

Nolocal Problems In Half-Selected Half For Equipment

N.K. Bahodirov Fergana Polytechnic Institute

Annotation: This article explores the non-zero conditional problem for the elliptic type equation. The uniqueness of the solution to the problem is proved by the principle of Zarembo-Jiro, and the existence of a solution is proved by the use of a Drixle problem.

Keywords: the decomposition equation, the zero problem, the Zarembo-Jiro principle, the Drixle problem.

I. Issue. $\Omega = \{(x, y): -\infty < x < +\infty, y > 0\}$ Let us look at this perturbed differential equation of the elliptical type in the

$$y^m u_{xx} + u_{yy} = 0, \quad m = const > 0.$$
 (1)

 Ω of the sector $S = \{(x, y) : -\infty < x < +\infty, y = 0\}$ subdivide three he border

$$l_0 = \{(x, y): -1 < x < 1, y = 0\}, l_1 = \{(x, y): -\infty < x < -1, y = 0\}, l_2 = \{(x, y): 1 < x < +\infty, y = 0\}$$

Now, make notes. I mean, $S = l_1 \cup \overline{l_0} \cup l_2$.

The issue. Thus $u(x, y) \in C(\Omega \cup S) \cap C^2(\Omega)$ find the function, it Ω in the sector (1) is the regular solution of the equation,

$$u_{xx}(x,y), u_{y}(x,y) \in C(\Omega \cup l_{0});$$
⁽²⁾

$$u_{xx}(x,y) + a(x)u_{x}(x,y) + b(x)u(x,y) + u_{y}(x,y) = c(x), \ (x,y) \in l_{0};$$
(3)

$$u(x,y) = \varphi_1(x), \ (x,y) \in l_1; \ u(x,y) = \varphi_2(x), \ (x,y) \in l_2;$$
(4)

$$\lim_{R \to -\infty} u(x, y) = 0, \quad y \ge 0 \tag{5}$$

satisfy the conditions, here $\varphi_1(x), \varphi_2(x), a(x), b(x), c(x) - \text{given continuous}$ functions, $\lim_{x \to -\infty} \varphi_1(x) = 0$, $\lim_{x \to -\infty} \varphi_2(x) = 0$, b(x) < 0; $R = \sqrt{x^2 + y^2}$.

We will prove that the solution to this problem is unique. In this

$$u(x,0) = \tau(x), \ -1 \le x \le 1; \ u_y(x,0) = v(x), \ -1 < x < 1$$
(6)

we use markings.

II. Unity of solution. Imagine that $u_1(x, y)$ va $u_2(x, y)$ have solutions. In that case $u_1(x, y) - u_2(x, y) = u(x, y)$ function Ω in the field (1) is the regular solution of the equation, (2), (5) and

$$u(x, y) \equiv 0, \ (x, y) \in l_1 \cup l_2;$$
 (4')

$$\tau''(x) + a(x)\tau'(x) + b(x)\tau(x) + v(x) = 0, \ x \in (-1,1)$$
(3')

satisfies the conditions.

Imagine that, $u(x, y) \neq 0$, $x \in \Omega \cup S$. Then it is $\Omega_r = \{(x, y) : |x^2 + y^2| \le r^2, y > 0\}$ There is a sector (here r = const > 0) that $u(x, y) \neq 0$. that is why

$$\sup_{\bar{\Omega}_{r}} |u(x,y)| = |u(x_{0},y_{0})| > 0, \ (x_{0},y_{0}) \in \bar{\Omega}_{r}.$$

Based on the principle of extremity for elliptic type equations $(x_0, y_0) \notin \Omega_r$. (4') subject to condition $(x_0, y_0) \notin l_1 \cup l_2$. Accordingly, $(x_0, y_0) \in l_0$, namely $(x_0, y_0) = (x_0, 0)$, -1 < x < 1. In that x_0 at the point $\tau(x)$ the function reaches a positive maximum or a negative maximum. That is why $\tau(x_0) > 0 (< 0)$ when $\tau''(x_0) \le 0 (\ge 0)$, $\tau'(x_0) = 0$ that's it,

$$\tau''(x_0) + a(x_0)\tau'(x_0) + b(x_0)\tau(x_0) + \nu(x) = 0$$

from equality $v(x_0) > 0(<0)$ resulting inequality. This is contrary to the Zarembo-Jiro principle. So $(x_0, y_0) \notin l_0$.

