
International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 44

Realization of High Speed FPU Adder
O. Prasad (Research Scholar)

 1
, K.Kanthi Kinnera (Associate Professor)

 2

Gonna institute of information Technology and Science, Gonnavanipalem, Andhra Pradesh

530053

Abstract:
 Floating point unit (FPU) is a part of

computer system specially designed to carry

out operation on floating point number. This

paper shows review of IEEE floating point

unit (FPU) which will perform addition

function on 64 bit operand that uses the

IEEE-754 standard. Floating point numbers

representation can support a much wider

range of values than fixed point

representation. In this paper proposes the

area and power efficient ripple carry adder

compare to the conventional adder (carry

skip adder). The work is to implement and

analyses floating point adder operation and

hardware module were implemented using

VERILOG and synthesized using Xilinx ISE

suite.

Keywords: Carry skip adder, Ripple carry

adder, FPU and VERILOG.

I. Introduction

There are several ways to represent real

numbers on computers. Floating point

representation, in particular the standard

IEEE format, is by far the most common

way of representing an approximation to real

numbers in computers because it is

efficiently handled in most large computer

processors. Binary fixed point is usually

used in special-purpose applications on

embedded processors that can only do

integer arithmetic, but decimal fixed point is

common in commercial applications. Fixed

point places a radix point somewhere in the

middle of the digits, and is eqallent to using

integers that represent portions of some unit.

Fixed point has a fixed window of

representation, which limits it from

representing very large or very small

numbers.

Also, fixed-point is prone to a loss of

precision when two large numbers are

divided. Floating point solves a number of

representation problems. Floating point

employs a sort of “sliding window” of

precision appropriate to the scale of the

number. This allows it to represent numbers

from1, 000,000,000, and 0.00000000000001

with ease.

Floating-point representation over

fixed-point (and integer) representation is

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 39

that it can support a much wider range of

values. Floating-point representation is the

most common solution basically represents

real value in scientific notation. Scientific

notation represents numbers as a base

number and an exponent. For example,

123.456 could be represented as 1.23456 x

10
2
. Floating-point numbers are typically

packed in to a computer datum as the sign

bit, the exponent field, and the signific and

(mantissa), from left to right. In computing,

floating-point describes a system for

representing numbers that would be too

large or too small to be represented as

integers. Numbers are in general represented

approximately to fixed number of significant

digits and scaled using an exponent. The for

the scaling is normally 2, 10or 16. The

typical number that can be represented

exactly is of the form:

Significant digits x base exponent …… (1)

 The term floating-point refers to the

fact that the radix point (Decimal point or

more commonly used in computers, Binary

point) can “float”; that is, it can be placed

anywhere relative to the significant digits of

the number. This position is indicated

separately in the internal representation, and

floating-point representation can thus be

thought of as a computer realization of

scientific notation.

 IEEE 754 Floating Point Formats

IEEE 754 specifies four formats for

representing floating-point values:

1. Single-precision (32-bit)

2. Double-precision (64-bit)

3. Single-extended precision (≥ 43-bit, not

commonly used)

4. Double-extended precision (≥ 79-bit,

usually implemented with 80 bits).

Single Precision Floating Point

Numbers

The single-precision number is 32 bit

wide. The single-precision number has three

main fields that are sign, exponent and

mantissa. The 24-bit mantissa (the leading

one is implicit) can approximately represent

a 7-digit decimal number, while an 8-bit

exponent to an implied base of 2 provides a

scale factor with a reasonable range. Thus, a

total of 32 bits is needed for single-precision

number representation.

 To achieve a bias equal to 2n−1− 1 is

added to the actual exponent in order to

obtain the stored exponent. This equals 127

for an eight-bit exponent of the single-

precision format. The addition of bias allows

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 40

the use of an exponent in the range from

−127 to +128, corresponding to a range of 0

to 255 for single precision number. The

single-precision format offers a range from

2−127 to 2+127, which is equivalent to

10−38 to 10+38

Sign: 1-bit wide and used to denote the sign

of the number i.e. 0 indicate positive number

and 1 represent negative number.

Exponent: 8-bit wide and signed exponent

in excess-127 representation.

Mantissa: 23-bit wide and fractional

component.

Figure 1: Single-precision floating-point

number representation

The excess-127 representation

mentioned when discussing the exponent

portion above, is utilized to efficiently

compare the relative sizes of two floating

point numbers. Instead of storing the

exponent (E) as a signed number, we store

its unsigned integer representation (Eí = E

+127). This gives us a range for Eí of 0 <=

Eí <= 255.

While the 0 and 255 end values are

used to represent special numbers (exact 0,

infinity and denormal numbers), the

operating range of E0 becomes 1 <= Eí<=•

254, thus, limiting the range of E to -126 <=

E <= 127. In double-precision numbers, an

excess-1023 representation is utilized.

