

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 371

VLSI Architectures for 8 Bit Data Comparators

for Rank Ordering Image Applications

C Satish Babu
1
, Mallikarjuna

2

1
P.G. Scholar,

2
Guide, Head Of The Department

1,2
Branch : Vlsi Design

1,2
 Geetanjali College Of Eng &Amp; Tech

Email:
1
satishbabji143@gmail.Com

Abstract

The main objective of the proposed work is

to develop a new Data comparator which

gives an economical solution for sorting /

Rank ordering networks on the basis of

speed, power, and area. The proposed work

comprises a design of six different

comparators for 8 -bit comparison. The

performances of these six different

comparators were targeted for XCV1000-

4bg560 using Xilinx 7.1i compiler tool

using VHDL. It was found that Carry select

logic based data comparator requires less

area and suitable for reduced area

applications. The Conventional bit wise

logic based data comparator operated with

less delay. Hence this architecture can be

used for high speed application.

The Twos complement using binary to

excess one data converter consumes less

power. Hence a twos complement based

implementation is suitable for low power

implementations. The Different architecture

for data comparators were applied on

parallel and pipelined architecture of

modified shear sorting. These three

architectures were compared with other

existing median finding architectures. It was

found that the CSLA based parallel

architecture, CBC based pipelined

architecture and 2BEC based pipelined

architecture were stand out in area, speed

and power when compared with

conventional median finding algorithms.

Keywords : Data Comparator, Modified

shear sorting, Parallel architecture,

Pipelined architecture, VHDL.

Introduction

THE comparator is a very useful

combinational circuit used for testing

whether the binary number at one input is

greater or less than to another binary

number. An XOR gate can be used as an

essential comparator. The Comparators are

comprised of two types

(a).Magnitude Comparator

(b). Data Comparator.

The former compares only the

magnitude of the two binary numbers and

the later gives the greater and a lesser data

itself. The Magnitude comparator has two

outputs to indicate whether first input is

greater than second input or vice versa.

Whereas data comparator can also be

referred to two cell comparator, as it

compares word X with word Y and gives

out a Higher and lower value respectively A

compressed, good quality cost, high

performance, and low power comparator

play a significant role in almost all hardware

comparators. The work attempt to observe

the features of certain comparator circuits

which assure better performance compared

to existing circuits. Karpagaabirami and

Ramamoorthy developed an Adaptive Rank

Order filter (AROF) with VLSI

implementation had been developed to

remove impulse noise and pipelining with

parallel processing in order to speed up

filtering process.

The advantage of Decision Rank Order

Filter (DROF) consumes less area and also

architecture is simple compared to Decision

Tree Based De-noising Method

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 372

(DTBDM).The disadvantage of VLSI

DTBDM involves too many architectures

for detection of noise and reconstruction of

noisy pixel. Ayeesha et al explored the

design of high speed and low power

comparator since it operates only with 1volt

power and less propagation delay and its

architecture includes two stage CMOS op-

amp circuit. In this work, comparator is

designed with cadence tool with

0.18micrometer technology.

 Bharat et al introduced a special types

of comparators and these circuits are

simulated with 1 Volt DC supply voltage in

LTspice-IV using PTM 45nm technology.

Unlike static and dynamic characteristics of

all these comparators are considered and

compared and it operates with higher speed

and provide more stabilized output compare

to 90nm and 180nm. Mehamood et al

developed various new designs to reduce

the area and power consumption as small

saving in area and power of a circuit yield a

large overall saving. From the evaluation,

found that full-custom design saves about

50%in area and 35%in power consumption

when compared to auto-generated design.

Vasanth et al developed a parallel

architecture and pipelined architecture for

modified shear sorting. The method

introduced an area efficient data comparator

for sorting 9 elements. The basic processing

element is area optimized two cell sorter. A

group of three two cell sorter form a three

cell sorter which in turn uses compare and

swap approach for ordering the data

sequence.

Keeping chan developed a VLSI

algorithms and implementation architectures

for a class of nonlinear filters. The class of

filters contains all of the functions earlier

defined by stack filters, where rank-order

and median filters are special cases. The

function of a stack filter can be realized in

k-step recursive use of one binary

processing circuit.

Vasanth et al introduced a novel Borrow

Look Ahead Logic based Comparator

(BLAC) and implemented the output in both

pipelined and parallel architecture of

modified shear sorting. Vasanth et al

introduced finite state machine based VLSI

architecture for Decision based

Unsymmetrical trimmed midpoint filter.

Vasanth proposed a novel methodology for

finding median of an array using modified

selection sort. Vasanth et al introduced a

novel 8 bit data comparator which used

carry select logic. The proposed bit-serial

architecture is very suitable for VLSI

implementation. Hence a suitable Data

comparator has to be formulated that uses a

les area, consumes low power and operates

at very high speed.

PROPOSED MODEL

A. Basic Structure of Data Comparator

The basic structure for the Proposed

Data Comparator consists of two inputs and

two outputs. The internal structure of the

data comparators consists of a logic circuits

that identifies which of the two inputs is

greater by generating a signal which is in

turn drives two multiplexers which yield a

high or a low value depending upon the

generated signal. The block diagram of the

basic structure of the Data comparators is

given in Fig. 1.

The basic operation of comparator is

subtraction of two numbers. The paper deals

with different types of implementation of

subtraction done to yield borrow generation

for data comparator output. The work focus

on six basic styles to design data

comparators which are given below:

Conventional bitwise data comparator

Carry select logic data comparator (CSLC)

Borrow Look ahead logic data Comparator

Decoder based Data comparator (DDC)

Multiplexer based data comparator (MDC)

Twos complement comparator using Binary

to excess one converter (2BEC)

B. Conventional bitwise data comparator

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 373

Fig. 1. Block Diagram of a Data

Comparator

Conventional data comparator uses

the methodology of magnitude comparator

and acts like a word comparator. A 1- bit

magnitude comparator is used as a

processing element for 8-bit comparison

where a, b are two 1 bit number and there

are two outputs corresponding to a>band

a<b respectively as shown in the Fig. 2. The

result of the comparison is given as input to

the multiplexer to determine whether the

word of each 8-bit with another word b of

each 8-bit is greater or not. If it is found

greater then it provides the output as a

maximum (max) otherwise minimum (min)

respectively. The block diagram of the

conventional Data Comparator is shown in

Fig. 2.

