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ABSTRACT 

 This paper will present a flexible 

Memory Builtin Self-Test (MBIST) 

designed to be easily adaptable to specific 

memory configurations and user 

requirements. Its RTL code is generated by 

means of programming scripts that provide 

an easy to read code without the use of 

complex compiler directives. The basic 

architecture can be adapted to different 

schemes of test such as parallel, in which all 

the memories are tested concurrently, or 

sequential, in which the memories are tested 

one at the time. Linear-feedback shift 

register (LFSR) counters however a counter 

design based on multiple LFSR stages is the 

proposed designs that have been shown to 

be well suited to applications requiring large 

arrays of counters and can improve the area 

and performance compared with 

conventional binary counters, which are 

used in existed design.  

Index Terms— MBIST, comparator, 

multiplexers, linear-feedback shift register 

(LFSR) and counter. 

I.INTRODUCTION 

 A concern of a digital IP provider is 

to be able to rapidly develop and deliver IPs 

with different sets of features and 

characteristics ensuring that only the 

necessary features are included in the final 

RTL. A secondary concern is to make the IP 

usable for many years to get the most value 

out of one’s work. These seem to be  

 

 

 

contradictory objectives. Much has been 

said about IP reuse but the economics of the 

semiconductor industry has not been kind to 

IP providers. Ips are expensive to develop 

and maintain, which is perhaps why  few IP 

providers are successful, and even in these 

cases the solutions are in general complete 

and self-contained like CPU cores, cache 

controller, memory compilers, etc. 

 One way to address these concerns 

would be to architect the design in which 

modules can be plugged-in like “LEGO 

blocks”. Using this philosophy, a memory 

built-in self-test (MBIST) architecture can 

be used in dozens of SoCs ranging from 

very simple (containing a handful of 

memories) to very simple (containing a 

handful of memories) to very complex 

(containing thousands of memories and 

hundreds of MBISTs). 

A) LINEAR-FEEDBACK SHIFT 

REGISTER (LFSR) 

 In computing, a linear-feedback shift 

register (LFSR) is a shift register whose 

input bit is a linear function of its previous 

state. The most commonly used linear 

function of single bits is exclusive-

or (XOR). Thus, an LFSR is most often a 

shift register whose input bit is driven by the 

XOR of some bits of the overall shift 

register value. The initial value of the LFSR 

is called the seed, and because the operation 

of the register is deterministic, the stream of 

values produced by the register is 

completely determined by its current (or 

previous) state. Likewise, because the 

https://en.m.wikipedia.org/wiki/Computing
https://en.m.wikipedia.org/wiki/Shift_register
https://en.m.wikipedia.org/wiki/Linear#Boolean_functions
https://en.m.wikipedia.org/wiki/Exclusive-or
https://en.m.wikipedia.org/wiki/Exclusive-or
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register has a finite number of possible 

states, it must eventually enter a repeating 

cycle. However, an LFSR with a well-

chosen feedback function can produce a 

sequence of bits that appears random and 

has a very long cycle. 

 
Fig1: Structure of 4bit LFSR. 

II. LETERATURE SURVEY 

 Linear-feedback shift register 

(LFSR) counters have been shown to be 

well suited to applications requiring large 

arrays of counters and can improve the area 

and performance compared with 

conventional binary counters. However, 

significant logic is required to decode the 

count order into binary, causing system-on-

chip designs to be unfeasible. This paper 

presents a counter design based on multiple 

LFSR stages that retains the advantages of a 

single-stage LFSR but only requires 

decoding logic that scales logarithmically 

with the number of stages rather than 

exponentially with the number of bits as 

required by other methods. H. Mo and M. P. 

Kennedy, “Masked dithering of MASH 

digital delta sigma modulators with constant 

inputs using multiple linear feedback shift 

registers,” Paper shows that applying a 

linear feedback shift register (LFSR) dither 

to a digital delta-sigma modulator (DDSM) 

cannot always increase its fundamental 

period. For some DDSMs, the LFSR dither 

may reduce its period in some cases, instead 

of increasing it, which worsens the output 

spectrum. Hence, the paper calculates the 

dithered DDSM’s period and analyzes the 

influence of LFSR dither on the period. 

