

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 31

A High-Speed FPGA Implementation of an RSD-Based

ECC Processor

Chimme Pedda Swamulu
1
, S.Mahaboob Basha

2

1
P.G. Scholar,

2
 Guide, Head of the Department

1,2
 BRANCH : VLSI

1,2,3 Geethanjali Engineering College,

Email.Id :
1
peddaswamy745@gmail.com,

2
syedmahaboob45@gmail.com

Abstract

In this paper, an exportable application-

specific instruction-set elliptic curve

cryptography processor based on redundant

signed digit representation is proposed. The

processor employs extensive pipelining

techniques for Karatsuba–Ofman method to

achieve high throughput multiplication.

Furthermore, an efficient modular adder

without comparison and a high throughput

modular divider, which results in a short

datapath for maximized frequency, are

implemented. The processor supports the

recommended NIST curve P256 and is

based on an extended NIST reduction

scheme. The proposed processor performs

singlepoint multiplication employing points

in affine coordinates in 2.26 ms and runs at

a maximum requency of 160 MHz in Xilinx

Virtex 5 (XC5VLX110T) field-

programmable gate array.

Keywords

Application-specific instruction-set

processor (ASIP), elliptic curve

cryptography (ECC), field-

programmable gate array (FPGA),

Karatsuba–Ofman multiplication,

redundant signed digit (RSD).

INTRODUCTION

ELLIPTIC curve cryptography (ECC) is

an asymmetric cryptographic system that

provides an equivalent security to the well-

known Rivest, Shamir and Adleman system

with much smaller key sizes. The basic

operation in ECC is scalar point

multiplication, where a point on the curve is

multiplied by a scalar. A scalar point

multiplication is performed by calculating

series of point additions and point

doublings. Using their geometrical

properties, points are added or doubled

through series of additions, subtractions,

multiplications, and divisions of their

respective coordinates. Point coordinates are

the elements of finite fields closed under a

prime or an irreducible polynomial. Various

ECC processors have been proposed in the

literature that either target binary fields

prime fields or dual field operations.

In prime field ECC processors, carry

free arithmetic is necessary to avoid lengthy

datapaths caused by carry propagation.

Redundant schemes, such as carry save

arithmetic (CSA) redundant signed digits

(RSDs) or residue number systems (RNSs)

have been utilized in various designs. Carry

logic or embedded digital signal processing

(DSP) blocks within field programmable

gate arrays (FPGAs) are also utilized in

some designs to address the carry

propagation problem. It is necessary to build

an efficient addition datapath since it is a

fundamental operation employed in other

modular arithmetic operations.

Modular multiplication is an essential

operation in ECC. Two main approaches

may be employed. The first is known as

interleaved modular multiplication using

Montgomery’s method. Montgomery

multiplication is widely used in

implementations where arbitrary curves are

desired.

Another approach is known as multiply-

then-reduce and is used in elliptic curves

mailto:peddaswamy745@gmail.com

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 32

built over finite fields of Merssene primes.

Merssene primes are the special type of

primes which allow for efficient modular

reduction through series of additions and

subtractions. In order to optimize the

multiplication process, some ECC

processors use the divide and conquer

approach of Karatsuba–Ofman

multiplications, where others use embedded

multipliers and DSP blocks within FPGA

fabrics.

Since modular division in affine

coordinates is a costly process, numerous

coordinate representation systems have been

proposed to compensate this cost by means

of extra multiplications and additions (e.g.,

Jacobian coordinates). Conversion back to

affine representation can be mechanized

using Fermat’s little theorem. Such

processors may implement a dedicated

squarer to speed up the inversion process.

The complexity of modular division

algorithms is approximately O(2n), where n

is the size of operands and the running time

is variable and depends directly on the

inputs. This paper proposes a new RSD-

based prime field ECC processor with high-

speed operating frequency. The processor is

an application-specific instruction-set

processor (ASIP) type to provide

programmability and configurability. In this

paper, we demonstrate the performance of

left-to-right scalar point multiplication

algorithm; however, the ASIP feature of the

processor allows different algorithms to be

performed by the through read-only

memory (ROM) programming. The overall

processor architecture is of regular cross bar

type with 256 digit wide data buses. The

design strategy and optimization techniques

are focused toward efficient individual

modular arithmetic modules rather than the

overall architecture. Such architecture

allows for easy replacement of individual

blocks if different algorithms or modular

arithmetic techniques are desired. Different

efficient architectures of individual modular

arithmetic blocks for various algorithms are

proposed. The novelty of our processor

evolves around the following.

1) We introduce the first FPGA

implementation of RSD-based ECC

processor.

2) Extensive pipelining and optimization

strategies are used to obtain a high-

throughput iterative Karatsuba multiplier

which lead to a performance

improvement of almost 100% over the

processor proposed.

3) To the best of our knowledge, the

proposed modular division/inversion is

the fastest to be performed on FPGA

device. This is done through a new

efficient binary GCD divider architecture

based on simple logical operations.

4) A modular addition and subtraction is

proposed without comparison.

5) Most importantly, exportable design is

proposed with specifically designed

multipliers and carry free adders that

provided in competitive results against

DSPs and embedded multipliers-based

designs.

