Nolocal Problems In Half-Selected Half For Equipment

N. K. Bahodirov
Fergana Polytechnic Institute

Annotation: This article explores the non-zero conditional problem for the elliptic type equation. The uniqueness of the solution to the problem is proved by the principle of Zarembo-Jiro, and the existence of a solution is proved by the use of a Drix le problem.
Keywords: the decomposition equation, the zero problem, the Zarembo-Jiro principle, the Drixle problem.
I. Issue. $\Omega=\{(x, y):-\infty<x<+\infty, y>0\}$ Let us look at this perturbed differential equation of the elliptical type in the

$$
\begin{equation*}
y^{m} u_{x x}+u_{y y}=0, \quad m=\text { const }>0 . \tag{1}
\end{equation*}
$$

Ω of the sector $S=\{(x, y):-\infty<x<+\infty, y=0\}$ subdivide three he border

$$
\begin{gathered}
l_{0}=\{(x, y):-1<x<1, y=0\}, l_{1}=\{(x, y):-\infty<x<-1, y=0\}, \\
l_{2}=\{(x, y): 1<x<+\infty, y=0\}
\end{gathered}
$$

Now, make notes. I mean, $S=l_{1} \cup \bar{l}_{0} \cup l_{2}$.
The issue. Thus $u(x, y) \in C(\Omega \cup S) \cap C^{2}(\Omega)$ find the function, it Ω in the sector (1) is the regular solution of the equation,

$$
\begin{gather*}
u_{x x}(x, y), u_{y}(x, y) \in C\left(\Omega \cup l_{0}\right) \tag{2}\\
u_{x x}(x, y)+a(x) u_{x}(x, y)+b(x) u(x, y)+u_{y}(x, y)=c(x),(x, y) \in l_{0} \tag{3}\\
u(x, y)=\varphi_{1}(x),(x, y) \in l_{1} ; u(x, y)=\varphi_{2}(x),(x, y) \in l_{2} \tag{4}\\
\lim _{R \rightarrow-\infty} u(x, y)=0, \quad y \geq 0 \tag{5}
\end{gather*}
$$

satisfy the conditions, here $\varphi_{1}(x), \varphi_{2}(x), a(x), b(x), c(x)$ - given continuous functions, $\lim _{x \rightarrow-\infty} \varphi_{1}(x)=0, \lim _{x \rightarrow-\infty} \varphi_{2}(x)=0, b(x)<0 ; \quad R=\sqrt{x^{2}+y^{2}}$.

We will prove that the solution to this problem is unique. In this

$$
\begin{equation*}
u(x, 0)=\tau(x),-1 \leq x \leq 1 ; u_{y}(x, 0)=v(x),-1<x<1 \tag{6}
\end{equation*}
$$

we use markings.
II. Unity of solution. Imagine that $u_{1}(x, y)$ va $u_{2}(x, y)$ have solutions. In that case $u_{1}(x, y)-u_{2}(x, y)=u(x, y)$ function Ω in the field (1) is the regular solution of the equation, (2), (5) and

$$
\begin{gather*}
u(x, y) \equiv 0,(x, y) \in l_{1} \cup l_{2} \\
\tau^{\prime \prime}(x)+a(x) \tau^{\prime}(x)+b(x) \tau(x)+v(x)=0, x \in(-1,1)
\end{gather*}
$$

satisfies the conditions.
Imagine that, $u(x, y) \not \equiv 0, x \in \Omega \cup S$. Then it is $\Omega_{r}=\left\{(x, y):\left|x^{2}+y^{2}\right| \leq r^{2}, y>0\right\}$ There is a sector (here $r=$ const >0) that $u(x, y) \not \equiv 0$. that is why

$$
\sup _{\bar{\Omega}_{r}}|u(x, y)|=\left|u\left(x_{0}, y_{0}\right)\right|>0, \quad\left(x_{0}, y_{0}\right) \in \bar{\Omega}_{r} .
$$

Based on the principle of extremity for elliptic type equations $\left(x_{0}, y_{0}\right) \notin \Omega_{r}$. $\left(4^{\prime}\right)$ subject to condition $\left(x_{0}, y_{0}\right) \notin l_{1} \cup l_{2}$. Accordingly, $\left(x_{0}, y_{0}\right) \in l_{0}$, namely $\left(x_{0}, y_{0}\right)=\left(x_{0}, 0\right),-1<x<1$. In that x_{0} at the point $\tau(x)$ the function reaches a positive maximum or a negative maximum. That is why $\tau\left(x_{0}\right)>0(<0)$ when $\tau^{\prime \prime}\left(x_{0}\right) \leq 0(\geq 0), \tau^{\prime}\left(x_{0}\right)=0$ that's it,

$$
\tau^{\prime \prime}\left(x_{0}\right)+a\left(x_{0}\right) \tau^{\prime}\left(x_{0}\right)+b\left(x_{0}\right) \tau\left(x_{0}\right)+v(x)=0
$$

from equality $v\left(x_{0}\right)>0(<0)$ resulting inequality. This is contrary to the Zarembo-Jiro principle. So $\left(x_{0}, y_{0}\right) \notin l_{0}$.