Furthermore, for such kind of DDSM, the 

paper explains how to add the LFSR dither 

to increase the period for a full input range. 

Finally, experiment is performed to confirm 

the analysis. 

III. MEMORY BIST 

ARCHITECTURE 

 Semiconductor memories are 

dedicated circuits designed to store digital 

information, they are the most used IP in 

modern SoCs. Memories incorporate the 

greatest concentration of transistors per 

square area for a given semiconductor 

technology, pushing the chip fabrication 

process to its limit. Consequently, memories 

are more failure prone than logic. Testing 

such embedded memories can be a 

challenging task as each type of memory has 

peculiarities that make it more susceptible to 

distinct types of faults. The objective of this 

paper is not to discuss various fault models a 

memory can present but instead to show 

how to implement a Built-In Self- Test 

(BIST) Architecture that could cover them 

all. 

 The focus of the discussion in this 

paper will be static RAM memories 

(SRAM), which are the most common 

https://en.m.wikipedia.org/wiki/Primitive_polynomial_(field_theory)
https://en.m.wikipedia.org/wiki/Primitive_polynomial_(field_theory)
https://en.m.wikipedia.org/wiki/Maximal_length_sequence
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memory type used in SoCs. The memory 

test is in general a well understood process. 

It consists of identifying all physical 

processes that can lead a memory to 

malfunction; these are usually known as 

physical faults. The list of such faults is then 

mapped to observable behaviors that do not 

correspond to normal (expected) memory 

behaviors; this is called functional-faults or 

fault-models. Note that many different 

physical-faults can exhibit themselves as the 

same malfunction. We could think of the 

physical-faults as the disease while the 

malfunctions as the symptoms. Finally, 

specific sequences of operations are 

designed to sensitize and detect these 

symptoms. In most cases (except when fault 

analysis is intended) the reasons for the 

symptoms are irrelevant. It is enough to 

detect the misbehavior to conclude that the 

memory has problems.  

 In the case of SRAMs, the sequence 

of operations designed to detect faults is 

called a “March sequence” or “march 

algorithm”. Some professionals may 

consider the March algorithm as being the 

whole memory test, but for this paper, we 

prefer to consider a March algorithm to be 

only the sequences of reads and writes 

performed in the memory. The SRAM test 

consists of the application of the designed 

sequences or March algorithms to the target 

memory, and comparing the results to the 

expected values. This is shown in the 

diagram of figure 2. 

Fig. 2. Basic Architecture. 

 The figure 1 shows the Pattern 

Generator that generates the test sequences 

(march algorithm) and the comparison block 

that compares the values read from the 

memory to the expected (golden behavior) 

values. If any difference is detected a fault 

has been found. Also shown in figure 1 is a 

system interface block which interfaces to 

the SoC. This is necessary to control the 

memory BIST and to allow tester or 

software get information about the test. 

Another point to be noted is that the 

comparison block is inside a block called 

“Memory Interface”. The Memory Interface 

block is divided in two main sections: the 

first translates the patterns generated by the 

pattern generation block into memory 

signals; the other is a comparison section 

which compares the values read from the 

memory. This basic structure can be applied 

to all memories in the SoC but this can be 

very costly for a system that includes a large 

number of memories. 

 

IV. PARALLEL ARCHITECTURE 

 Many optimizations can be applied 

to this basic architecture. The most obvious 

would be sharing the system interface block 

among several BISTs. Devising a very 
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simple protocol it is possible to control 

several basic BISTs and collect important 

feedback from the tests using a common 

SoC interface. On the other hand if we could 

improve the intelligence of the “Memory 

Interface” block it would be possible to 

share the core BIST components including 

the Pattern Generator among several 

memories.  