LITERATURE SURVEY

This survey begins by reviewing some of

the previous studies in ECG signal feature

extraction and analysis techniques. The

survey is divided into feature extraction and

classification techniques

ECG Feature Extractions

The first step in the analysis of ECG

signal is the denoising of ECG signal.

Denoising or pre-processing of ECG signal

is important because noise severely limits

the utility of the recorded ECG. After pre-

processing, the second stage towards

classification is to detect certain features of

ECG signals mostly QRS complex, P and T

waves. The features, which represent the

classification information contained in the

signals, are used as inputs to the classifier

used in the classification stage.

The goal of the feature extraction stage

is to find the smallest set of features that

enables acceptable classification rates to be

achieved. In general, the developer cannot

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 33

estimate the performance of a set of features

without training and testing the

classification system

Franc Jager developed a new approach

to feature extraction which is Kahunen

Lo‟eve Transform (KLT) which is an

attractive and powerful approach to the

feature extraction and shape representation

process. It has the solution if the probability

densities of population of pattern vectors of

a problem domain are unknown. The

problem about this method is, it is too

sensitive to noisy pattern of ECG signal.

According to P. Ranjith et al. which

used WT to detect myocardial ischemia, the

WT is obtained using the quadratic spline

wavelet. These correspond to the detection

of T wave and P wave. Their methods

showed a comparatively higher sensitivity

and nominal positive predictivity value. It

can be easily extended to detect other

abnormalitites of the ECG signal. But this

method also has the limitation that

computations required are higher than those

required by other methods.

According to M. H. Kadbi et al.

highlighted those three features for feature

extraction stage which are time frequency,

2-time domain features and 3-statistical

feature. These features have been used in

their project because these features can

overcome the limitations of other methods

in classifying multiple kinds of arrhythmia

with high accuracy at once. These methods

have been combined with PCA method to

reduce the redundancy caused by the

frequency coefficient in the feature

dimension to make sure the average of the

classification accuracy can be increased.

G.G. Herrero et al. used the independent

component analysis and matching pursuits

for the features extraction for extracting

additional spatial features from

multichannel electrographic recordings. It

test the classification performance of 5

largest classes of heart beats in the MIT-

BIH arrhythmia database which are normal

sinus beats (NSB), left bundle branch block

(LBBB), right bundle branch block

(RBBB), premature ventricular contraction

(PVC) and paced beats (PB). The

performance of the system is remarkably

good, with specificities and sensitivities for

the different classes. They have a problem

because the complicated separation between

ventricular PBs and PVCs because of the

inverted T wave.

K.S. Park et al. applied two

morphological feature extraction methods

which are higher order statistics and

Hermite basis function. Their research

results showed that hierarchical

classification method gives better

performance than the conventional

multiclass classification method. They used

the support vector machines to compare the

feature extraction methods and

classification methods to evaluate the

generalization performance.

B. ECG Training and Classification

Algorithms

 In ECG training and classification

analysis stages, some researchers have tried

to maximize the detection level of accuracy

in many different ways. The performance of

the developed detection systems is very

promising but they need further evaluation.

The automatic detection of ECG waves is

important to cardiac disease diagnosis. A

good performance of an automatic ECG

analyzing system depends heavily upon the

accurate reliable detection of the disease.

Neural Network

The classification of the ECG using

NNs has become a widely used method in

recent years. The network architectures for

modelling process modelling in NNs

include the feed forward network, the radial

basis function (RBF) network, recurrent

network, and other advanced network

architecture as explained by the Centre for

Process Analytics and Control Technology

(1999) and Sjoberg. The efficiency of these

classifiers depends upon a number of factors

including network training. It has the inputs

models in the training parameters and the

output indicated the point at which training

should stop. Simple feed forward neuron

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 34

model was shown by Dayong Gao et al.

Researcher from Harvard University, M.

Sordo indicated that the training and testing

of the models was based on the results from

the signal database of the normal patient and

heart disease patient.

Rosaria Silipo and Carlo Marchesi also

developed an automatic ECG analysis based

on ANN. This project presented the result

by carrying out the classification tasks for

the most common features of ECG analysis

which are arrhythmia, mycordial ischemia

and chronic alterations and achieved high

classification accuracy.

Kei-ichiro Minami et al. developed a

method to discriminate life threatening

ventricular arrhythmias by observing the

QRS complex of the electrocardiogram

(ECG) in each heartbeat. Changes in QRS

complexes due to rhythm origination and

conduction path were observed with the

Fourier transform, and three kinds of

rhythms were discriminated by a neural

network.

Neuro-Fuzzy Approach
So the Neuro Fuzzy is the most suitable

technique because it is more tolerance to

morphological variations of the ECG

waveforms.

The Neuro-Fuzzy techniques which

refers to the combinations of fuzzy set

theory and neural networks with the

advantages of both which can handle any

kind of information, numeric, linguistic,

logical, imperfect information, resolve

conflicts by collaboration and aggregation,

self-learning, self-organizing and self-

tuning capabilities, no need of prior

knowledge of relationships of data, mimic

human decision making process and fast

computation using fuzzy number operation

in order to do the classification task.

