 160 | 330 | 460 | 160 | 390 | 490 040 _| 015 ] 510 | 022
050 | 200 | 400 | 440 200 | 470 | 470 050 | 018 | -2.40 | -0.27 _ _
080 310 | 600 | 3.80 | 310 | 610 | 4.00 080 _ 041 | 0078 ] 027
100 | 3.00 | 600 | 320 3.0 | 7.0 | 340 100 | 036 | 094 | 022 _
120 3720 | 780 | 270 | 420 | 700 | 280 1320 _ _ 070 | 190 | 033
150 | 480 | 870 | 170 I80 | 880 | 180 150 [ 087 [ 270 | 0.16
160 390 | 800 | -140 | 490 | 900 | -140 1.60 091 | 300 | 0.12
700 | 520 | 020 | 000 | 520 | 930 | 000 | 520 | 930 | 000 200 [ 098 [ 330 | 000 | 099 [ 330 [ 000 | 106 [ 328
Table 3 7(a): Simply Supported plate with aspect ratio =12 to 2.0, u=015 Table 5.11(a): Clamped plate with aspect ratio =1.6, p =030
Fimite Element Solution Analytical solution
10x12 discretization 10x14 discretization 10x16 discretization x(m) 4 = 4 discretisation 6 = 6 discretisation
X — M, | M, W M, | M, W M, | M, W M, | M. W B, [ M, | w L [ Mo
0.00 | 0.00 | 1.10 | 420 | 000 | 130 | 460 | 000 | 1350 | 480 D00 | 000 [ -330 [ 000 [ 000 [ 430 [ 000 | 000 [ -T33
040 | 002 | 210 | 300 | -1.10 | 2350 | 430 | -130 | 280 | 430 0.67 _ 031 ] 160 | 034
080 | 170 | 3.0 | 3.10 | 220 | 440 | 330 | 230 | 500 | 3.70 100 | -054 | 020 [ -038 _ _
120 | 240 | 470 | 220 | 250 | 570 | 240 | 340 | 630 | 2.60 134 _ 085 | 240 | 025 _ _
160 | 280 | 520 | 1.10 | -340 | 640 | 130 | 4.00 | 740 | 130 200 | 110 [ 370 [ 000 | -1.10 [ 360 [ 000 | 1.17 | 358
200 | 200 | 540 | 020 | 360 | 660 | 032 | 420 | 770 | 034 Table 5.11(b): Clamped plate with aspect ratio =i 6, u=030
5 TR S . : - T —_n1s Fmite Element Solution Analytical solution
Table 3.7(b): Simply Suppartedplate with aspect ratio =1 2t0 2.0, u=0.15 () % T Eecreteation 10 % 10 decefsation
. — - S W M, L. w : M, w M, M,
10x18 discretization 10x20 discretization 000 | 0.00 | 480 | 000 | 000 | 530 | 000 | 000 | 733
x(m) w , . w , M, 040 1% | 340 | 023
0.00 0.00 1.60 3.00 0.00 1.70 3.10 030 [ 020 | 270 | 038
0.40 -1.50 3.10 4.70 -1.60 3.30 4.70 0.80 043 [ 022 ] 038
0.80 -2.80 5.50 3.80 -3.10 3.90 3.90 100 | 061 050 [ 029
120 300 720 270 420 780 270 120 [ 078 [ 150 [ 033
160 450 220 1.40 400 2.00 1.40 150 [ 096 | 250 [ 017 j
200] 470 850 035 ER] 9.0 036 L.60 110 | 320 | 013 1
Table 3.8(a): Clamped plate with aspect ratio =1.0, y=030 P e e LA e e R
able 5.8(a): ly =10, u=0. -
- pecp ? — - Table 3.12(a): Clamped plate with aspect ratio =18, u=030
Firute Element Solution Analytical solution - - : - -
T+ 7T Jooetiaat g T - Finite Element Solution Analytical solution
x(m) X scretisation X scretisation x(m) | 4 x 4 discretisation 6 x 6 discretisation
W M, My W M, My W M; Mg w M, My W M, M. w M; M.
000 | 000 | -180 | 000 | 000 | -250 | 000 | 000 | 483 0.00 | 0.00 [ -360 | 000 | 000 | 450 [ 0.00 | 000 | -764
067 018 | 070 | 028 067 032 [ -170 | 0534
100 | 030 | 023 | 033 100 | 038 | 017 | 036 _
134 048 ] 170 | 019 _1}.3-1 _ 089 | 240 [ 033 Bl —
700 | 030 | 230 | 000 | 060 | 220 | 000 | 06| 10T 200 | 120 [ 390 [ 000 | 110 [ 3 00 [1B1] 377
Table 3.12(b): Clamped plate with aspect ratio =18, u=030
Table 5.8(b): Clﬂ_mPEd plate with ?SP“”‘GH'O =10, 4=0 30_ i Finite Element Solution Analytical solution