 To test several identical memories, 

the patterns from Pattern Generator block 

would be translated to each memory 

individually and the read back values 

compared individually on each respective 

Memory Interface block. That alone would 

improve the BIST area significantly 

compared to the initial option of replicating 

the entire basic architecture for each 

memory. This is a preferred alternative over 

just sharing the SoC Interface and this is the 

basis for a “Parallel BIST”.  

 The parallel BIST idea can easily be 

expanded to memories of different 

geometries if the pattern generation is 

dimensioned to the biggest memory being 

tested. In this case, the respective Memory 

Interface would also be responsible to 

decide if a particular address applies to its 

memory. This is easily done making the 

Memory Interface aware of the address 

range and data width of its memory.  

 The main advantage of the Parallel 

BIST architecture is that it can test all 

memories at the same time, and at speed 

with no interval between operations. Its 

basic structure is shown in figure 3.Making 

the Pattern Generator a common structure in 

the architecture brings another advantage. It 

is possible to make it more powerful without 

increasing too much the overall BIST area. 

Interesting features that can be added are 

selectable or programmable algorithms and 

configurable address ranges.  

 

Fig. 3. Parallel Architecture. 

V. SEQUENTIAL ARCHITECTURE 

 Configurability to individual basic 

blocks can enable new possibilities in terms 

of architecture choices. Suppose that instead 

of only being aware of the memory’s 

geometry, the Memory Interface is able to 

adjust itself to several types of memories. 

The Pattern Generator could generate 

specific patterns for different memories, 

signaling to each memory whether the it is 

valid on a cycle by cycle basis. In this case, 

besides the enhanced Memory Interface and 

Pattern Generator blocks, only a multiplex 

layer would be required to connect the 

enhanced Memory Interface to all memories. 

This structure would be like the diagram in 

figure 4, and it is referred to as “Sequential 

BIST”. 

 The Sequential BIST tests one 

memory at a time. It selects the first memory 

in its list and applies the march algorithm 

adjusted to that memory, selecting the 
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appropriate address range and other 

requirements. When the first memory is 

completely tested (i.e. the entire algorithm 

has been executed on this memory), it 

proceeds to the next memory, until all the 

memories are tested. In this case the test 

time required by the Sequential BIST will be 

larger compared to the Parallel BIST, but the 

BIST area will be much smaller if the 

number of memories is sufficiently large. 

 Note that in figure 4 the “Pattern 

Generator” block has been replaced by a 

new block called “Test Control”. Note that 

in figure 4 the “Pattern Generator” block has 

been replaced by a new block called “Test 

Control”.  

 What was previously called Pattern 

Generator is no longer a simple state 

machine that generates the read/write 

sequences for the test, now it also selects 

one memory at a time and then applies the 

March algorithm test, adjusting itself to the 

geometry of the selected memory. 

 
Fig. 4. Sequential Architecture. 

A. SYSTEM INTERFACE AND 

REGISTER MODEL 

 The SoC Interface is an important 

part of the overall BIST architecture because 

it will determine whether BIST integration, 

verification and programming will be easy 

or cumbersome. Many solutions propose a 

serial interface, occasionally integrated to 

the DFT processes, others prefer more 

elaborate parallel protocols, making use of 

the already existent infrastructure of 

proprietary buses inside the SoC. All 

solutions have pros and cons; the important 

question is “how to enable all these 

choices”. Figure 4 shows a breakdown of the 

SoC Interface block. 

 
Fig. 5. SoC Interface. 

 The SoC Interface block is 

composed of three major blocks: The 

System Protocol, The Access Manager, 

(responsible for the internal accesses in the 

BIST) and the Configuration Registers. The 

SoC Interface is partitioned this way in 

order to decouple the internal logic from the 
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SoC. The System Protocol is designed to 

work as a bridge between the SoC and the 

internal BIST logic, in principle it can be 

replaced by any other access protocol, such 

as the serial IJTAG, or a parallel protocol 

such as ARM’s APB [4].  