Hidden Markov Models

This technique was successfully used

since the mid 1970s to model speech

waveforms for automatic speech

recognition. The Hidden Markov modeling

approach combines structural and statistical

knowledge of the ECG signal parametric

model. The model constructed contains

multiple states per excitation field, model

parameter ant training algorithms as

explained by K. Seymore et al.

W.T. Cheng and K.L. Chan have

discovered the method of Hidden Markov

Model (HMM) in classifying arrhythmia.

They have developed a fast and reliable

method of QRS detection algorithm based

on a one-pole filter which is simple to

implement and insensitive to low noise

levels. The disadvantage are that the

observations are very sensitive to baseline

wander, DC drift and heart rate variation.

Support Vector Machine

The Support Vector Machine based

Expert System that have been described by

C.J.C. Burges Stanislaw Osowski et al. and

Van der C. M Walt and E. Barnard also the

best method to apply in ECG analysis. The

recognition system that uses the support

vector machine (SVM) working in the

classification mode. Support vector machine

map input vectors to a higher dimensional

space where a maximal separating

hyperplane is constructed. Two parallel

hyperplanes are constructed on each side of

the hyperplane that separates the data. The

separating hyperplane shows the maximize

distance. The larger the distance between

these parallel hyperplanes, the better the

generalization error of the classifier.

Stanislaw Osowski et al. performed their

studies of Heartbeat Regulation using SVM

based Expert System. This recognition

system has used the different preprocessing

methods for generation of features which

are higher order statistics (HOS) while the

second is the Hermite characterization of

QRS complex for the registered ECG

waveform. Their paper presented the

combination of multiple classifiers by the

weighted voting principle. In their studies,

stated that a good recognition system should

depend on the features representing the

ECG signals in such a way, that the

differences among the ECG waveforms are

suppressed for the waveforms of the same

type but are emphasized for the waveforms

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 35

belonging to different types of beats. It is an

important item, since the observed signal is

a high variation of signals among the same

type of beats.

Self-Organizing Map
Meanwhile in the ECG analysis of the

Ischemia detection with a self organizing

map supplemented by supervised learning

has been developed in 2001 by

Papadimitriou et al.. It is to solve problem

of maximizing the performance of the

detection of ischemia episodes. The basic

selforganizing map (SOM) algorithm

modified with a dynamic expansion process

controlled with entropy based criterion that

allows the adaptive formation of the proper

SOM structure. This extension proceeds

until the total number if training patterns

that are mapped to neurons with high

entropy reduces to a size manageable

numerically with a capable supervised

model. Then, a special supervised network

is trained for the computationally reduced

task of performing the classification at the

ambiguous regions only. The utilization of

SOM with supervised learning based on the

radial basis functions and SVMs has

resulted in an improved accuracy of the

ischemia detection.

Fuzzy Logic

W. Zong and D. Jiang described the

method of fuzzy logic approach single

channel ECG beat and rhythm detection.

The method summarized and makes use of

the medical knowledge and diagnostic rules

of cardiologists. Linguistic variables have

being used to represent best features and

fuzzy conditional statements perform

reasoning. The algorithm can identify

rhythms as well as individual beats. This

method also handling the beat features and

reasoning process is heuristic and seems

more reasonable as stated in their paper. It

also presented that this method may be of

great utility in clinical applications such as

multi-parameter patient monitoring systems,

where many physiological variables and

diagnostic rules exist.

Bayesian Method

Dayong Gao et al. pointed out that the

Bayesian network are improved methods in

determining the arrhythmia diagnosis

system. This method is able to deal with

nonlinear discrimination between classes,

incomplete or ambiguous input patterns, and

suppression of false alarms. It develops new

detection schemes with a high level of

accuracy. This approach is potentially

useful for generating a pattern recognition

model to classify future input sets for

arrhythmia diagnosis.

M Wiggins et al. evolved a Bayesian

classifier for ECG classification. The

patients classification was according to

statistical features extracted from their ECG

signals using a genetically evolved Bayesian

network classifier and the identification

depend on the variables of interest. The

Bayesian network has an ability to

Genetic Algorithm

Chris D Nugent et al. reported in depth

on the prediction models in ECG classifiers

using genetic programming approach. In

their studies they developed the prediction

models to indicate the point at which

training should stop for NN based ECG

classifiers in order to ensure maximum

generalization. According to them, this good

wave prediction could exhibit good

generalization. They found that it could give

benefit to developers of NNs, not only in the

presented case of NN based ECG classifiers,

but indeed any classification problems.

Autoregressive Model

Dingfei Geo et al. have extended the

study of cardiac arrhythmia classification

using autoregressive modeling. This

computer-assisted arrhythmia recognition

have been proposed to classify normal sinus

rhythm (NSR) and various cardiac

arrhythmias including atrial premature

contraction (APC), premature ventricular

contraction (PVC), super-ventricular

tachycardia (SVT), ventricular tachycardia

(VT) and ventricular fibrillation (VF). Their

studies have shown the AR coefficients

were classified using a generalized linear

model (GLM) based algorithm in various

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 36

stages. From their study, they found that the

AR modeling is useful for the classification

of cardiac arrhythmias, with reasonably

high accuracies. From the study, they found

that AR modelling based classification

algorithm has demonstrated good

performance in classification. The

algorithms are also easy to implement and

the AR coefficient can be easily computed.