Fig. 2. Block Diagram of Conventional

Data Comparator

C. Carry select logic data comparator

The carry select logic comparator

design was developed for an 8-bit

comparator. To implement a comparator an

alternative basic operation is a subtraction.

Hence we use a rippled borrow output of an

8 bit full subtractor to select the data from

the multiplexer. The carry select logic will

be used to so that High and low values are

obtained using compare and swap function.

In this work, carry select logic is set for an

X-Y to subtract.

In the above design, Xi and Yi are

the inputs which are feed into a carry select

logic circuit to perform the subtraction and

to obtain the output as a carry. The output of

the carry select logic block gives the final

carry directly to a multiplexer with Xi and

Yi as inputs which in turn gives the lowest

value and inverted output of the carry select

logic block is given to another multiplexer

gives the highest value.

Fig. 3. Block Diagram of Carry select

data Comparator

Fig. 4. Block Diagram of Borrow look

ahead Data Comparator

In this work to compare and swap

two 8 bit numbers, we need one- half

subtractor, seven full subtractors and two

2:1 multiplexer. The multiplexer is

controlled by the carryout of the subtract

function. The carry logic circuit output is

obtained from onehalf subtractor and seven

full subtractors. the final full subtractor is

given as input to a multiplexer from which

the Low value is obtained and the inverted

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 374

Carryout The borrow of the value is given

to another multiplexer which gives the High

value. The block diagram of the Carry select

logic Data Comparator is shown in Fig. 3.

In this approach both the half and full

subtractor uses borrow equations to select

output of data multiplexers shown in the

Fig. 3. The borrow ripples to the next stage.

Hence the dependency of borrow arises.

Fig. 5. Block Diagram of Decoder

based Data Comparator

D. Borrow look ahead logic data

comparator (blac)

The borrow dependency problem is

eliminated using borrow look ahead logic

data comparator. An 8-bit comparator that

uses Borrow Look Ahead Select Logic

(BLAC) [8] in the place of logic circuits

that generates a carry that is not dependent

on the previous stage as given in equations

below. This carry will find the higher and

lower value of two numbers. This basically

works as a Data comparator. The borrow

look ahead select logic arrangement is

implemented mainly to eliminate the carry

dependencies that arises in the previous

stages. To understand the working of

BLAC, consider the basic borrow equation

of a full subtractor in equation. Let x and y

are the two 8 bit inputs and Ci refers to

initial carry (which is generally 0) and Co

refers to carry out.

Co = ((not x) and y) or ((not x) and

Ci) or (y and Ci) (1)

On assuming two functions to

represent the basic borrow functions named

as Generate (G), Propagate (P) as shown in

equation (2) and (3).where i represents the

number of bits.

Gi = (not xi) and yi (2)

Pi = xi xor yi (3)

Substituting the equations (3) and (2) in

equation(1) we get.

C(i+1)=Gi + (not Pi) Ci (4)

Now the equation(a) gets modified as

equation(d) . Vary the value of i from 0 to 7

resulting in a carry generation in C7 referred

as carryout.
i = 0 C0 = G0 (5)

i = 1 C1 = G1 + P1G0 (6)

i = 2 C2 = G2 + P2G1 + P2P1G0 (7)

i = 3 C3 = G3 + P3G2 +

P3P2G1 + P3P2P1G0 (8)

i = 4 C4 = G4 + P4G3 + P4P3G2 + P4P3P2G1

+P4P3P2P1G0 (i)i

= 5 C5 = G5 + P5G4 + P5P4G3 +P5P4P3G2 +

P5P4P3P2G1 + P5P4P3P2P1G0 (9)

i = 6 C6 = G6 + P6G5 + P6P5G4 + P6P5P4G3

+P6P5P4P3G2 + P6P5P4P3P2G1 +

P5P4P3P2P1G0 (10)

i = 7 C7 = G7 + P7G6 + P7P6G5 + P7P6P5G4

+ P7P6P5P4G3 + P7P6P5P4P3G2 +

P7P6P5P4P3P2G1+ P7P6P5P4P3P2P1G0 (l1)

i= 15 C15 = G15 +P15G14 + P15P14G13 +

P15P14P13G12 + P15P14P13P12G11 +

P15P14P13P12P11G10 +

P15P14P13P12P11P10G9 +

P15P14P13P12P11P10P9G8 +

P15P14P13P12P11P10P9P8G7+P15P14P13P12

P11P10P9P8P7G6+P15P14P13P12P11P10P9P

8P7P6G5+P15P14P13P12P11P10P9P8P7P6P5

G4+P15P14P13P12P11P10P9P8P7P6P5P4G3+

P15P14P13P12P11P10P9P8P7P6P5P4P3G+P1

5P14P13P12P11P10P9P8P7P6P5P4P3P2G1 +

P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1

G0
From equation 11 it is vivid that the

generated borrowout value will depend only

on initial carry only. The carry out will act

as an input for the first Multiplexer which

gives the output High value and the inverted

value is fed to another multiplexer which

gives the output as Low value. The Block

Diagram of Borrow Look Ahead logic Data

Comparator is shown in Fig.4.

E. Decoder based data comparator

The Decoder-based comparator is

used to control the flow of logic i.e data

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 375

transfer [7]. The proposed logic circuit is

simple and effective that compares MSB of

first 8-bit with MSB of another 8-bit binary

number and provides the output by

performing basic XOR gate operation of X

and Y respectively. The output of these is

fed to decoder, that operates when the bits

are identical the decoder is disabled and

when the bits be different from each other,

the decoder is enabled and put them in the

proper order. However, the decoder based

data comparator consider only the two cases

of X>Y and X<Y, therefore, it is important

whether the output is the Max(X, Y) or the

Min(X, Y), thus we include 2 multiplexers.