[ Finitz Element Solution Analytical solution x(m) | 8 x 8 discretisation | 10 x 10 discretisation
x(m) | § x 8 discretisation 10 x 10 discretisation W M, M, W M, M, W M, M,
w [ ML [ Mo | v [ M [ Mn | v [ M [ Ve 000 | 000 | 510 | 000 | 000 | 360 | 000 | 000 | 764
000 | 000 [ 200 ] 000 [ 000 [ -320 [ 000 [ 000 | 483 040 015 | 360 | 014
040 0086 | -190 | 018 030 | 021 | 280 | 029
0.50 012 | -140 | 022 080 047 | 032 | 030
030 _ 027 [ 02 100 | 061 | 086 | 030
100 | 035 | 089 | 022 120 T8 [ 150 [0
1.20 044 140 [ 016 150 T00 T 300 7Te
150 | 034 190 | 012 - - —
T80 037 [ 200 |90% 1.60 _ S T I E I
700 | 068 | 220 | 000 | 061 | 220 [ 000 [ 06| 207 200 | 120 [ 370 | 000 | -120 | 330 [ 000 [1B51] 377
R . Table 5.13(a): Clamped plate with aspect ratio =2.0. =030
Table 5.9(a): Clamped plate with aspect ratio =1.2, u=030
Finite Flement Solution Analytical solution Finite Element Solution Analytical solution
x(m) | 4 x 4 discretisation 6 x 6 discretisation x(m) | 4 x 4 discretization 6 x 6 discretisation
W M, | My W M, | My [ M. | My W M, | M, W M, | My | » M, | M.
000 | 000 | 250 [ 000 | 000 | 333 | 0.00 | 0.00 | 6.01 000 | 000 | 370 | 000 | 000 | 460 | 000 | 0.00 | -7.80
067 024 1 -110 | 031 067 033 | -180 | D34
100 | 042 | 032 | 037 100 | 061 015 | 034
1.34 063 | 200 | 022 134 091 [ 240 | 023
200 | 081 | 3.00 | 0.00 082 [ 290 [ 000 | 0879 ] 281 200 | -120 | 400 | 000 | -120 | 380 | 000 [129%8 [ 388
Table 3.9(b): Clamped plate with aspect ratio =1.2, g =030 Table 5.13(b): Clamped plate with aspect ratio =2.0, 1:=030
Finite Element Salution Analytical solution Finite Element Solution Analytical solution
wfm) 8 x & discretisation 10 x 10 discretisation x(m) T % ¥ discrefisation 10 % 10 discrefisation -
i M, | My w M, | My W M, | My W M. | M. W M. | M. W M. M.
000 | 000 [ 380 [ 000 | 000 [ 420 | 000 | 000 [ 601 0.00 | 0.00 | 520 | 000 | 0.00 | 570 | 0.00 | 000 | 780 |
040 011 ] 260 | 020 040 015 | 380 [ 023
030 [ 016 [ -190 | -025 0350 | 021 | 200 | 035
080 _ 033 10090 [ 033 080 040 | 030 | 030
100 | 047 | 004 | 026 100 | 066 | 081 | 031
120 059 | 170 | 019 120 084 | 200 | 035
150 | 073 | 240 | 015 150 | 110 | 3.00 | 0.1%
160 077 | 260 | 010 160 110 | 340 | 014
700 | 082 | 780 | 000 | 083 | 780 | 000D | 0870] 281 200 | 120 | 3.80 | 000 | -1.20 | 3.80 | 0.00 | 1298 | 3.88
B . Table 5.14(a): Circular plate (simply supported), diameter=4.0m, p=0.15
Table 5.10(a): Clamped plate with aspect ratio =1.4, u=030
Finite Element Sclution Analytical selution Finite Element Solution Analytical solution
x(m) 4 x4 discretisation 6 x 6 discretisation E(m) 17 clements 30 elements h
W M, | M, w M, [ M, W M, | M - L n - n N e i N
000 | D00 | -250 [ 000 | 000 | 350 | 000 | 000 | 685 000 | 170 | 380 | 380 | 170 | 380 | 360 | 220 | 460 | 460
0.67 028 | 140 | 033 067 T30 | 340 | 380 | 190 | £10 | 440
100 | 049 | 024 | 038 __ 100 | 110 | 250 | 340 160 | 350 | 410
134 077 | 230 | 024 134 078 | 100 | 300 | 110 | 260 | 3.70
700 | 006 | 340 | 0.00 | 007 | 330 | 000 | 106 | 328 oLV KT T T e 2 XL O R}
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Table 5.14(b): Circular plate (simply supported) diameter=4 0m_u=10.15