AR modelling can lead to a low cost, high

performance, simple to use portable

telemedicine system for ECG offering a

combination of diagnostic capability with

compression. Therefore, it revealed that

enhancement is suitable for real time

implementation and can be used for

compression as well as diagnosis.

INTRODUCTION TO VLSI
Very-large-scale integration (VLSI) is

the process of creating integrated circuits by

combining thousands of transistor-based

circuits into a single chip. VLSI began in

the 1970s when complex semiconductor and

communication technologies were being

developed. The microprocessor is a VLSI

device. The term is no longer as common as

it once was, as chips have increased in

complexity into the hundreds of millions of

transistors.

5.1 Overview:

 The first semiconductor chips held

one transistor each. Subsequent advances

added more and more transistors, and, as a

consequence, more individual functions or

systems were integrated over time. The first

integrated circuits held only a few devices,

perhaps as many as ten diodes, transistors,

resistors and capacitors, making it possible

to fabricate one or more logic gates on a

single device. Now known retrospectively

as "small-scale integration" (SSI),

improvements in technique led to devices

with hundreds of logic gates, known as

large-scale integration (LSI), i.e. systems

with at least a thousand logic gates. Current

technology has moved far past this mark

and today's microprocessors have many

millions of gates and hundreds of millions

of individual transistors.

Current designs, as opposed

to the earliest devices, use extensive design

automation and automated logic synthesis to

lay out the transistors, enabling higher

levels of complexity in the resulting logic

functionality. Certain high-performance

logic blocks like the SRAM cell, however,

are still designed by hand to ensure the

highest efficiency (sometimes by bending or

breaking established design rules to obtain

the last bit of performance by trading

stability).

 VLSI and systems:

These advantages of integrated circuits

translate into advantages at the system level:

 Smaller physical size. Smallness is

often an advantage in itself-consider

portable televisions or handheld cellular

telephones.

 Lower power consumption. Replacing a

handful of standard parts with a single

chip reduces total power consumption.

Reducing power consumption has a

ripple effect on the rest of the system: a

smaller, cheaper power supply can be

used; since less power consumption

means less heat, a fan may no longer be

necessary; a simpler cabinet with less

shielding for electromagnetic shielding

may be feasible, too.

 Reduced cost. Reducing the number of

components, the power supply

requirements, cabinet costs, and so on,

will inevitably reduce system cost. The

ripple effect of integration is such that

the cost of a system built from custom

ICs can be less, even though the

individual ICs cost more than the

standard parts they replace.

Understanding why integrated circuit

technology has such profound influence on

the design of digital systems requires

understanding both the technology of IC

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 37

manufacturing and the economics of ICs

and digital systems.

 Applications of VLSI:

Electronic systems now

perform a wide variety of tasks in daily life.

Electronic systems in some cases have

replaced mechanisms that operated

mechanically, hydraulically, or by other

means; electronics are usually smaller, more

flexible, and easier to service. In other cases

electronic systems have created totally new

applications. Electronic systems perform a

variety of tasks, some of them visible, some

more hidden:

 Personal entertainment systems such as

portable MP3 players and DVD players

perform sophisticated algorithms with

remarkably little energy.

 Electronic systems in cars operate stereo

systems and displays; they also control

fuel injection systems, adjust suspensions

to varying terrain, and perform the

control functions required for anti-lock

braking (ABS) systems.

 Digital electronics compress and

decompress video, even at high-

definition data rates, on-the-fly in

consumer electronics.

 Low-cost terminals for Web browsing

still require sophisticated electronics,

despite their dedicated function.

 Personal computers and workstations

provide word-processing, financial

analysis, and games. Computers include

both central processing units (CPUs) and

special-purpose hardware for disk access,

faster screen display, etc.

 Medical electronic systems measure

bodily functions and perform complex

processing algorithms to warn about

unusual conditions. The availability of

these complex systems, far from

overwhelming consumers, only creates

demand for even more complex systems.

ASIC:

An Application-Specific Integrated

Circuit (ASIC) is an integrated circuit (IC)

customized for a particular use, rather than

intended for general-purpose use. For

example, a chip designed solely to run a cell

phone is an ASIC. Intermediate between

ASICs and industry standard integrated

circuits, like the 7400 or the 4000 series, are

application specific standard products

(ASSPs).

As feature sizes have shrunk and

design tools improved over the years, the

maximum complexity (and hence

functionality) possible in an ASIC has

grown from 5,000 gates to over 100 million.

Modern ASICs often include entire 32-bit

processors, memory blocks including ROM,

RAM, EEPROM, Flash and other large

building blocks. Such an ASIC is often

termed a SoC (system-on-a-chip). Designers

of digital ASICs use a hardware description

language (HDL), such as Verilog or VHDL,

to describe the functionality of ASICs.