The output of the multiplexers is based on

the selection line which acts as one of the

inputs to both OR gates and second input

depends on the decoder line as shown in the

figure. If the decoder line is „01‟i.e Y is

selected to perform OR operation of X and

Y, then it gives maximum value and the

inverted operation i.e „10‟ line of Y and X

gives the minimum value. The block

diagram of Decoder based Data Comparator

shown in Fig. 5.

F. Multiplexer based data comparator

A Processing Element (PE) consists

of OR gate, AND gate and Multiplexer. The

inspiration of the work is derived from

Keshab parhi adder using multiplexer. The

truth table of full subtractor is shown in

Table I. The table does not require a

difference as we are interested only in

borrow out. From inspection of truth table,

the following inference was made. The

borrow generation circuit required for data

comparator is derived from the truth table.

The processing element is built

using the truth table values. In this

multiplexer based Data comparator any one

of the input will act as a selection line and

other two input will form the data. A zero in

the selection line will choose the “OR”

operation output of two inputs and a one

will choose the “AND” operation of two

inputs. Based on the selection line (third

input) the borrow is chosen.

Fig. 6. Block diagram of multiplexer

based Data Comparator

The comparator operation can be

implemented as a subtractor and the borrow

generation is facilitated using this

multiplexer based approach. In this work,

for 1-bit processing element, the output of

these gates is taken as xx1 and xx2 which

perform the operation of individual gates

based on selection line(s) as shown in the

figure. The output of these gates is fed to

2:1 multiplexer gives the difference (diff) as

output. The logic generation block is

replaced by series of ripple carry

multiplexers and Finally, the generated

output of PE7 is fed to multiplexer that

compares whether the binary number is

greater or not. Here if it is greater which

gives Low value and otherwise High value.

The block diagram of multiplexer based

Data Comparator is shown in Fig. 6. Table I

gives the truth table for Multiplexer based

comparator. The red rectangle in input side

indicate the selection line for the

multiplexer and the red rectangle in output

resembles the truth table of an OR gate. The

black oval in input indicate the selection

line as 1 and the green oval in output

resemble the output of an AND gate.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 376

Fig. 7. Block diagram of the Twos

complement based Data Converter using

binary to excess one logic

G. Two’s complement based data

converter:

This data comparators uses twos

complement implementation to implement a

Data comparator. The basic twos

complement implementation is given by

A+B‟+1. In this design, B‟+1 is

implemented using binary to excess one

converter instead of a full adder. Adding the

result of B‟+1 to A is by using a set of full

adders. This summation result in a carry.

This carry will drive the multiplexers to

yield High and low values. The main logic

of this 8 Bit Binary to Excess one Converter

(BEC) is given in equation 12- 19.The

Boolean expressions of the 8-bit BEC are

X0 = not B0 (12)

X1 = B0xor B1 (13)

X2 = B2xor (B0 and B1) (14)

X3 = B3xor (B0 and B1 and B2) (15)

X4 = B4xor (B0 and B1 and

B2 and B3) (16)

X5= B5xor (B0and B1 and

B2 and B3and B4) (17)

X6= B6xor (B0 andB1 and B2and

B3 and B5andB5) (18)

X7= B7xor (B0 and B1 andB2and

B3and B4andB5andB6) (19)

MODIFIED SHEAR SORTING (MSS)

Modified shear sorting is simple and

fast algorithm which is used to determine

median of list of elements using compare

and swap operation. The following steps are

followed to perform modified shear sorting

are shown in Fig. 8.

1. Arrange the elements of row in ascending

order.

2. Arrange the elements of column in

descending order.

3. Arrange the elements of right diagonal in

ascending order,

and then we get the semi sorted

processing window. Thus, we get the first

element of the array as minimum (min),

second element as median (med) and third

element as maximum (max) , which are

used for ranking elements in proper order.

Fig. 8. Illustrates the methodology of

Modified shear sorting

A. Parallel architecture for modified shear

sorting

The methodology of modified shear

sorting is implemented using compare and

swap operation that works as a parallel

architecture. The different architecture for

data comparator also referred as two cell

sorter is used to build a small processing

element called three cell sorter. A three cell

sorter is a basic unit that compares three

elements and gives out Maximum, median

and minimum value of three elements.

These three cell sorter are the basic

processing element for the Modified Shear

sorting. The fundamental operation of

parallel architecture is two cell sorter and

the processing element of these architecture

is a three cell sorter because three cell sorter

is equal to three two cell sorters. In this

architecture it basically requires a network

in order to determine median value from the

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 377

given nine elements by using the

methodology of sorting.

Fig. 9. Illustrates the parallel architecture

for Modified shear sorting

The architecture shown in Fig. 9 is

used with seven three cell sorters to perform

the operation either in row, column and

right diagonal which contain nine elements.

As shown in figure, it is vivid that we use

three sets of 3-cell sorter for arranging three

elements of the row and column in

increasing order. Fig. 8. Illustrates the

methodology of Modified shear sorting One

three cell sorter is used for sorting elements

in the diagonal. The three cell sorter

arranges the outputs as minimum, median

and maximum respectively. The lowest

value of first, second and third row 3-cell

sorter are given as input to first column 3-

cell sorter. The mid values of first, second

and third row3-cell sorter are given as input

to second column 3-cell sorter. The highest

values of first, second and third row3-cell

sorter are given as input to third column 3-

cell sorter. Then the higher value of first

column 3-cell sorter, middle value of second

column 3-cell sorter and finally the lower

value of third column 3-cell sorter is

compared with right diagonal 3-cell sorter

as shown in the following Fig. 10. Thus, the

output of right diagonal 3-cell sorter is

considered as median value.

B. Pipelined architecture for modified

shear sorting

Pipelining design is a suitable VLSI

architecture for decreasing the critical path,

meanwhile it can reduces the speed. The

basic operation of these architecture is

performed by using clock (clk) sequence.

These are the steps while processing is as

follows:

Step1: During first clock pulse, the first set

of three elements is fed into a first 3-cell

sorter and the output from this is sent into

three set of registers.