Finite Element Solution Analytical solution

E(m) 28 elements 36 elements

W M, M, w M, M, W M, M,
0.00 1.70 390 [ 390 1.60 400 [ 400 220 | 460 | 460
040 150 370 390 210 [ 440 | 450
030 1.30 360 [ 3900 210 [ 430 ] 4350
080 130 320 | 3860 1.80 300 [ 430
1.00 110 280 [ 340 1.60 350 [ 410
120 0.4 240 [ 3320 1.30 3.00 390
130 061 1.60 2180 083 200 340
160 045 130 270 0.69 170 330
2.00 0.00 0.77 220 0.00 0.66 220 0.00 0.00 250

Table 3.13(a): Circular plate (clamped boundaries), diameter=4.0m, 4 =0.13

Finite Element Schtion
R(m) 12 elements 20 elements
W M M [ M, M W M M
0.00 043 140 1.40 0.40 1.30 130 030 1.70 170
0.67 028 0.94 130 030 120 130
1.00 018 0.17 1.10 038 0.33 120
134 0.10 033 | 060 0.13 037 | 074
200 0.00 130 | 038 0.00 -150 | 027 [ 0.00 200 | 044

Analytical solution

Table 5.15(b): Circular plate (clamped‘bnundaries) diameter=4.0m, 4 =0.15

Fuute Element Solution
Rim) 28 elements 36 elements

Analytical solution

W M, T, W M, | M, W T, T,
000 | 038 | 150 | 150 | 038 | 150 | 150 | 030 | 170 | 1.70
740 033 | 130 | 140 | 046 | 150 | 160
050 | 032 | 120 | 140 044 | 140 | 160
080 035 | 0.4 | 120 | 030 | 095 | 130
T00 | 020 | 034 | 098 D28 | 053 | 120
120 014 | 0056 077 | 020 | 0023 | 092
150 | 0.064 | 000 | 030 0055 | 001 | 049
160 0044 | -1.20 | 025 | 0065 | -130 | 033
700 | 000 | 170 | 028 | 000 | 1.80 | 020 | 000 | 290 | 044

RESULTS IN FIGURES
The results tabulated are presented

in graphical form for wvariation of
deflections and moments along the central
line of the square and circular plates only
with simply supported and fix boundary
conditions for the sake of convenience.
Descriptions of Figures for deflection and
moment patterns are given below from Fig.
5.9 to Fig. 5.19.
Variation of deflection

Fig. 5.9 shows the variation of vertical
deflection w along central line in SS
rectangular plate with various
discretisations. It shows very close variation
of finite element solution with analytical
solution. Fig. 5.12 shows the variation of
displacements along central line in fixed
square plate. Fig. 5.14 represents the
variation of vertical deflection along radius
of simply supported circular plate. Fig. 5.17
shows the variation of deflection along the
radius of circular plate with fixed
boundaries. This graph represents that the
deflections are close to analytical values but
not tend to converge with increasing the
number of elements.
Variation of Moment (Mx and Mxy)

Volume 06 Issue 13
December 2019

Fig. 5.10 shows the variation of Mx along
central line in SS rectangular plate with
different  discretisation.  This  figure
represents the convergence of FEM value to
analytical value with increasing the number
of elements. Fig 5.13 represents the
variation of moments Mx in fixed
rectangular plate. For positive moment the
value from FEM is very close to analytical
value but for support moment these values
differ considerably. Fig. 5.11 represents the
variation of Mxy along the SS edge. This
represents that the results from FEM
converges to analytical solution with
increasing the number of elements.