 Double Precision Floating Point

Numbers

Figure shows the double precision

floating point number representation. The

double precision number is 64 bit wide. The

double precision number has three main

fields which are sign, exponent and

mantissa. The 52-bit mantissa (the leading

one is implicit), while an 11-bit exponent to

an implied base of 2 provides a scale factor

with a reasonable range.

 Thus, a total of 64 bits is needed for

single-precision number representation. To

achieve a bias equal to 2n−1− 1 is added to

the actual exponent in order to obtain the

stored exponent. This equal 1023 for an 11-

bit exponent of the double-precision format.

The addition of bias allows the use of an

exponent in the range from −1023 to +1024,

corresponding to a range of 0ñ2047 for

double precision number. The double

precision format offers a range from 2−1023

to 2+1023, which is equivalent to 10−308 to

10+308

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 41

 Sign: 1-bit wide and used to denote

the sign of the number i.e. 0 indicate

positive number and 1 represent negative

number. Exponent: 11-bit wide and signed

exponent in excess- 1023 representation.

Mantissa: 52-bit wide and fractional

component.

Figure 2: Double-precision floating-point

number representation

 In IEEE standard is that the mantissa

component is always normalized. The latter

implies that the decimal point is placed to

the right of the first (nonzero) significant

digit. Hence, the 23 bits stored in the M field

actually represent the fractional part of the

mantissa, that is, the bits to the right of the

binary point. As aforementioned, the most

significant bit of the mantissa is always

equal to 1, due to binary normalization.

Revisiting our original formula

representation, let us now normalize the 32-

bit single-precision floating-point number

representation as:

(-1) S * (1 +M) * 2E
-127

……(2)

 S represents the sign (1-bit), M represents

the mantissa (23-bit) and E represents the

exponent (8-bit)

Figure 3 Flowchart for floating point

addition

II. ANALYSIS OF REPORTED

WORK
Floating point unit required less

hardware. The low power optimizing

technique multi threshold voltage (MVT) is

used for reducing the power consumption of

arithmetic unit. The power saving for slow

High compared to typical library. Arithmetic

unit has been designed to perform pack,

unpack and rounding arithmetic operations

on floating point number.

 Error and error condition in the

mathematical processing will be reported in

a consistent manner regardless of

implementation floating point Arithmetic

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 42

unit has been designed and suitable

algorithm has been developed to perform

operations such as addition, subtraction,

multiplication and division. The algorithm

can be implemented in pipelined way to

reduce the delay and increase the

computation time for operation. The result

between the hardware and software are

matching this will clear the gap between

hardware implementation and the software

simulation.

Figure 4: Floating point adder

architecture

III. Adders for Floating point

addition:

 Carry skip adder:

 Carry skip adder contains some

special blocks that are useful for detecting

the bits that are to be added. Here the carry

will be either generated or propagated. Carry

by-pass adder is also known as carry skip

adder. The signal that is produced by this

circuit is known as “propagation signal”.

The carry signal is transmitted through all

the stages of blocks and the propagation

time is depended on the position of carry

that has been generated. If there is no need

to calculate the carry then only the time

which is required to compute the sum value

is considered. The below block diagram has

four multiplexers and is considered as 16 bit

carry skip adder. The implementation of the

circuit is shown below.

Fig.5: Structure of Carry Skip Adder

 A carry-skip adder (also known as

a carry-bypass adder) is an adder

implementation that improves on the delay

of a ripple-carry adder with little effort

compared to other adders. The improvement

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 43

of the worst-case delay is achieved by using

several carry-skip adders to form a block-

carry-skip adder. The worst case for a

simple one level carry-ripple-adder occurs,

when the propagate condition is true for

each digit pair (ai, bi).

The n-bit-carry-skip adder consists

of a n-bit-carry-ripple-chain, a n-input

AND-gate and one multiplexer. Each

propagate bit pi, that is provided by the

carry-ripple-chain is connected to the n-

input AND-gate. The resulting bit is used as

the select bit of a multiplexer that switches

either the last carry-bit cn or the carry-in c0

to the carry-out signal cout.

 Ripple Carry Adder:

 Arithmetic operations like addition,

subtraction, multiplication, division are

basic operations to be implemented in digital

computers using basic gates like AND, OR,

NOR, NAND etc. Among all the arithmetic

operations if we can implement addition

then it is easy to perform multiplication (by

repeated addition), subtraction (by negating

one operand) or division (repeated

subtraction). Half Adders can be used to add

two one bit binary numbers. It is also

possible to create a logical circuit using

multiple full adders to add N-bit binary

numbers. Each full adder inputs a Cin,

which is the Cout of the previous adder.

This kind of adder is a Ripple Carry

Adder, since each carry bit "ripples" to the

next full adder. The first (and only the first)

full adder may be replaced by a half adder.