Step2: At second clock pulse, the second set

of three elements is fed into a same 3-cell

sorter and the output from this is stored into

the subsequent three set of registers.

Step3: At third clock pulse, final set of three

elements is fed into a same 3-cell sorter and

at the same time elements are stored in the

two set of registers are compare with

another 3- cell sorter. The result obtained at

the end of third clock pulse Step4: At the

fifth clock pulse, the outputs of two sorter

are compared and the result from this is

again passed into the 3- cell sorter.

Step5: During seventh clock pulse, the

result obtained is considered as median

value

Fig. 10. Pipelined architecture for

modified shear sorting

INTRODUCTION TO XILINX

Migrating Projects from Previous ISE

Software Releases:
When you open a project file from a

previous release, the ISE® software

prompts you to migrate your project. If you

click Backup and Migrate or Migrate Only,

the software automatically converts your

project file to the current release. If you

click Cancel, the software does not convert

your project and, instead, opens Project

Navigator with no project loaded.

Note: After you convert your project, you

cannot open it in previous versions of the

ISE software, such as the ISE 11 software.

However, you can optionally create a

backup of the original project as part of

project migration, as described below.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 378

To Migrate a Project

1. In the ISE 12 Project Navigator, select

File > Open Project.

2. In the Open Project dialog box, select

the .xise file to migrate.

Note You may need to change the

extension in the Files of type field to

display .npl (ISE 5 and ISE 6 software)

or .ise (ISE 7 through ISE 10 software)

project files.

3. In the dialog box that appears, select

Backup and Migrate or Migrate

Only.

4. The ISE software automatically

converts your project to an ISE 12

project.

Note If you chose to Backup and Migrate,

a backup of the original project is

created at

project_name_ise12migration.zip.

5. Implement the design using the new

version of the software.

IP Modules:
If your design includes IP modules

that were created using CORE

Generator™ software or Xilinx® Platform

Studio (XPS) and you need to modify

these modules, you may be required to

update the core. However, if the core

netlist is present and you do not need to

modify the core, updates are not required

and the existing netlist is used during

implementation.

Obsolete Source File Types:
The ISE 12 software supports all of

the source types that were supported in the

ISE 11 software. If you are working with

projects from previous releases, state

diagram source files (.dia), ABEL source

files (.abl), and test bench waveform

source files (.tbw) are no longer supported.

For state diagram and ABEL source files,

the software finds an associated HDL file

and adds it to the project, if possible. For

test bench waveform files, the software

automatically converts the TBW file to an

HDL test bench and adds it to the project.

To convert a TBW file after project

migration, see Converting a TBW File to

an HDL Test Bench.

Using ISE Example Projects:
To help familiarize you with the

ISE® software and with FPGA and CPLD

designs, a set of example designs is

provided with Project Navigator. The

examples show different design techniques

and source types, such as VHDL, Verilog,

schematic, or EDIF, and include different

constraints and IP.

To Open an Example

1. Select File > Open Example.

2. In the Open Example dialog box,

select the Sample Project Name.

Note To help you choose an example

project, the Project Description field

describes each project. In addition, you

can scroll to the right to see additional

fields, which provide details about the

project.

3. In the Destination Directory field,

enter a directory name or browse to the

directory.

4. Click OK.

The example project is extracted to

the directory you specified in the

Destination Directory field and is

automatically opened in Project Navigator.

You can then run processes on the

example project and save any changes.

Note If you modified an example

project and want to overwrite it with the

original example project, select File > Open

Example, select the Sample Project Name,

and specify the same Destination Directory

you originally used. In the dialog box that

appears, select Overwrite the existing

project and click OK.

Creating a Project:
Project Navigator allows you to

manage your FPGA and CPLD designs

using an ISE® project, which contains all

the source files and settings specific to your

design. First, you must create a project and

then, add source files, and set process

../Downloads/pn_p_converting_tbw.htm
../Downloads/pn_p_converting_tbw.htm
../Downloads/pn_db_open_example_project.htm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 379

properties. After you create a project, you

can run processes to implement, constrain,

and analyze your design. Project Navigator

provides a wizard to help you create a

project as follows.

To Create a Project

1. Select File > New Project to launch

the New Project Wizard.

2. In the Create New Project page, set

the name, location, and project type,

and click Next.

3. For EDIF or NGC/NGO projects only:

In the Import EDIF/NGC Project

page, select the input and constraint

file for the project, and click Next.

4. In the Project Settings page, set the

device and project properties, and click

Next.

5. In the Project Summary page, review

the information, and click Finish to

create the project

Project Navigator creates the

project file (project_name.xise) in the

directory you specified. After you add

source files to the project, the files appear

in the Hierarchy pane of the

Design panel:

Project Navigator manages your

project based on the design properties

(top-level module type, device type,

synthesis tool, and language) you selected

when you created the project. It organizes

all the parts of your design and keeps track

of the processes necessary to move the

design from design entry through

implementation to programming the

targeted Xilinx® device.

Note For information on changing design

properties, see Changing Design

Properties.
You can now perform any of the

following:

Create new source files for your project.

Add existing source files to your project.

Run processes on your source files.

Modify process properties.

Creating a Copy of a Project:

You can create a copy of a project to

experiment with different source options

and implementations. Depending on your

needs, the design source files for the copied

project and their location can vary as

follows:

 Design source files are left in their

existing location, and the copied

project points to these files.

 Design source files, including

generated files, are copied and placed

in a specified directory.

 Design source files, excluding

generated files, are copied and placed

in a specified directory.

Copied projects are the same as other

projects in both form and function. For

example, you can do the following with

copied projects:

 Open the copied project using the File

> Open Project menu command.

 View, modify, and implement the

copied project.

 Use the Project Browser to view key

summary data for the copied project

and then, open the copied project for

further analysis and implementation, as

described in

Using the Project Browser:

 Alternatively, you can create an

archive of your project, which puts all of

the project contents into a ZIP file.

Archived projects must be unzipped before

being opened in Project Navigator. For

information on archiving, see

Creating a Project Archive.

To Create a Copy of a Project

Select File > Copy Project.

In the Copy Project dialog box, enter the

Name for the copy.