Variation of radial moment (Mr)

The variation of radial moment Mr along
radius is presented in Fig 5.15. The results
obtained from FEM are very near to
analytical solution but to not fully converge
with increasing the number of elements.
Fig. 5.18 represents the variation of Mr
along the radius of fix circular plate.

Variation of tangential moment (Mt)

Fig. 5.16 shows the variation of tangential
moment Mt along radius in SS circular
plate. The FE solution follow the same
pattern as exact solution but have
approximately uniform difference between
the FEM values and exact values. Variation
of Mt along radius of fixed circular plate is
presented in Fig. 5.19.

° o5 Vvalue gf X(m)

0 G

1.5 2

-0.5 FEM 16 elements
FEM 36 elements
FEM 64 elements
FEM 100 elements

Ana. Soln.

1 4

1.5 4

Deflection (mm)

Oxp 0o

2

-2.5 ]

Variation of displacement at y=b/2
. 5.9 Variation of displacement w, along mid-line
(Simply supported rectangular plate)

I
Q

Available online: https://journals.pen2print.org/index.php/ijr/

Page | 817



- ® International Journal of Research

e-ISSN: 2348-6848
p-ISSN: 2348-795X

g Available at https://journals.pen2print.org/index.php/ijr/

IJR

Volume 06 Issue 13
December 2019

Variation of moment along y=b/2
5
§ 4 _poa-ars - o FEM 16 elememnts
< 2 o FEM 36 elements
3 e
e a FEM 64 elements
2 o - R’g x FEM 100 elements
18 o Ana. Scln
[N . :
0 0.5 1 1.5 2
Value of X (m)

Fig. 5.10 Variation of M, along mid-line
(Simply supported rectangular plate)

Variation of moment (Mxy) along the edges

o 0.5 1 15 2

FEM 16 elements
FEM 36 elements
FEM 64 elements
FEM 100 elements
Ana. Soln.

Moment (Mxy)
N
Ox > 0o

Value of X(m)

Fig. 5.11 Variation of moment about X-axis along
edges
(Simply supported rectangular plate)

Variation of deflection along y=b/2
o) 1 2

03
€ 0.2 © FEM 16 elements
E o FEM 36 elements
.é -0.4 4 A FEM 64 elements
é x FEM 100 elements
L -0.6 A
o O Ana. soln.

-0.8
Value of X(m)

Fig. 5.12 Variation of w along mid-line
(Clamped Rectangular plate)

Varation of moment along y=b/2

FEM 16 elements
FEM 36 elements
FEM 64 elements
FEM 100 elements
Ana. Soln.

Qx> oo

Moment (Mx)
GAhONPrORN®

Value of X(m)

Fig. 5.13 Variation of M, along mid-line
(Clamped Rectangular plate)

Variation of displacements along radius

0 0.5 1 1.5 2
(0]
£ 0.5 <& FEM 12 elements
E 14 o  FEM 20 elements
§ & FEM 28 elements
s 153 X FEM 36 elements
8 -2 4 o Ana. Soln.
-2.5

Value of radius from centre (m)

Fig. 5.14 Variation of vertical deflection w along
radius
(Simply supported circular plate)

Variation of radial moment along radial direction

g © FEM 12 elements
g O FEM 20 elements
5 a FEM 28 elements
é x FEM 36 elements
8 O Ana. Soln.

o

Radius (m)

Fig. 5.15 Variation of radial moment M;, along
radius
(Simply supported circular plate)

Variation of tangential moment (Mt) along radius

o]

S 459
= 4° & FEM 12 elements
2 3‘5' [ O FEM 20 elements
g 3
£ - A FEM 28 elements
s 2] o FEM 36 el t
g .5 ~d x elements
2] 5 © _Ana. Soln.
5
=15

o 05 1 15 2

Radius (m)

Fig. 5.16 Variation of tangential moment M, along
radius
(Simply supported circular plate)

Variation of deflection along radius

= © FEM 12 elements
£ o FEM 20 elements
.é a FEM 28 elements
é x FEM 36 elements
a8 © Ana. Soln.