The block diagram of 4-bit Ripple Carry

Adder is shown here below

Figure 6: Structure for Ripple carry

adder

The layout of ripple carry adder is

simple, which allows for fast design time;

however, the ripple carry adder is relatively

slow, since each full adder must wait for the

carry bit to be calculated from the previous

full adder. The gate delay can easily be

calculated by inspection of the full adder

circuit. Each full adder requires three levels

of logic. In a 32-bit [ripple carry] adder,

there are 32 full adders, so the critical path

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 44

(worst case) delay is 31 * 2(for carry

propagation) + 3(for sum) = 65 gate delays.

IV. Results:
 The use of Verilog for modeling is

especially appealing since it provides formal

description of the system and allows the use

of specific description styles to cover the

different abstraction levels (Architectural,

register transfer, logic level and test bench)

employed in the design is verified through

synthesis, which is done in a bottom fashion,

small modules are simulated in separate test

benches before they are integrated and tested

as a whole.

Fig 7 Top module

Figure 8: Diagram of RTL schematic

Figure 9: Simulation waveform of RCA

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 45

Figure 10: Comparison of Power Data

graph

Figure 11: Comparison of Area Data

graph

Parameter Floating point
with RCA

Floating point
with CSKP

LUT's 954 982

Power(w) 0.0082 0.0085

Table 1: Comparison table.

V. Conclusion:

This paper shows review of IEEE

floating point unit (FPU) which will perform

addition function on 64 bit operand that uses

the IEEE-754 standard. Floating point

numbers representation can support a much

wider range of values than fixed point

representation. In this paper Comparison is

carried out between the carry skip adder

based fpu and the proposed ripple carry

adder. In the proposed design area and

power are reduced whose values are

tabulated in table 1. The designed arithmetic

unit operates on 64-bit operands’. It can be

designed for 128-bit operands to enhance

precision. It can be extended to have more

mathematical operations like division,

square root, and trigonometric functions.

Floating point unit is used in DSP

Processors like TMS 320X and embedded

systems. The work is to implement and

analyses floating point adder operation and

hardware module were implemented using

VERILOG and synthesized using Xilinx ISE

suite

References:

[1] Charles Farnum, “Compiler Support for

Floating-Point Computation” Software

Practices and Experience,” pp. 701-9 vol.

18, July 1988.

[2] D. Goldberg, “What every computer

scientist should know about floating-point

Arithmetic,” pp. 5-48 in ACM Computing

Surveys vol. 23-1 (1991). Logic Utilization

Used Available Utilization Number of slice

latches 25 13,824 1% Number of 4 input

0.008
0.0081
0.0082
0.0083
0.0084
0.0085

power(W)

power(W)

940

950

960

970

980

990

Floating
point

with RCA

Floating
point

with CSKP

LUT's

LUT's

International Journal of Research

Available at https://edupediapublications.org/journals

P-ISSN: 2348-6848

E-ISSN: 2348-795X

Volume 07 Issue 06 June 2020

Available online: http://edupediapublications.org/journals/index.php/IJR/ Page 46

LUTs 1604 13,824 11% Logic Distribution

Number of occupied slices 831 6912 12%

Number of slices containing only related

logic 831 831 100% Number of slices

containing unrelated logic 0 831 0% Total

number of 4 input LUTs 1605 13,824 11%

Number used as logic 1604 Number of

bonded IOBs 296 404 73%

Number of GCLKs 1 4 25% Number of

GCLKIOBs 1 4 25% 463

[3] Guillermo Marcus, Patricia Hinojosa,

Alfonso Avila and Juan Nolazco- Flores “ A

Fully Synthesizable Single-Precision,

Floating Point Adder/Subs tractor and

Multiplier in VHDL for General and

Educational Use,” Proceedings of the Fifth

IEEE International Caracas Conference on

Devices, Circuits and Systems, Dominican

Republic, Nov.3-5, 2004.

[4] IEEE Computer Society (1985), IEEE

Standard for Binary Floating- Point

Arithmetic, IEEE Std 754-1985.

[5] Jim Hoff; "A Full Custom High Speed

Floating Point Adder" Fermi National

Accelerator Lab, 1992.

[6] John Thompson, Nandini Karra, and

Michael.J.Schulte “A 64-bit decimal

floating-point adder,” Proceedings of the

IEEE Computer Society Annual Symposium

on VLSI Emerging Trends in VLSI Systems

Design (ISVLSI’04) .

[7] W. Kahan “IEEE Standard 754 for

Binary Floating-Point Arithmetic,” 1996

[8] Michael L. Overton, “Numerical

Computing with IEEE Floating Point

Arithmetic,” Published by Society for

Industrial and Applied Mathematics, 2001.

[9] D. Narasimban, D. Fernandes, V. K. Raj

, J. Dorenbosch , M. Bowden, V. S. Kapoor,

“A 100 Mhz FPGA based floating point

adder”, Proceedings of IEEE custom

integrated circuits conference, 1993.