In that case, that is

$$\sup_{\overline{\Omega}_r} \left| u\left(x, y\right) \right| = \sup_{S_r} \left| u\left(x_0, y_0\right) \right| > 0.$$
⁽⁷⁾

Now $\forall R > r$ get the numbers and consider the above Ω_R in the field, $\sup_{\overline{\Omega}_r} |u(x,y)| = \sup_{S_r} |u(x,y)| > 0$ (8)

We have a relationship. $\overline{\Omega}_R \supset \overline{\Omega}_r$ because of this

$$\sup_{\overline{\Omega}_R} |u(x,y)| \ge \sup_{\overline{\Omega}_r} |u(x,y)|.$$

In that case (7) and (8) based on inequalities

$$\sup_{\overline{S}_R} |u(x,y)| \ge \sup_{\overline{S}_r} |u(x,y)| > 0$$

the inequalities are relevant. This is contrary to condition (5). This contradiction leads to the conclusion that our hypothesis is wrong $u(x, y) \equiv 0$, $(x, y) \in \Omega \cup S$.

So, $u_1(x, y) \equiv u_2(x, y), (x, y) \in \Omega \cup S.$

III. Availability of a solution. The solution of the problem Ω in the sphere (1) as the solution of the Dirixle problem for equation

$$u(x,y) = k_2 y \int_{-\infty}^{+\infty} u(t,0) \left[(x-t)^2 + \frac{4}{(m+2)^2} y^{m+2} \right]^{\beta-1} dt$$
(9)

Search like. (9) da $x \in (-1,1)$ va y > 0 that's it y differentiate. In this

$$\frac{\partial}{\partial y} \left\{ y \left[\left(x - t \right)^2 + \frac{4}{\left(m + 2 \right)^2} y^{m+2} \right]^{\beta - 1} \right\} =$$
$$= \frac{1}{\beta - 1} \frac{\partial}{\partial x} \left\{ \left(x - t \right) \left[\left(x - t \right)^2 + \frac{4}{\left(m + 2 \right)^2} y^{m+2} \right]^{\beta - 1} \right\} dx$$

Taking into account the equality, then zero and (6)

$$v(x) = \frac{k_2}{2\beta - 1} \left[\frac{d}{dx} \int_{-\infty}^{+\infty} (x - t) |x - t|^{2\beta - 2} u(t, 0) \right] dt$$

based on equality, or (4) terms and (6)

$$v(x) = \frac{k_2}{2\beta - 1} \frac{d}{dx} \int_{-1}^{1} (x - t) |x - t|^{2\beta - 2} \tau(t) dt + f(x)$$
(10)

Here we go equality

$$f(x) = \frac{k_2}{2\beta - 1} \frac{d}{dx} \int_{-\infty}^{-1} (x - t)^{2\beta - 1} \varphi_1(t) dt - \frac{k_2}{2\beta - 1} \frac{d}{dx} \int_{1}^{+\infty} (t - x)^{2\beta - 1} \varphi_2(t) dt =$$
$$= k_2 \int_{-\infty}^{-1} (x - t)^{2\beta - 2} \varphi_1(t) dt + k_2 \int_{1}^{+\infty} (t - x)^{2\beta - 2} \varphi_2(t) dt$$
(11)

Using the fractional order differential sign in Eq

$$v(x) = -k_2 \tilde{A}(1 - 2\beta) \Big[D_{-1x}^{1 - 2\beta} \tau(x) + D_{x1}^{1 - 2\beta} \tau(x) \Big] + f(x)$$
(12)

written in the form.

(11) equation, f(x) so that the function is continuous $\varphi_1(x) = (1+x)^{1-2\beta+\varepsilon}$, $\varphi_2(x) = (1-x)^{1-2\beta+\varepsilon}$ It should be, here $\varepsilon > 0$ and (11) subject to equation (11) $\tau''(x) = a(x)\tau'(x) + b(x)\tau(x) - k_2\tilde{A}(1-2\beta) \times \sum_{x=1}^{1-2\beta} \tau(x) + D_{x1}^{1-2\beta}\tau(x) = c(x) - f(x)$ (13)

differential equation.

(4) and from the boundary conditions

$$\tau\left(-1\right) = 0, \ \tau\left(1\right) = 0 \tag{14}$$

equations arise.

Ergo, $\tau(x)$ – function $\{(13), (14)\}$ as the solution. $\tau(x)$ Once the problem is found, the solution to this problem is determined by (1).

References:

1. Azlarov T. A., Mansurov H. Mathematical analysis. Volume I. Tashkent: Uqituvchi, 1994.

2. Bitsadze A.V. Boundary value problems for second-order elliptic equations. M .: Nauka, 1966.

3. Urinov A. Q. Boundary problems for simple differential equations. Tashkent: MUMTOZ SO'Z, 2014.