Field-programmable gate arrays (FPGA)

are the modern-day technology for building

a breadboard or prototype from standard

parts; programmable logic blocks and

programmable interconnects allow the same

FPGA to be used in many different

applications. For smaller designs and/or

lower production volumes, FPGAs may be

more cost effective than an ASIC design

even in production.

 An application-specific integrated

circuit (ASIC) is an integrated circuit

(IC) customized for a particular use,

rather than intended for general-

purpose use.

 A Structured ASIC falls between an

FPGA and a Standard Cell-based ASIC

 Structured ASIC’s are used mainly for

mid-volume level design. The design

task for structured ASIC’s is to map the

circuit into a fixed arrangement of

known cells.

 INTRODUCTION TO XILINX

Migrating Projects from Previous ISE

Software Releases:

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 38

When you open a project file from a

previous release, the ISE® software

prompts you to migrate your project. If you

click Backup and Migrate or Migrate Only,

the software automatically converts your

project file to the current release. If you

click Cancel, the software does not convert

your project and, instead, opens Project

Navigator with no project loaded.

To Migrate a Project

1. In the ISE 12 Project Navigator, select

File > Open Project.

1. In the Open Project dialog box, select

the .xise file to migrate.

Note You may need to change the

extension in the Files of type field to

display .npl (ISE 5 and ISE 6 software)

or .ise (ISE 7 through ISE 10 software)

project files.

2. In the dialog box that appears, select

Backup and Migrate or Migrate Only.

3. The ISE software automatically converts

your project to an ISE 12 project.

4. Implement the design using the new

version of the software.

Note Implementation status is not

maintained after migration.

IP Modules:
If your design includes IP modules

that were created using CORE

Generator™ software or Xilinx® Platform

Studio (XPS) and you need to modify

these modules, you may be required to

update the core. However, if the core

netlist is present and you do not need to

modify the core, updates are not required

and the existing netlist is used during

implementation.

Obsolete Source File Types:
The ISE 12 software supports all of

the source types that were supported in the

ISE 11 software.

If you are working with projects

from previous releases, state diagram source

files (.dia), ABEL source files (.abl), and

test bench waveform source files (.tbw) are

no longer supported. For state diagram and

ABEL source files, the software finds an

associated HDL file and adds it to the

project, if possible. For test bench

waveform files, the software automatically

converts the TBW file to an HDL test bench

and adds it to the project. To convert a

TBW file after project migration, see

Converting a TBW File to an HDL Test

Bench.

To Open an Example

1. Select File > Open Example.

2. In the Open Example dialog box, select

the Sample Project Name.

Note To help you choose an example

project, the Project Description field

describes each project. In addition, you

can scroll to the right to see additional

fields, which provide details about the

project.

3. In the Destination Directory field, enter

a directory name or browse to the

directory.

4. Click OK.

The example project is extracted to

the directory you specified in the

Destination Directory field and is

automatically opened in Project Navigator.

You can then run processes on the

example project and save any changes.

Note If you modified an example

project and want to overwrite it with the

original example project, select File > Open

Example, select the Sample Project Name,

and specify the same Destination Directory

you originally used. In the dialog box that

appears, select Overwrite the existing

project and click OK.

6.6 Creating a Project:
Project Navigator allows you to

manage your FPGA and CPLD designs

using an ISE® project, which contains all

the source files and settings specific to your

design. First, you must create a project and

then, add source files, and set process

properties. After you create a project, you

can run processes to implement, constrain,

and analyze your design.

To Create a Project

../Downloads/pn_p_converting_tbw.htm
../Downloads/pn_p_converting_tbw.htm
../Downloads/pn_db_open_example_project.htm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 39

1. Select File > New Project to launch the

New Project Wizard.

2. In the Create New Project page, set the

name, location, and project type, and

click Next.

3. For EDIF or NGC/NGO projects only:

In the Import EDIF/NGC Project

page, select the input and constraint file

for the project, and click Next.

4. In the Project Settings page, set the

device and project properties, and click

Next.

5. In the Project Summary page, review

the information, and click Finish to

create the project

Project Navigator creates the

project file (project_name.xise) in the

directory you specified. After you add

source files to the project, the files appear

in the Hierarchy pane of the

Design panel:

Project Navigator manages your

project based on the design properties

(top-level module type, device type,

synthesis tool, and language) you selected

when you created the project. It organizes

all the parts of your design and keeps track

of the processes necessary to move the

design from design entry through

implementation to programming the

targeted Xilinx® device.

Note For information on changing design

properties, see Changing Design

Properties.
You can now perform any of the

following:

 Create new source files for your project.

 Add existing source files to your project.

 Run processes on your source files.

Modify process properties.

Creating a Copy of a Project:
You can create a copy of a project to

experiment with different source options

and implementations. Depending on your

needs, the design source files for the copied

project and their location can vary as

follows:

 Design source files are left in their

existing location, and the copied project

points to these files.

 Design source files, including generated

iles, are copied and placed in a specified

directory.

 Design source files, excluding generated

files, are copied and placed in a

specified directory.

Copied projects are the same as other

projects in both form and function. For

example, you can do the following with

copied projects:

 Open the copied project using the File >

Open Project menu command.

 View, modify, and implement the

copied project.