Radius (m)

Fig. 5.17 Variation of vertical deflection w along
radius
(Fixed circular plate)

Variation of radial moment along radius

s o FEM 12 elements
g o  FEM 20 elements
g a FEM 28 elements
é x FEM 36 elements
3 O Ana. Soln.

o

Radius (m)

Fig. 5.18 Variation of radial moment M, along radius
(Fixed circular plate)

Variation of tangential moment along radius
2

s
g 15§ & FEM 12 elements
g 1] o0 FEM 20 elements
€ A FEM 28 elements
_g 0.5 x FEM 36 elements
S o o Ana. Soln.
S T T T
©
= 0.5 1 15 \i

0.5

Radius (m)

Fig. 5.19 Variation of tangential moment along
radius
(Fixed circular plate)
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VARIATION OF
SELECTED POINTS
The description of figures from Fig.
20 to Fig. 31 for the values of deflections
and moments at particular points are given
below.
Deflection variation
Fig. 5.20 shows the variation of deflection
at the centre of SS rectangular plate with
number of elements. This figure shows that
the FEM values converge to exact solution
with increasing the number of elements.
Fig. 5.23 represents the values of deflection
at the centre of fixed rectangular plate. This
figure represents the rapid convergence of
deflection values obtained by FEM to exact
analysis solution. Both values differ but not
converge with increasing the number of
elements. Fig. 5.29 represents the variation
of vertical deflection at centre of the
clamped circular plate. But here results are
out of trends. The FEM results differ
increasingly from exact value with
increasing the number of elements. This
may be due to approximate geometry and
mess discretization technique adopted near
the central zone.
Bending and torsion moments variation
Fig. 5.21 represents that the value of My at
the centre of SS rectangular plate fully
converge with exact solution, for increasing
the number of elements from 16 to 100. Fig.
5.24 represents the values of My at the
centre of fixed rectangular plate and
converges to exact value with increasing the
number of elements. Fig. 5.25 represents the
values of My at the support at central line in
fix edges rectangular plate.  The
convergence of values is shown in the
Figure. Fig. 5.22 represents the value of My,
obtained from FEM at the corner node of SS
rectangular plate converges with increasing
the number of elements.
Variation of radial moment M,
Fig. 5.27 represents the variation of M, at
the centre of SS circular plate. These values
converge slowly with increasing the number
of elements. Fig. 5.30 shows the variation of

VALUES AT
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M; at the centre of clamped circular plate.
Here the FEM results converge to exact
value with increasing the number of
elements.

Variation of tangential moment My

Fig. 5.28 represents the variation of M; at
the supports with the number of elements.
This figure shows the convergence of FEM
value to exact value with increasing the
number of elements from 12 to 36. Fig. 5.31
shows the variation of M, at support of
clamped circular plate. The FEM result
converges to exact value on increasing the
number of elements.

CONCLUSIONS

On the basis of results obtained from

analysis  the  following  significant

conclusions are drawn.

e The study of rectangular and circular
shape plate with simply supported and
fixed boundary conditions shows the
potentiality —of computer program
developed especially to analyse the
plates. This program is applicable to thin
plates of any shape with all possible
boundary conditions.

e The difference in the results obtained
from FEM and exact solution, shows the
effect of discretization and this type of
error can be reduced by increasing the
number of elements.

e The results confirm the shear locking
effect in the Q4 element, which reduces
with decreasing the size of elements.
Because shear force is computed at the
central Gauss point of the element and
are constant throughout the element.
Smaller elements show smaller shear
forces and hence better results are
obtained.

e The aspect ratio of the element does not
show any effect on the nodal values.
Numbers of element affect the nodal
values.
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For fix boundaries the element shows
their non usability for calculation of
negative moments at supports.

FUTURE SCOPE OF STUDIES

The same analysis can be done using
eight noded, three noded and six noded
isoparametric element, which confirm the
geometry of curved boundary and
quadratic interpolation. The relative
performance of these elements can be
compared and suitability of the elements
can be checked for the bending analysis.
Results obtained from analysis for
various shapes of plates can be compared
for their relative stability at different
parameters.

The best four noded element is square
element, so the effect of the shape of four
noded elements at centre of the circular
plate can be analysed.
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