 The advantage of using a parallel 

interface, beyond the low latency 

transactions, is the possibility of accessing 

the memory directly independent of the 

functional path. This is called “backdoor 

access” and can be seen in figure 4 by the 

connection of the Access Manager block and 

the Memory Interface. 

 Other important aspect of the SoC 

Interface is the definition of a common set 

of registers for all possible BISTs in the 

family and all configurations. The purpose 

of these registers is to configure, program 

and collect feedback for the memory test, 

and control major aspects of BIST’s 

operation. The use of a common set of 

configuration registers makes the test vector 

generation a much simpler task as test 

vectors can be easily ported among several 

different SoCs.  

 The register set is defined in a 

standard spreadsheet where address offset of 

each register from a base address, its bit-

fields and the characteristics of this bit-field 

are specified. If a register or bit field is 

associated to a particular feature, this is also 

annotated in the spreadsheet. It contains 

textual descriptions of the registers and their 

bit-fields. In summary, the spreadsheet is the 

center specification of all software visible 

aspects of the BISTs architecture.  

 The spreadsheet is used to generate 

the RTL for the internal Configuration 

Register module, sections of the block 

guide, and many different machine register 

descriptions used by verification and test 

generation tools. All of these are derived 

from the register description spreadsheet.  

B.RAM TEST: 

 In the Memory BIST Architecture 

section, a high level description of the RAM 

test was provided. It is time now to dive a 

little deeper into the details of each block to 

complete the picture of this architecture. 

Instead of discussing the component blocks, 

we will discuss specific aspects of the RAM 

test and then assign the implementation to 

the specific block. This way we will 

gradually construct a specification for each 

component blocks. 

 A. March Algorithm and Pattern 

Generation We saw there is a Pattern 

Generator block, which is responsible for 

the generation of read/write sequences for a 

particular march algorithm. We can expand 

its role now to select different address 

ranges and different march algorithms. 

Finally, to enable the Sequential BIST 

behavior, the block needs to also select one 

memory at a time and repeat the test 

multiple times to test all the memories. We 

see here that the original purpose of the state 

machine has expanded to encompass more 

than just patterns for the memories but also 

different aspects of the test. The block can 

now be named as the Test Control block. 

The Test Control block can be implemented 

in many ways.  

 It basically generates a sequence of 

operations. In circuit terms, it is just a state 

machine (FSM). There are many ways to 

implement this FSM. The obvious approach 

would be to consider all variations and 

implement a single FSM, but this would not 
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be efficient since some of the features might 

not be used resulting in a waste of logic. 

Having this in mind, a hierarchical design is 

implemented which allows insertion and 

removal of features as needed. The main 

idea is illustrated in figure 5. 

 The SRAM test consists of a 

sequence of operations that repeat 

themselves for every memory address. 

Having this in mind, the Test Control block 

is designed as a set of nested state machines, 

each one taking care of one aspect of the 

test. The lower FSMs in the figure 5 are the 

ones generating the March algorithm. The 

inputs of these FSMs are configurable 

Configuration Registers or are hard coded 

when RTL is generated. March Element 

(ME) and March Phase (MP) state machines 

are implemented as simple counters, while 

the Address Generator is a programmable 

up/down counter. Each state machine has its 

“start/done” signal linked to the upper FSM 

in the hierarchy. It works this way: when 

initiated (started), the ME Selector indicates 

the first March element of the test and then 

starts the Address Generator. 

 This points to the first memory 

location to be accessed and starts the MP 

Selector. The MP Selector applies all the 

March phases programmed/selected for that 

March element. When all the March phases 

have been executed, the MP Selector signals 

“done” to its predecessor. Receiving a 

“done” from the MP Selector, the Address 

Generator increments/decrements the 

current address to generate the next memory 

address and starts MP Selector again. This 

operation is repeated until all 

programmed/selected address range is 

covered.  