 Use the Project Browser to view key

summary data for the copied project and

then, open the copied project for further

analysis and implementation, as

described in

 Using the Project Browser:

 Alternatively, you can create an

archive of your project, which puts all of

the project contents into a ZIP file.

Archived projects must be unzipped before

being opened in Project Navigator. For

information on archiving, see Creating a

Project Archive.

To Create a Copy of a Project

1. Select File > Copy Project.

2. In the Copy Project dialog box, enter the

Name for the copy.

Note The name for the copy can be the

same as the name for the project, as long

as you specify a different location.

3. Enter a directory Location to store the

copied project.

4. Optionally, enter a Working directory.

By default, this is blank, and the working

directory is the same as the project

directory. However, you can specify a

working directory if you want to keep

your ISE® project file (.xise extension)

separate from your working area.

../Downloads/pn_db_npw_create_new_project.htm
../Downloads/pn_db_npw_import_edif_ngc_project.htm
../Downloads/pn_db_npw_import_edif_ngc_project.htm
../Downloads/pn_db_npw_device_properties.htm
../Downloads/pn_db_npw_project_summary.htm
../Downloads/pn_r_design_panel.htm
../Downloads/pn_p_changing_design_properties.htm
../Downloads/pn_p_changing_design_properties.htm
../Downloads/ise_c_project_browser.htm
../Downloads/ise_c_project_archive.htm
../Downloads/ise_c_project_archive.htm

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 40

5. Optionally, enter a Description for the

copy.

The description can be useful in identifying

key traits of the project for reference

later.

6. In the Source options area, do the

following:

Select one of the following options:

 Keep sources in their current locations

- to leave the design source files in their

existing location.

If you select this option, the

copied project points to the files in their

existing location. If you edit the files in

the copied project, the changes also

appear in the original project, because the

source files are shared between the two

projects.

 Copy sources to the new location - to

make a copy of all the design source files

and place them in the specified Location

directory.

If you select this option, the copied

project points to the files in the specified

directory. If you edit the files in the copied

project, the changes do not appear in the

original project, because the source files are

not shared between the two projects.

Optionally, select Copy files from

Macro Search Path directories to copy

files from the directories you specify in the

Macro Search Path property in the

Translate Properties dialog box. All files

from the specified directories are copied,

not just the files used by the design.

Note: If you added a net list source

file directly to the project as described in

Working with Net list-Based IP, the file is

automatically copied as part of Copy Project

because it is a project source file. Adding

net list source files to the project is the

preferred method for incorporating net list

modules into your design, because the files

are managed automatically by Project

Navigator.

Optionally, click Copy Additional

Files to copy files that were not included in

the original project. In the Copy Additional

Files dialog box, use the Add Files and

Remove Files buttons to update the list of

additional files to copy. Additional files are

copied to the copied project location after

all other files are copied.To exclude

generated files from the copy, such as

implementation results and reports, select

 6.10 Exclude generated files from the

copy:

When you select this option, the

copied project opens in a state in which

processes have not yet been run.

7. To automatically open the copy after

creating it, select Open the copied

project.

Click OK.

To Archive a Project:

Select Project > Archive.

1. In the Project Archive dialog box,

specify a file name and directory for the

ZIP file.

2. Optionally, select Exclude generated

files from the archive to exclude

generated files and non-project files

from the archive.

3. Click OK.

A ZIP file is created in the specified

directory. To open the archived project,

you must first unzip the ZIP file, and then,

you can open the project.

Note Sources that reside outside of the

project directory are copied into a

remote_sources subdirectory in the project

archive. When the archive is unzipped and

opened, you must either specify the location

of these files in the remote_sources

subdirectory for the unzipped project, or

manually copy the sources into their

original location.

INTRODUCTION TO VERILOG
In the semiconductor and electronic

design industry, Verilog is a hardware

description language(HDL) used to

model electronic systems. Verilog HDL, not

to be confused with VHDL (a competing

language), is most commonly used in the

design, verification, and implementation

ofdigital logic chips at the register-transfer

level of abstraction. It is also used in the

../Downloads/pp_db_translate_properties.htm
../Downloads/ise_c_using_fixed_netlist_ip.htm
http://en.wikipedia.org/wiki/Semiconductor_industry
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Electronics#Electronic_systems
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 41

verification ofanalog and mixed-signal

circuits.

Verilog's concept of 'wire' consists of

both signal values (4-state: "1, 0, floating,

undefined") and strengths (strong, weak,

etc.). This system allows abstract modeling

of shared signal lines, where multiple

sources drive a common net. When a wire

has multiple drivers, the wire's (readable)

value is resolved by a function of the source

drivers and their strengths.

History

Beginning

Verilog was the first modern

hardware description language to be

invented. It was created by Phil

Moorby and Prabhu Goel during the winter

of 1983/1984. The wording for this process

was "Automated Integrated Design

Systems" (later renamed to Gateway Design

Automation in 1985) as a hardware

modeling language.

Verilog-95

With the increasing success

of VHDL at the time, Cadence decided to

make the language available for

open standardization. Cadence transferred

Verilog into the public domain under

the Open Verilog International (OVI) (now

known as Accellera) organization. Verilog

was later submitted to IEEE and became

IEEE Standard 1364-1995, commonly

referred to as Verilog-95.