Note The name for the copy can be the

same as the name for the project, as long

as you specify a different location.

1. Enter a directory Location to store the

copied project.

2. Optionally, enter a Working

directory.

../Downloads/pn_db_npw_create_new_project.htm
../Downloads/pn_db_npw_import_edif_ngc_project.htm
../Downloads/pn_db_npw_import_edif_ngc_project.htm
../Downloads/pn_db_npw_device_properties.htm
../Downloads/pn_db_npw_project_summary.htm
../Downloads/pn_r_design_panel.htm
../Downloads/pn_p_changing_design_properties.htm
../Downloads/pn_p_changing_design_properties.htm
../Downloads/ise_c_project_browser.htm
../Downloads/ise_c_project_archive.htm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 380

By default, this is blank, and the working

directory is the same as the project

directory. However, you can specify a

working directory if you want to keep your

ISE® project file (.xise extension) separate

from your working area.

3. Optionally, enter a Description for

the copy.

The description can be useful in identifying

key traits of the project for reference later.

4. In the Source options area, do the

following:

Select one of the following options:

 Keep sources in their current

locations - to leave the design

source files in their existing location.

If you select this option, the copied

project points to the files in their existing

location. If you edit the files in the copied

project, the changes also appear in the

original project, because the source files are

shared between the two projects.

Copy sources to the new location - to

make a copy of all the design source files

and place them in the specified Location

directory.

If you select this option, the copied

project points to the files in the specified

directory. If you edit the files in the copied

project, the changes do not appear in the

original project, because the source files are

not shared between the two projects.

Optionally, select Copy files from

Macro Search Path directories to copy

files from the directories you specify in the

Macro Search Path property in the

Translate Properties dialog box. All files

from the specified directories are copied,

not just the files used by the design.

Note: If you added a net list source

file directly to the project as described in

Working with Net list-Based IP, the file is

automatically copied as part of Copy Project

because it is a project source file. Adding

net list source files to the project is the

preferred method for incorporating net list

modules into your design, because the files

are managed automatically by Project

Navigator.

Optionally, click Copy Additional

Files to copy files that were not included in

the original project. In the Copy Additional

Files dialog box, use the Add Files and

Remove Files buttons to update the list of

additional files to copy. Additional files are

copied to the copied project location after

all other files are copied.To exclude

generated files from the copy, such as

implementation results and reports, select

 Exclude generated files from the copy:

When you select this option, the

copied project opens in a state in which

processes have not yet been run.

5. To automatically open the copy after

creating it, select Open the copied project.

Note By default, this option is disabled. If

you leave this option disabled, the original

project remains open after the copy is

made.

Click OK.

Creating a Project Archive:
A project archive is a single,

compressed ZIP file with a .zip extension.

By default, it contains all project files,

source files, and generated files, including

the following:

User-added sources and associated files

Remote sources

Verilog `include files

Files in the macro search path

Generated files

Non-project files

To Archive a Project:

1. Select Project > Archive.

2. In the Project Archive dialog box,

specify a file name and directory for the

ZIP file.

3. Optionally, select Exclude generated

files from the archive to exclude

generated files and non-project files

from the archive.

4. Click OK.

A ZIP file is created in the specified

directory. To open the archived project,

you must first unzip the ZIP file, and then,

you can open the project.

../Downloads/pp_db_translate_properties.htm
../Downloads/ise_c_using_fixed_netlist_ip.htm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 381

Note Sources that reside outside of the

project directory are copied into a

remote_sources subdirectory in the project

archive. When the archive is unzipped and

opened, you must either specify the location

of these files in the remote_sources

subdirectory for the unzipped project, or

manually copy the sources into their

original location.

INTRODUCTION TO VERILOG
In the semiconductor and electronic

design industry, Verilog is a hardware

description language(HDL) used to

model electronic systems. Verilog HDL, not

to be confused with VHDL (a competing

language), is most commonly used in the

design, verification, and implementation of

digital logic chips at the register-transfer

level of abstraction. It is also used in the

verification of analog and mixed-signal

circuits.

Verilog-95

With the increasing success

of VHDL at the time, Cadence decided to

make the language available for

open standardization. Cadence transferred

Verilog into the public domain under

the Open Verilog International (OVI) (now

known as Accellera) organization. Verilog

was later submitted to IEEE and became

IEEE Standard 1364-1995, commonly

referred to as Verilog-95. In the same time

frame Cadence initiated the creation

of Verilog-A to put standards support

behind its analog simulator Spectre.

Verilog-A was never intended to be a

standalone language and is a subset

of Verilog-AMS which encompassed

Verilog-95.

Verilog 2001

Extensions to Verilog-95 were

submitted back to IEEE to cover the

deficiencies that users had found in the

original Verilog standard. These extensions

became IEEE Standard 1364-2001 known

as Verilog-2001.

Verilog-2001 is a significant

upgrade from Verilog-95. First, it adds

explicit support for (2's complement) signed

nets and variables. Previously, code authors

had to perform signed operations using

awkward bit-level manipulations (for

example, the carry-out bit of a simple 8-bit

addition required an explicit description of

the Boolean algebra to determine its correct

value). The same function under Verilog-

2001 can be more succinctly described by

one of the built-in operators: +, -, /, *, >>>.

A generate/endgenerate construct (similar to

VHDL's generate/endgenerate) allows

Verilog-2001 to control instance and

statement instantiation through normal

decision operators (case/if/else). Using

generate/endgenerate, Verilog-2001 can

instantiate an array of instances, with

control over the connectivity of the

individual instances. File I/O has been

improved by several new system tasks. And

finally, a few syntax additions were

introduced to improve code readability (e.g.

always @*, named parameter override, C-

style function/task/module header

declaration).

Verilog 2005

Not to be confused

with SystemVerilog, Verilog

2005 (IEEE Standard 1364-2005) consists

of minor corrections, spec clarifications, and

a few new language features (such as the

uwire keyword).

A separate part of the Verilog

standard, Verilog-AMS, attempts to

integrate analog and mixed signal modeling

with traditional Verilog.