 Once the last address position is 

covered, the “done” signal from the MP 

Selector will also generate a “done” signal 

from the Address Generator to the ME 

Selector. At this point the ME Selector goes 

to a new ME selection starting the Address 

Generator again. Only when all March 

elements have been applied, the “done” 

signal from the ME Selector is generated to 

the next higher FSM in the hierarchy. 

 The example in figure 5 shows other 

levels in the control hierarchy that might be 

useful for the   RAM test. There is a 

Background Selector above the March 

Algorithm FSM, that could select multiple 

data backgrounds for the test like 

checkerboard, solid 0/1, 55/AA, etc. There is 

also the Fast mode Selector that could be 

used to select address progression such as 

row-fast, column-fast or block-fast.  

 And finally, the Array Selector that 

selects the memory to apply the test. Other 

FSMs could easily be added to the 

hierarchy, the one shown in figure 5 is the 

Loop Counter that runs the test multiple 

times, which can be useful during fault 

analysis. The Test Control presented is 

suited for the Sequential BIST because it has 

the Array Selector integrated. For the 

Parallel BIST, the Array Selector can be 

eliminated, the chain of “start/done” signals 

bypass the unused Array Selector. The same 

principle applies to all hierarchical levels. 

For example, if no fast-modes are necessary 

the Fast-mode Selector block can be 

eliminated and the “start/done” chain could 

be go straight from the Array Selector to the 

Background Selector. 

 The opposite is also true: if a new 

level or hierarchy is required it can easily be 
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inserted in the Test Control block. For 

example, suppose it is necessary to include 

an automated dual-port switch to test a dual-

port SRAM by both the primary as well as 

the secondary port. A new Port Selector 

could be inserted between Background 

Selector and ME Selector connecting the 

respective “start/done” signals according to 

the hierarchy. Note that all control levels are 

fully configurable and/or programmable to 

provide the most flexibility.  

 The March Algorithm blocks, for 

example, are adaptable to different 

algorithms that can be programmed in the 

Configurable Registers block or selectable 

pre-defined table. This configurability is 

controlled by the number of MEs and MPs 

that the selectors are expected to execute 

and the direction the Address 

Generator should progress.  

 
Fig. 6. Test Control. 

VI. RESULTS 

 

Fig7: RTL schematic view of serial 

architecture 

Fig 8: VIEW Technology Schematic of 

serial architecture
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Fig 9: Simulated wave form of serial 

architecture 

 

Fig10: RTL Schematic view of parallel 

architecture 

 

Fig11: View Technology Schematic of 

parallel architecture 

Fig12: simulated wave form of parallel 

architecture 
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Table .1: parameter comparison table 

Parameter  Sequential 

Architecture 

Parallel 

Architecture  

Delay ( 

ns) 

6.236 4.394 

Power 

(mW) 

0.179 0.008 

 

 
Fig 13: delay comparison bar graph 

 

 
Fig 14: power comparison bar graph 

 

VII. CONCLUSION AND 

FUTURE SCOPE 

 In this paper proposed A flexible 

memory BIST parallel architecture has been 

presented that allows the same basic 

architecture to be optimized for test time (by 

implementing a parallel BIST)configurable 

is better than the sequential architecture for 

MBIST those results are shown in table1. 

Additional optimizations are possible with 

ganging memories in either in address space 

or in data space. The principles presented in 

this paper may enabled a design team to 

quickly develop application specific BISTs 

such as ARM PORT BISTs intended to test 

high speed memories in ARM cores using 

ARM MBIST interface. The ARM PORT 

BIST utilizes one of BIST implementations 

described earlier that accesses memories 

through the ARM MBIST interface. 

TCAMBIST is another instance in which the 

BIST architecture discussed earlier was 

quickly modified to test Ternary Content 

Addressable Memories with very highest 

coverage. These BIST instances were 

developed rapidly by exploiting the common 

BIST state machine architecture described 

earlier. 
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