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Abstract: 
  Floating point unit (FPU) is a part of 

computer system specially designed to carry 

out operation on floating point number. This 

paper shows review of IEEE floating point 

unit (FPU) which will perform addition 

function on 64 bit operand that uses the 

IEEE-754 standard. Floating point numbers 

representation can support a much wider 

range of values than fixed point 

representation. In this paper proposes the 

area and power efficient ripple carry adder 

compare to the conventional adder (carry 

skip adder). The work is to implement and 

analyses floating point adder operation and 

hardware module were implemented using 

VERILOG and synthesized using Xilinx ISE 

suite. 

Keywords: Carry skip adder, Ripple carry 
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I. Introduction 

There are several ways to represent real 

numbers on computers. Floating point 

representation, in particular the standard 

IEEE format, is by far the most common  

 

 

way of representing an approximation to real 

numbers in computers because it is 

efficiently handled in most large computer 

processors. Binary fixed point is usually 

used in special-purpose applications on 

embedded processors that can only do 

integer arithmetic, but decimal fixed point is 

common in commercial applications. Fixed 

point places a radix point somewhere in the 

middle of the digits, and is eqallent to using 

integers that represent portions of some unit. 

Fixed point has a fixed window of 

representation, which limits it from 

representing very large or very small 

numbers.  

Also, fixed-point is prone to a loss of 

precision when two large numbers are 

divided. Floating point solves a number of 

representation problems. Floating point 

employs a sort of “sliding window” of 

precision appropriate to the scale of the 

number. This allows it to represent numbers 

from1, 000,000,000, and 0.00000000000001 

with ease.  

Floating-point representation over 

fixed-point (and integer) representation is 
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that it can support a much wider range of 

values. Floating-point representation is the 

most common solution basically represents 

real value in scientific notation. Scientific 

notation represents numbers as a base 

number and an exponent. For example, 

123.456 could be represented as 1.23456 x 

10
2
. Floating-point numbers are typically 

packed in to a computer datum as the sign 

bit, the exponent field, and the signific and 

(mantissa), from left to right. In computing, 

floating-point describes a system for 

representing numbers that would be too 

large or too small to be represented as 

integers. Numbers are in general represented 

approximately to fixed number of significant 

digits and scaled using an exponent. The for 

the scaling is normally 2, 10or 16. The 

typical number that can be represented 

exactly is of the form:                

Significant digits x base exponent …… (1)  

  The term floating-point refers to the 

fact that the radix point (Decimal point or 

more commonly  used in computers, Binary 

point) can “float”; that is, it can be placed 

anywhere relative to the significant digits of 

the number. This position is indicated 

separately in the internal representation, and 

floating-point representation can thus be 

thought of as a computer realization of 

scientific notation. 

 IEEE 754 Floating Point Formats  

IEEE 754 specifies four formats for 

representing floating-point values:  

1. Single-precision (32-bit)  

2. Double-precision (64-bit)  

3. Single-extended precision (≥ 43-bit, not 

commonly used)  

4. Double-extended precision (≥ 79-bit, 

usually implemented with 80 bits).  

Single Precision Floating Point 

Numbers  

The single-precision number is 32 bit 

wide. The single-precision number has three 

main fields that are sign, exponent and 

mantissa. The 24-bit mantissa (the leading 

one is implicit) can approximately represent 

a 7-digit decimal number, while an 8-bit 

exponent to an implied base of 2 provides a 

scale factor with a reasonable range. Thus, a 

total of 32 bits is needed for single-precision 

number representation.  

 To achieve a bias equal to 2n−1− 1 is 

added to the actual exponent in order to 

obtain the stored exponent. This equals 127 

for an eight-bit exponent of the single-

precision format. The addition of bias allows 
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the use of an exponent in the range from 

−127 to +128, corresponding to a range of 0 

to 255 for single precision number. The 

single-precision format offers a range from 

2−127 to 2+127, which is equivalent to 

10−38 to 10+38  

Sign: 1-bit wide and used to denote the sign 

of the number i.e. 0 indicate positive number 

and 1 represent negative number.  

Exponent:  8-bit wide and signed exponent 

in excess-127 representation.  