SystemVerilog

SystemVerilog is a superset of Verilog-

2005, with many new features and

capabilities to aid design verification and

design modeling. As of 2009, the

SystemVerilog and Verilog language

standards were merged into SystemVerilog

2009 (IEEE Standard 1800-2009).

http://en.wikipedia.org/wiki/Semiconductor_industry
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Electronics#Electronic_systems
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Analog_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Standardization
http://www.ovi.org/
http://en.wikipedia.org/wiki/Accellera
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-A
http://en.wikipedia.org/wiki/Spectre_Circuit_Simulator
http://en.wikipedia.org/wiki/Verilog-AMS
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-AMS
http://en.wikipedia.org/wiki/Superset

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 382

The advent of hardware verification

languages such as OpenVera,

and Verisity's e language encouraged the

development of Superlog by Co-Design

Automation Inc. Co-Design Automation Inc

was later purchased by Synopsys. The

foundations of Superlog and Vera were

donated to Accellera, which later became

the IEEE standard P1800-2005:

SystemVerilog.

In the late 1990s, the Verilog

Hardware Description Language (HDL)

became the most widely used language for

describing hardware for simulation and

synthesis. However, the first two versions

standardized by the IEEE (1364-1995 and

1364-2001) had only simple constructs for

creating tests. As design sizes outgrew the

verification capabilities of the language,

commercial Hardware Verification

Languages (HVL) such as Open Vera and e

were created. Companies that did not want

to pay for these tools instead spent hundreds

of man-years creating their own custom

tools. This productivity crisis (along with a

similar one on the design side) led to the

creation of Accellera, a consortium of EDA

companies and users who wanted to create

the next generation of Verilog. The donation

of the Open-Vera language formed the basis

for the HVL features of

SystemVerilog.Accellera‟s goal was met in

November 2005 with the adoption of the

IEEE standard P1800-2005 for

SystemVerilog, IEEE (2005).

The most valuable benefit of

SystemVerilog is that it allows the user to

construct reliable, repeatable verification

environments, in a consistent syntax, that

can be used across multiple projects

Some of the typical features of an HVL that

distinguish it from a Hardware Description

Language such as Verilog or VHDL are

 Constrained-random stimulus

generation

 Functional coverage

 Higher-level structures, especially

Object Oriented Programming

 Multi-threading and interprocess

communication

 Support for HDL types such as

Verilog‟s 4-state values

 Tight integration with event-simulator

for control of the design

There are many other useful

features, but these allow you to create test

benches at a higher level of abstraction than

you are able to achieve with an HDL or a

programming language such as C.

System Verilog provides the best

framework to achieve coverage-driven

verification (CDV). CDV combines

automatic test generation, self-checking

testbenches, and coverage metrics to

significantly reduce the time spent verifying

a design. The purpose of CDV is to:

 Eliminate the effort and time spent

creating hundreds of tests.

 Ensure thorough verification using up-

front goal setting.

 Receive early error notifications and

deploy run-time checking and error

analysis to simplify debugging.

 Examples

Ex1: A hello world program looks like this:

module main;

initial

begin

$display("Hello world!");

$finish;

end

endmodule

Ex2: A simple example of two flip-

flops follows:

module toplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

always @ (posedge reset or posedge clock)

if (reset)

begin

flop1 <= 0;

flop2 <= 1;

end

else

http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/OpenVera
http://en.wikipedia.org/w/index.php?title=Verisity&action=edit&redlink=1
http://en.wikipedia.org/wiki/E_(verification_language)
http://en.wikipedia.org/wiki/Superlog
http://en.wikipedia.org/w/index.php?title=Co-Design_Automation_Inc&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Co-Design_Automation_Inc&action=edit&redlink=1
http://en.wikipedia.org/wiki/Synopsys
http://en.wikipedia.org/wiki/Accellera
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 383

begin

flop1 <= flop2;

flop2 <= flop1;

end

endmodule

The "<=" operator in Verilog is

another aspect of its being a hardware

description language as opposed to a normal

procedural language. This is known as a

"non-blocking" assignment. Its action

doesn't register until the next clock cycle.

This means that the order of the assignments

are irrelevant and will produce the same

result: flop1 and flop2 will swap values

every clock.

The other assignment operator, "=",

is referred to as a blocking assignment.

When "=" assignment is used, for the

purposes of logic, the target variable is

updated immediately. In the above example,

had the statements used the "=" blocking

operator instead of "<=", flop1 and flop2

would not have been swapped. Instead, as in

traditional programming, the compiler

would understand to simply set flop1 equal

to flop2 (and subsequently ignore the

redundant logic to set flop2 equal to flop1.)

Ex3: An example counter circuit follows:

module Div20x (rst, clk, cet, cep, count, tc);

// TITLE 'Divide-by-20 Counter with

enables'

// enable CEP is a clock enable only

// enable CET is a clock enable and

// enables the TC output

// a counter using the Verilog language

parameter size = 5;

parameter length = 20;

input rst; // These inputs/outputs represent

input clk; // connections to the module.

input cet;

input cep;

output [size-1:0] count;

output tc;

reg [size-1:0] count; // Signals assigned

// within an always

// (or initial)block

// must be of type reg

wire tc; // Other signals are of type wire

// The always statement below is a parallel

// execution statement that

// executes any time the signals

// rst or clk transition from low to high

always @ (posedge clk or posedge rst)

if (rst) // This causes reset of the cntr

count <= {size{1'b0}};

else

if (cet && cep) // Enables both true

begin

if (count == length-1)

count <= {size{1'b0}};

else

count <= count + 1'b1;

end

// the value of tc is continuously assigned

// the value of the expression

assign tc = (cet && (count == length-1));

endmodule

Ex4: An example of delays:...

reg a, b, c, d;

wire e;...

always @(b or e)

 begin

 a = b & e;

 b = a | b;

 #5 c = b;

 d = #6 c ^ e;

 end

The always clause above illustrates

the other type of method of use, i.e. the

always clause executes any time any of the

entities in the list change, i.e. the b or e

change. When one of these changes,

immediately a is assigned a new value, and

due to the blocking assignment b is assigned

a new value afterward (taking into account

the new value of a.) After a delay of 5 time

units, c is assigned the value of b and the

value of c ^ e is tucked away in an invisible

store. Then after 6 more time units, d is

assigned the value that was tucked away.