In the same time frame Cadence

initiated the creation of Verilog-A to put

standards support behind its analog

simulator Spectre. Verilog-A was never

intended to be a standalone language and is

a subset of Verilog-AMS which

encompassed Verilog-95.

Verilog 2001

Extensions to Verilog-95 were

submitted back to IEEE to cover the

deficiencies that users had found in the

original Verilog standard. These extensions

became IEEE Standard 1364-2001 known

as Verilog-2001.

Verilog-2001 is a significant

upgrade from Verilog-95. First, it adds

explicit support for (2's complement) signed

nets and variables. Previously, code authors

had to perform signed operations using

awkward bit-level manipulations (for

example, the carry-out bit of a simple 8-bit

addition required an explicit description of

the Boolean algebra to determine its correct

value). The same function under Verilog-

2001 can be more succinctly described by

one of the built-in operators: +, -, /, *, >>>.

A generate/endgenerate construct (similar to

VHDL's generate/endgenerate) allows

Verilog-2001 to control instance and

statement instantiation through normal

decision operators (case/if/else). Using

generate/endgenerate, Verilog-2001 can

instantiate an array of instances, with

control over the connectivity of the

individual instances. File I/O has been

improved by several new system tasks. And

finally, a few syntax additions were

introduced to improve code readability (e.g.

always @*, named parameter override, C-

style function/task/module header

declaration). Verilog-2001 is the dominant

flavor of Verilog supported by the majority

of commercial EDA software packages.

Verilog 2005

Not to be confused with System

Verilog, Verilog 2005 (IEEE Standard

1364-2005) consists of minor corrections,

spec clarifications, and a few new language

features (such as the uwire keyword).

A separate part of the Verilog

standard, Verilog-AMS, attempts to

integrate analog and mixed signal modeling

with traditional Verilog.

SystemVerilog

SystemVerilog is a superset of Verilog-

2005, with many new features and

capabilities to aid design verification and

design modeling. As of 2009, the

SystemVerilog and Verilog language

http://en.wikipedia.org/wiki/Analog_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Phil_Moorby
http://en.wikipedia.org/wiki/Phil_Moorby
http://en.wikipedia.org/w/index.php?title=Prabhu_Goel&action=edit&redlink=1
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Standardization
http://www.ovi.org/
http://en.wikipedia.org/wiki/Accellera
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-A
http://en.wikipedia.org/wiki/Spectre_Circuit_Simulator
http://en.wikipedia.org/wiki/Verilog-AMS
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-AMS
http://en.wikipedia.org/wiki/Superset

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 42

standards were merged into SystemVerilog

2009 (IEEE Standard 1800-2009).

The advent of hardware verification

languages such as OpenVera,

and Verisity's e language encouraged the

development of Superlog by Co-Design

Automation Inc. Co-Design Automation Inc

was later purchased by Synopsys. The

foundations of Superlog and Vera were

donated to Accellera, which later became

the IEEE standard P1800-2005:

SystemVerilog.

In the late 1990s, the Verilog

Hardware Description Language (HDL)

became the most widely used language for

describing hardware for simulation and

synthesis. However, the first two versions

standardized by the IEEE (1364-1995 and

1364-2001) had only simple constructs for

creating tests. As design sizes outgrew the

verification capabilities of the language,

commercial Hardware Verification

Languages (HVL) such as Open Vera and e

were created. Companies that did not want

to pay for these tools instead spent hundreds

of man-years creating their own custom

tools. This productivity crisis (along with a

similar one on the design side) led to the

creation of Accellera, a consortium of EDA

companies and users who wanted to create

the next generation of Verilog. The donation

of the Open-Vera language formed the basis

for the HVL features of

SystemVerilog.Accellera’s goal was met in

November 2005 with the adoption of the

IEEE standard P1800-2005 for

SystemVerilog, IEEE (2005).

The most valuable benefit of

SystemVerilog is that it allows the user to

construct reliable, repeatable verification

environments, in a consistent syntax, that

can be used across multiple projects

Some of the typical features of an HVL that

distinguish it from a Hardware Description

Language such as Verilog or VHDL are

 Constrained-random stimulus generation

 Functional coverage

 Higher-level structures, especially Object

Oriented Programming

 Multi-threading and interprocess

communication

 Support for HDL types such as Verilog’s

4-state values

 Tight integration with event-simulator

for control of the design

There are many other useful

features, but these allow you to create test

benches at a higher level of abstraction than

you are able to achieve with an HDL or a

programming language such as C.

System Verilog provides the best

framework to achieve coverage-driven

verification (CDV). CDV combines

automatic test generation, self-checking

testbenches, and coverage metrics to

significantly reduce the time spent verifying

a design. The purpose of CDV is to:

 Eliminate the effort and time spent

creating hundreds of tests.

 Ensure thorough verification using

up-front goal setting.

 Receive early error notifications and

deploy run-time checking and error

analysis to simplify debugging.

