

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 373

Limits of Algorithmic Computation

Nitin Garg
((6

th
 Semester) Electronics and Computer Engineering, Dronacharya College of Engineering)

ngarg1910@gmail.com

Nitigya Grover
((6

th
 Semester)Electronics and Computer Engineering, Dronacharya College of Engineering)

Nitigyagrover01@gmail.com

Introduction
We all studied about what turing machines can do

now look at what they cannot do, Although Turing's

thesis leads us to believe that there are few

limitations to the power of a Turing machine, we

have claimed on several occasions that there could

rrot uxist anv algorithms for the solution of certain

problems. Now we make more explicit what we

mean by this claim. Some of the results came about

quite simply; if a language is nonrecursive, then by

definition there is no membership algorithm for it.

If this were all there was to this issue, it would not

be very interesting.

 Non recursive languages have little practical value.

But the problem goes deeper. For example,we have

stated(but not yet proved) that there exists no

algoritlm to determine whether a context-free

grammar is unambiguous. This question is clearly

of practical significance in the study of

programming languages. We first define the

concept of decidability and computability to pin

down what we mean when we say that something

cannot be done by a Turing machine. We then look

at several classical problems of this type, almong

then the well-known halting problem for Thring

Machines. Form this follow a number of related

problems for Turing machines and recursively
enumerable languages. After this, we look at some

questions relating to context-free languages. Here

we find quite a few important problems for which,

unfortunately, there are no algorithms.

Some ProblemsThat Cannot Be

Solved by Turing

Machines
The argument that the power of mechanical

computations is limited is not surprising. Intuitively

we know that many vague and speculative questions

require special insight and reasoning well beyond

the capacity of any computer that we can now

construct or even plausibly foresee.What is more

interesting to computer scientists is that there are

questiotns that can be clearly and simply stated,

with irrt apparetrt possibility of an algorithmic

solution, but which are known to be unsolvable by

any computer.

Computability and Decidability
we know that a function „g‟ on a certain domain is

said to be computable if there exists a Turing

machine that computes the value of „g‟ for all

arguments in its domain. A function is

uncomputable if no such turing machine exists.

There may be a Turing machine that can computes

the function on the whole domain, but we call the

function computable only if there is a, Turing

machine that computes the function on the whole of

its domain. We see fron this that, when we classify

a, function as computable or not computable, we

must be clear on what its domain is.

Our concern here will be the somewhat simplified

setting where the result of a computation is a,

simple “Yes” or “No”. in this case, we talk about a

problem being decidable or undecidable. By a

problem we will understand a set of related

statements, each of which must be either true or

false. for example, we consider the statement “For a

context free grammer G, the language L(G) is

ambigous”. For some G this is true, for others it is

false, but clearly we must have one or the other. The

problem is to decide whether the statemnets is true

for any G we are given. Again, there is a underlying

domain, the set of all context-free grammars. We

say that a problem is decidable if there exists a,

Turing macirine that gives the correct answer for

every statement in the domain of the problem.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 374

When we state decidability or undecidability

results, we must always know what the domain is,

because this may, affect the conclusion. The

problem may be decidable on some domain but not

on another. Specifically, a single instance of a

problem is always decidabale, since the answer is

either true or false. In the first case a Turing

machine that always answers "true" gives correct

answer, while in the second case one that always

answers "false" is appropriate. This may seem like a

facetious answer but it emphasizes an important

point, fhe fact that we do not know what the correct

answer is makes no difference, what matters is that

there exists some turing machine that does give the

correct response.

Refrences:

[1.] E-book : An Introduction toFormal

Languages and Automata Third Edition

Peter Linz Universityo f Californiaa t

Davis.

[2.] www.Google.com

[3.] www.google.com/Theory of Automata and

Computaion

http://www.google.com/