Signals that are driven from within a

process (an initial or always block) must be

of type reg. Signals that are driven from

outside a process must be of type wire. The

keyword reg does not necessarily imply a

hardware register.

http://en.wikipedia.org/wiki/Counter

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 384

Constants

The definition of constants in Verilog

supports the addition of a width parameter.

The basic syntax is:

<Width in bits>'<base letter><number>

Examples:

 12'h123 - Hexadecimal 123 (using 12

bits)

 20'd44 - Decimal 44 (using 20 bits - 0

extension is automatic)

 4'b1010 - Binary 1010 (using 4 bits)

 6'o77 - Octal 77 (using 6 bits)

7.4 Synthesizable Constructs

There are several statements in

Verilog that have no analog in real

hardware, e.g. $display. Consequently,

much of the language can not be used to

describe hardware. The examples presented

here are the classic subset of the language

that has a direct mapping to real gates.

// Mux examples - Three ways to do the

same thing.

 // The first example uses continuous

assignment

wire out;

assign out = sel ? a : b;

 // the second example uses a procedure

// to accomplish the same thing.

 reg out;

always @(a or b or sel)

 begin

 case(sel)

 1'b0: out = b;

 1'b1: out = a;

 endcase

 end

 // Finally - you can use if/else in a

// procedural structure.

reg out;

always @(a or b or sel)

 if (sel)

 out = a;

 else

 out = b;

The next interesting structure is

a transparent latch; it will pass the input to

the output when the gate signal is set for

"pass-through", and captures the input and

stores it upon transition of the gate signal to

"hold". The output will remain stable

regardless of the input signal while the gate

is set to "hold". In the example below the

"pass-through" level of the gate would be

when the value of the if clause is true, i.e.

gate = 1. This is read "if gate is true, the din

is fed to latch_out continuously." Once the

if clause is false, the last value at latch_out

will remain and is independent of the value

of din.

EX6: // Transparent latch example

 reg out;

always @(gate or din)

 if(gate)

 out = din; // Pass through state

 // Note that the else isn't required here.

The variable

 // out will follow the value of din while

gate is high.

 // When gate goes low, out will remain

constant.

The flip-flop is the next significant

template; in Verilog, the D-flop is the

simplest, and it can be modeled as:

reg q;

always @(posedge clk)

 q <= d;

The significant thing to notice in the

example is the use of the non-blocking

assignment. A basic rule of thumb is to

use <= when there is a

posedge or negedge statement within the

always clause.

A variant of the D-flop is one with

an asynchronous reset; there is a convention

that the reset state will be the first if clause

within the statement.

reg q;

always @(posedge clk or posedge reset)

 if(reset)

 q <= 0;

 else

 q <= d;

The next variant is including both an

asynchronous reset and asynchronous set

condition; again the convention comes into

http://en.wikipedia.org/wiki/Transparent_latch
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Rule_of_thumb

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 385

play, i.e. the reset term is followed by the

set term.

reg q;

always @(posedge clk or posedge reset or

posedge set)

 if(reset)

 q <= 0;

 else

 if(set)

 q <= 1;

 else

 q <= d;

Note: If this model is used to model

a Set/Reset flip flop then simulation errors

can result. Consider the following test

sequence of events. 1) reset goes high 2) clk

goes high 3) set goes high 4) clk goes high

again 5) reset goes low followed by 6) set

going low. Assume no setup and hold

violations.

In this example the always @

statement would first execute when the

rising edge of reset occurs which would

place q to a value of 0. The next time the

always block executes would be the rising

edge of clk which again would keep q at a

value of 0. The always block then executes

when set goes high which because reset is

high forces q to remain at 0. This condition

may or may not be correct depending on the

actual flip flop. However, this is not the

main problem with this model. Notice that

when reset goes low, that set is still high. In

a real flip flop this will cause the output to

go to a 1. However, in this model it will not

occur because the always block is triggered

by rising edges of set and reset - not levels.

A different approach may be necessary for

set/reset flip flops.

Note that there are no "initial" blocks

mentioned in this description. There is a

split between FPGA and ASIC synthesis

tools on this structure. FPGA tools allow

initial blocks where reg values are

established instead of using a "reset" signal.

ASIC synthesis tools don't support such a

statement. The reason is that an FPGA's

initial state is something that is downloaded

into the memory tables of the FPGA. An

ASIC is an actual hardware implementation.

Initial Vs Always:

There are two separate ways of

declaring a Verilog process. These are

the always and the initial keywords.

The always keyword indicates a free-

running process. The initial keyword

indicates a process executes exactly once.

Both constructs begin execution at simulator

time 0, and both execute until the end of the

block. Once an always block has reached its

end, it is rescheduled (again). It is a

common misconception to believe that an

initial block will execute before an always

block. In fact, it is better to think of

the initial-block as a special-case of

the always-block, one which terminates

after it completes for the first time.

//Examples:

initial

 begin

 a = 1; // Assign a value to reg a at time 0

 #1; // Wait 1 time unit

 b = a; // Assign the value of reg a to reg b

 end

always @(a or b) // Any time a or b

CHANGE, run the process

begin

 if (a)

 c = b;

 else

 d = ~b;

end // Done with this block, now return to

the top (i.e. the @ event-control)

 always @(posedge a)// Run whenever reg

a has a low to high change

 a <= b;

These are the classic uses for these

two keywords, but there are two significant

additional uses. The most common of these

is an alwayskeyword without

the @(...) sensitivity list. It is possible to use

always as shown below:

always

 begin // Always begins executing at time 0

and NEVER stops

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 386

 clk = 0; // Set clk to 0

 #1; // Wait for 1 time unit

 clk = 1; // Set clk to 1

 #1; // Wait 1 time unit

 end // Keeps executing - so continue back

at the top of the begin

The always keyword acts similar to

the "C" construct while(1) {..} in the sense

that it will execute forever.