In that case, that is

$$
\begin{equation*}
\sup _{\bar{\Omega}_{r}}|u(x, y)|=\sup _{S_{r}}\left|u\left(x_{0}, y_{0}\right)\right|>0 . \tag{7}
\end{equation*}
$$

Now $\forall R>r$ get the numbers and consider the above Ω_{R} in the field,

$$
\begin{equation*}
\sup _{\bar{\Omega}_{r}}|u(x, y)|=\sup _{S_{r}}|u(x, y)|>0 \tag{8}
\end{equation*}
$$

We have a relationship. $\bar{\Omega}_{R} \supset \bar{\Omega}_{r}$ because of this

$$
\sup _{\bar{\Omega}_{R}}|u(x, y)| \geq \sup _{\bar{\Omega}_{r}}|u(x, y)| .
$$

In that case (7) and (8) based on inequalities

$$
\sup _{\bar{S}_{R}}|u(x, y)| \geq \sup _{\bar{S}_{r}}|u(x, y)|>0
$$

the inequalities are relevant. This is contrary to condition (5). This contradiction leads to the conclusion that our hypothesis is wrong $u(x, y) \equiv 0,(x, y) \in \Omega \cup S$.
So, $u_{1}(x, y) \equiv u_{2}(x, y),(x, y) \in \Omega \cup S$.
III. Availability of a solution. The solution of the problem Ω in the sphere (1) as the solution of the Dirixle problem for equation

$$
\begin{equation*}
u(x, y)=k_{2} y \int_{-\infty}^{+\infty} u(t, 0)\left[(x-t)^{2}+\frac{4}{(m+2)^{2}} y^{m+2}\right]^{\beta-1} d t \tag{9}
\end{equation*}
$$

Search like. (9) da $x \in(-1,1)$ va $y>0$ that's it y differentiate. In this

$$
\begin{gathered}
\frac{\partial}{\partial y}\left\{y\left[(x-t)^{2}+\frac{4}{(m+2)^{2}} y^{m+2}\right]^{\beta-1}\right\}= \\
=\frac{1}{\beta-1} \frac{\partial}{\partial x}\left\{(x-t)\left[(x-t)^{2}+\frac{4}{(m+2)^{2}} y^{m+2}\right]^{\beta-1}\right\} d x
\end{gathered}
$$

Taking into account the equality, then zero and (6)

$$
v(x)=\frac{k_{2}}{2 \beta-1}\left[\frac{d}{d x} \int_{-\infty}^{+\infty}(x-t)|x-t|^{2 \beta-2} u(t, 0)\right] d t
$$

based on equality, or (4) terms and (6)

$$
\begin{equation*}
v(x)=\frac{k_{2}}{2 \beta-1} \frac{d}{d x} \int_{-1}^{1}(x-t)|x-t|^{2 \beta-2} \tau(t) d t+f(x) \tag{10}
\end{equation*}
$$

Here we go equality

$$
\begin{align*}
& f(x)=\frac{k_{2}}{2 \beta-1} \frac{d}{d x} \int_{-\infty}^{-1}(x-t)^{2 \beta-1} \varphi_{1}(t) d t-\frac{k_{2}}{2 \beta-1} \frac{d}{d x} \int_{1}^{+\infty}(t-x)^{2 \beta-1} \varphi_{2}(t) d t= \\
&=k_{2} \int_{-\infty}^{-1}(x-t)^{2 \beta-2} \varphi_{1}(t) d t+k_{2} \int_{1}^{+\infty}(t-x)^{2 \beta-2} \varphi_{2}(t) d t \tag{11}
\end{align*}
$$

Using the fractional order differential sign in Eq

$$
\begin{equation*}
v(x)=-k_{2} \tilde{A}(1-2 \beta)\left[D_{-1 x}^{1-2 \beta} \tau(x)+D_{x 1}^{1-2 \beta} \tau(x)\right]+f(x) \tag{12}
\end{equation*}
$$

written in the form.
(11) equation, $f(x)$ so that the function is continuous $\varphi_{1}(x)=(1+x)^{1-2 \beta+\varepsilon}$, $\varphi_{2}(x)=(1-x)^{1-2 \beta+\varepsilon}$ It should be, here $\varepsilon>0$ and (11) subject to equation (11)

$$
\begin{align*}
\tau^{\prime \prime}(x) & =a(x) \tau^{\prime}(x)+b(x) \tau(x)-k_{2} \tilde{A}(1-2 \beta) \times \\
\times & {\left[D_{-1 x}^{1-2 \beta} \tau(x)+D_{x 1}^{1-2 \beta} \tau(x)\right]=c(x)-f(x) } \tag{13}
\end{align*}
$$

differential equation.
(4) and from the boundary conditions

$$
\begin{equation*}
\tau(-1)=0, \tau(1)=0 \tag{14}
\end{equation*}
$$

equations arise.
Ergo, $\tau(x)$ - function $\{(13),(14)\}$ as the solution. $\tau(x)$ Once the problem is found, the solution to this problem is determined by (1).

References:

1. Azlarov T. A., Mansurov H. Mathematical analys is. Volume I. Tashkent: Uqituvchi, 1994.
2. Bitsadze A.V. Boundary value problems for second-order elliptic equations. M .: Nauka, 1966.
3. Urinov A. Q. Boundary problems for simple differential equations. Tashkent: MUMTOZ SO'Z, 2014.