Mantissa: 23-bit wide and fractional 

component. 

 

Figure 1: Single-precision floating-point 

number representation 

The excess-127 representation 

mentioned when discussing the exponent 

portion above, is utilized to efficiently 

compare the relative sizes of two floating 

point numbers. Instead of storing the 

exponent (E) as a signed number, we store 

its unsigned integer representation (Eí = E 

+127). This gives us a range for Eí of 0 <= 

Eí <= 255.  

While the 0 and 255 end values are 

used to represent special numbers (exact 0, 

infinity and denormal numbers), the 

operating range of E0 becomes 1 <= Eí<=• 

254, thus, limiting the range of E to -126 <= 

E <= 127. In double-precision numbers, an 

excess-1023 representation is utilized. 

 Double Precision Floating Point 

Numbers  

Figure shows the double precision 

floating point number representation. The 

double precision number is 64 bit wide. The 

double precision number has three main 

fields which are sign, exponent and 

mantissa. The 52-bit mantissa (the leading 

one is implicit), while an 11-bit exponent to 

an implied base of 2 provides a scale factor 

with a reasonable range.  

 Thus, a total of 64 bits is needed for 

single-precision number representation. To 

achieve a bias equal to 2n−1− 1 is added to 

the actual exponent in order to obtain the 

stored exponent. This equal 1023 for an 11-

bit exponent of the double-precision format. 

The addition of bias allows the use of an 

exponent in the range from −1023 to +1024, 

corresponding to a range of 0ñ2047 for 

double precision number. The double 

precision format offers a range from 2−1023 

to 2+1023, which is equivalent to 10−308 to 

10+308 
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 Sign: 1-bit wide and used to denote 

the sign of the number i.e. 0 indicate 

positive number and 1 represent negative 

number. Exponent:  11-bit wide and signed 

exponent in excess- 1023 representation. 

Mantissa: 52-bit wide and fractional 

component. 

 

Figure 2: Double-precision floating-point 

number representation 

 In IEEE standard is that the mantissa 

component is always normalized. The latter 

implies that the decimal point is placed to 

the right of the first (nonzero) significant 

digit. Hence, the 23 bits stored in the M field 

actually represent the fractional part of the 

mantissa, that is, the bits to the right of the 

binary point. As aforementioned, the most 

significant bit of the mantissa is always 

equal to 1, due to binary normalization. 

Revisiting our original formula 

representation, let us now normalize the 32-

bit single-precision floating-point number 

representation as: 

(-1) S * (1 +M) * 2E
-127

……(2) 

 S represents the sign (1-bit), M represents 

the mantissa (23-bit) and E represents the 

exponent (8-bit)  

Figure 3 Flowchart for floating point 

addition 

II. ANALYSIS OF REPORTED 

WORK 
Floating point unit required less 

hardware. The low power optimizing 

technique multi threshold voltage (MVT) is 

used for reducing the power consumption of 

arithmetic unit. The power saving for slow 

High compared to typical library. Arithmetic 

unit has been designed to perform pack, 

unpack and rounding arithmetic operations 

on floating point number.  

 Error and error condition in the 

mathematical processing will be reported in 

a consistent manner regardless of 

implementation floating point Arithmetic 
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unit has been designed and suitable 

algorithm has been developed to perform 

operations such as addition, subtraction, 

multiplication and division. The algorithm 

can be implemented in pipelined way to 

reduce the delay and increase the 

computation time for operation. The result 

between the hardware and software are 

matching this will clear the gap between 

hardware implementation and the software 

simulation. 

 

 
Figure 4: Floating point adder 

architecture 

III. Adders for Floating point 

addition: 

 

 Carry skip adder: 

 Carry skip adder contains some 

special blocks that are useful for detecting 

the bits that are to be added. Here the carry 

will be either generated or propagated. Carry 

by-pass adder is also known as carry skip 

adder. The signal that is produced by this 

circuit is known as “propagation signal”. 

The carry signal is transmitted through all 

the stages of blocks and the propagation 

time is depended on the position of carry 

that has been generated. If there is no need 

to calculate the carry then only the time 

which is required to compute the sum value 

is considered. The below block diagram has 

four multiplexers and is considered as 16 bit 

carry skip adder. The implementation of the 

circuit is shown below. 