The other interesting exception is the

use of the initial keyword with the addition

of the forever keyword.

Race Condition

The order of execution isn't always

guaranteed within Verilog. This can best be

illustrated by a classic example. Consider

the code snippet below:

initial

 a = 0;

initial

 b = a;

initial

 begin

 #1;

 $display("Value a=%b Value of

b=%b",a,b);

 end

What will be printed out for the values of a

and b? Depending on the order of execution

of the initial blocks, it could be zero and

zero, or alternately zero and some other

arbitrary uninitialized value. The $display

statement will always execute after both

assignment blocks have completed, due to

the #1 delay.

7.7 Operators

Note: These operators are not shown in

order of precedence.

System Tasks:
System tasks are available to handle simple

I/O, and various design measurement

functions. All system tasks are prefixed

with $ to distinguish them from user tasks

and functions. This section presents a short

list of the most often used tasks. It is by no

means a comprehensive list.

 $display - Print to screen a line

followed by an automatic newline.

 $write - Write to screen a line without

the newline.

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 387

 $swrite - Print to variable a line without

the newline.

 $sscanf - Read from variable a format-

specified string. (*Verilog-2001)

 $fopen - Open a handle to a file (read or

write)

 $fdisplay - Write to file a line followed

by an automatic newline.

 $fwrite - Write to file a line without the

newline.

 $fscanf - Read from file a format-

specified string. (*Verilog-2001)

 $fclose - Close and release an open file

handle.

 $readmemh - Read hex file content into

a memory array.

 $readmemb - Read binary file content

into a memory array.

 $monitor - Print out all the listed

variables when any change value.

 $time - Value of current simulation

time.

 $dumpfile - Declare the VCD (Value

Change Dump) format output file name.

 $dumpvars - Turn on and dump the

variables.

 $dumpports - Turn on and dump the

variables in Extended-VCD format.

 $random - Return a random value.

CONCLUSION

A Different architecture for data

comparators were developed using VHDL

for the targeted device XCV1000- 4bg560

using VHDL. It was found that three data

comparators CSLA, CBC and 2BEC were

chosen based on the area, speed and power

consumed on the FPGA. Further to test the

performance of the data comparators, the

developed two cell sorters were applied on

parallel and pipelined architecture for

modified shear sorting and performance of

the architecture was measured in terms of

area speed and power. The Carry select

logic based data comparator (CSLA) on

parallel architecture of modified shear

sorting requires less number of slices

making it reduced area architecture. The

conventional bitwise data comparator

(CBC) on pipelined architecture was a high

speed architecture and the twos complement

using binary to excess one based data

comparator (2BEC) on pipelined

architecture was a low power architecture.

Hence a variable architecture for image

application in the form of rank order

applications is proposed

FUTURE SCOPE
In future we can implement filters by using

rank ordering comparators and also we can

use this rank ordering comparators in testing

technologies in testing approach.

REFERENCES

[1] Karpagaabirami. S,P. Ramamoorthy, “

An Efficient VLSI Architecture for

Removal of Impulse Noise in Images”,

International Journal of Computer

Science and Mobile Computing, Vol. 3,

Issue. 5, pp 567 – 574, May 2014.

[2] Aayisa Banu S, Ms. Divya R, Mr.

Ramesh .K, “Design and Simulation of

Low Power and High Speed Comparator

using VLSI Technique”, International

Journal of Advanced Research in

Computer and Communication

Engineering, Vol. 6, Issue. 1, pp 119 –

122, January 2017.

[3] Bharat H. Nagpara, Godhakiya Santosh

M, Nagar Jay V, “Design and

Implementation of Different types of

Comparator”, International Journal of

Science, Engineering and Technology

Research , Vol. 4, Issue. 5, pp 1321-1324

, May 2015.

[4] Mehmood ul Hassan, Rajesh Mehra ,“

Design Analysis of 1-bit CMOS

comparator”, Proceedings of

International Journal of Scientific

Research Engineering & Technology,

Vol. , Issue. , pp 68 – 72, 14-15 March

2015

[5] K.Vasanth, S.Karthik, S.Nirmal raj,

Preetha mol. P, “FPGA implementation

of optimized sorting networks for

median filter”, International Conference

http://en.wikipedia.org/wiki/Value_change_dump
http://en.wikipedia.org/wiki/Value_change_dump

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 06

June 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 388

on robotics and automation,

INTERACT 2010, Sathyabama

university, Tamilnadu, India, pages

253-258, 2010.

[6] Keping CHAN, “ Bit-Serial Realizations

of a Class of Nonlinear Filters Based on

Positive Boolean Functions” , IEEE

Transactions on Circuits and Systems,

Vol 36,no 6,pp 785-795, JUNE 1989.

[7] Vasanth.k, Kavirajan A.A.F, Ravi.T,

NirmalRaj.S, “ A Novel 8 bit digital

comparator for 3x3 fixed kernel based

modified shear sorting”, Indian journal

of science and technology, vol 7 ,issue

4, pp 452- 462, April 2014.

[8] K.Vasanth, V Elanangai, S Saravanan, G

Nagarajan, “FSM-Based VLSI

Architecture for the 3× 3 Window-

Based DBUTMPF Algorithm”,

Proceedings of the International

Conference on Soft Computing

Systems: ICSCS 2015,Springer, Vol no

2,pp 234- 245, 2015.

[9] K.Vasanth, “VLSI Architecture of

Decision based Modified Selection sort

filter for Salt and pepper noise

removal”, International Journal on

Intelligent Electronic System, Vol

13,no.4, Pages 41-56, August 2014.

[10] K.Vasanth and S.Karthik, “FPGA

implementation of modified

decomposition filter”, International

Conference on Signal and image

processing, ICSIP 2010, Chennai,

Tamilnadu, India, pages 526-530.

[11] Keshab K. Parhi, “Low-energy CSMT

carry generators and binary adders”,

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems,volume 21,

issue 4, pp791,april 2013.

[12]https://thunderwiring.wordpress.com/so

rting-numbers/ [Accessed: 25- FEB-

2019].