Fig.5: Structure of Carry Skip Adder 

 A carry-skip adder (also known as 

a carry-bypass adder) is an adder 

implementation that improves on the delay 

of a ripple-carry adder with little effort 

compared to other adders. The improvement 
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of the worst-case delay is achieved by using 

several carry-skip adders to form a block-

carry-skip adder. The worst case for a 

simple one level carry-ripple-adder occurs, 

when the propagate condition is true for 

each digit pair (ai, bi). 

The n-bit-carry-skip adder consists 

of a n-bit-carry-ripple-chain, a n-input 

AND-gate and one multiplexer. Each 

propagate bit pi, that is provided by the 

carry-ripple-chain is connected to the n-

input AND-gate. The resulting bit is used as 

the select bit of a multiplexer that switches 

either the last carry-bit cn or the carry-in c0 

to the carry-out signal cout. 

 Ripple Carry Adder: 

 Arithmetic operations like addition, 

subtraction, multiplication, division are 

basic operations to be implemented in digital 

computers using basic gates like AND, OR, 

NOR, NAND etc. Among all the arithmetic 

operations if we can implement addition 

then it is easy to perform multiplication (by 

repeated addition), subtraction (by negating 

one operand) or division (repeated 

subtraction). Half Adders can be used to add 

two one bit binary numbers. It is also 

possible to create a logical circuit using 

multiple full adders to add N-bit binary 

numbers. Each full adder inputs a Cin, 

which is the Cout of the previous adder. 

This kind of adder is a Ripple Carry 

Adder, since each carry bit "ripples" to the 

next full adder. The first (and only the first) 

full adder may be replaced by a half adder. 

The block diagram of 4-bit Ripple Carry 

Adder is shown here below 

 
Figure 6: Structure for Ripple carry 

adder 

The layout of ripple carry adder is 

simple, which allows for fast design time; 

however, the ripple carry adder is relatively 

slow, since each full adder must wait for the 

carry bit to be calculated from the previous 

full adder. The gate delay can easily be 

calculated by inspection of the full adder 

circuit. Each full adder requires three levels 

of logic. In a 32-bit [ripple carry] adder, 

there are 32 full adders, so the critical path 
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(worst case) delay is 31 * 2(for carry 

propagation) + 3(for sum) = 65 gate delays. 

IV. Results: 
 The use of Verilog for modeling is 

especially appealing since it provides formal 

description of the system and allows the use 

of specific description styles to cover the 

different abstraction levels (Architectural, 

register transfer, logic level and test bench) 

employed in the design is verified through 

synthesis, which is done in a bottom fashion, 

small modules are simulated in separate test 

benches before they are integrated and tested 

as a whole. 

 

Fig 7 Top module 

 
Figure 8: Diagram of RTL schematic 

 

 
Figure 9: Simulation waveform of RCA 
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Figure 10: Comparison of Power Data 

graph 

 
Figure 11: Comparison of Area Data 

graph 

Parameter Floating point 
with RCA 

Floating point 
with CSKP 

LUT's 954 982 

Power(w) 0.0082 0.0085 

Table 1: Comparison table. 

 

V. Conclusion: 

This paper shows review of IEEE 

floating point unit (FPU) which will perform 

addition function on 64 bit operand that uses 

the IEEE-754 standard. Floating point 

numbers representation can support a much 

wider range of values than fixed point 

representation. In this paper Comparison is 

carried out between the carry skip adder 

based fpu and the proposed ripple carry 

adder. In the proposed design area and 

power are reduced whose values are 

tabulated in table 1. The designed arithmetic 

unit operates on 64-bit operands’. It can be 

designed for 128-bit operands to enhance 

precision. It can be extended to have more 

mathematical operations like division, 

square root, and trigonometric functions. 

Floating point unit is used in DSP 

Processors like TMS 320X and embedded 

systems. The work is to implement and 

analyses floating point adder operation and 

hardware module were implemented using 

VERILOG and synthesized using Xilinx ISE 

suite 
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