Examples

Ex1: A hello world program looks like this:

module main;

initial

begin

$display("Hello world!");

$finish;

end

endmodule

Ex2: A simple example of two flip-

flops follows:

module toplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

 always @ (posedge reset or posedge

clock)

if (reset)

begin

flop1 <= 0;

http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/OpenVera
http://en.wikipedia.org/w/index.php?title=Verisity&action=edit&redlink=1
http://en.wikipedia.org/wiki/E_(verification_language)
http://en.wikipedia.org/wiki/Superlog
http://en.wikipedia.org/w/index.php?title=Co-Design_Automation_Inc&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Co-Design_Automation_Inc&action=edit&redlink=1
http://en.wikipedia.org/wiki/Synopsys
http://en.wikipedia.org/wiki/Accellera
http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 43

flop2 <= 1;

end

else

 begin

 flop1 <= flop2;

 flop2 <= flop1;

 end

endmodule

The "<=" operator in Verilog is

another aspect of its being a hardware

description language as opposed to a normal

procedural language. This is known as a

"non-blocking" assignment. Its action

doesn't register until the next clock cycle.

This means that the order of the assignments

are irrelevant and will produce the same

result: flop1 and flop2 will swap values

every clock.

The other assignment operator, "=",

is referred to as a blocking assignment.

When "=" assignment is used, for the

purposes of logic, the target variable is

updated immediately. In the above example,

had the statements used the "=" blocking

operator instead of "<=", flop1 and flop2

would not have been swapped. Instead, as in

traditional programming, the compiler

would understand to simply set flop1 equal

to flop2 (and subsequently ignore the

redundant logic to set flop2 equal to flop1.)

Ex3: An example counter circuit follows:

module Div20x (rst, clk, cet, cep, count, tc);

// TITLE 'Divide-by-20 Counter with

enables'

// enable CEP is a clock enable only

// enable CET is a clock enable and

// enables the TC output

// a counter using the Verilog language

parameter size = 5;

parameter length = 20;

input rst; // These inputs/outputs represent

input clk; // connections to the module.

input cet;

input cep;

output [size-1:0] count;

output tc;

reg [size-1:0] count; // Signals assigned

// within an always

// (or initial)block

// must be of type reg

wire tc; // Other signals are of type wire

// The always statement below is a parallel

// execution statement that

// executes any time the signals

// rst or clk transition from low to high

always @ (posedge clk or posedge rst)

 if (rst) // This causes reset of the cntr

 count <= {size{1'b0}};

 else

 if (cet && cep) // Enables both true

 begin

 if (count == length-1)

 count <= {size{1'b0}};

 else

 count <= count + 1'b1;

 end

// the value of tc is continuously assigned

// the value of the expression

assign tc = (cet && (count == length-1));

endmodule

Ex4: An example of delays:

reg a, b, c, d;

wire e;

always @(b or e)

 begin

 a = b & e;

 b = a | b;

 #5 c = b;

 d = #6 c ^ e;

 end

The always clause above illustrates

the other type of method of use, i.e. the

always clause executes any time any of the

entities in the list change, i.e. the b or e

change. When one of these changes,

immediately a is assigned a new value, and

due to the blocking assignment b is assigned

a new value afterward (taking into account

the new value of a.) After a delay of 5 time

units, c is assigned the value of b and the

value of c ^ e is tucked away in an invisible

store. Then after 6 more time units, d is

assigned the value that was tucked away.

Signals that are driven from within a

process (an initial or always block) must be

http://en.wikipedia.org/wiki/Counter

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 44

of type reg. Signals that are driven from

outside a process must be of type wire. The

keyword reg does not necessarily imply a

hardware register.

7.3 Constants

The definition of constants in Verilog

supports the addition of a width parameter.

The basic syntax is:

<Width in bits>'<base letter><number>

Examples:

 12'h123 - Hexadecimal 123 (using 12

bits)

 20'd44 - Decimal 44 (using 20 bits - 0

extension is automatic)

 4'b1010 - Binary 1010 (using 4 bits)

 6'o77 - Octal 77 (using 6 bits)

7.4 Synthesizable Constructs

There are several statements in

Verilog that have no analog in real

hardware, e.g. $display. Consequently,

much of the language can not be used to

describe hardware. The examples presented

here are the classic subset of the language

that has a direct mapping to real gates.

// Mux examples - Three ways to do the

same thing.

 // The first example uses continuous

assignment

wire out;

assign out = sel ? a : b;

 // the second example uses a procedure

// to accomplish the same thing.

 reg out;

always @(a or b or sel)

 begin

 case(sel)

 1'b0: out = b;

 1'b1: out = a;

 endcase

 end

 // Finally - you can use if/else in a

// procedural structure.

reg out;

always @(a or b or sel)

 if (sel)

 out = a;

 else

 out = b;

The next interesting structure is

a transparent latch; it will pass the input to

the output when the gate signal is set for

"pass-through", and captures the input and

stores it upon transition of the gate signal to

"hold". The output will remain stable

regardless of the input signal while the gate

is set to "hold". In the example below the

"pass-through" level of the gate would be

when the value of the if clause is true, i.e.

gate = 1. This is read "if gate is true, the din

is fed to latch_out continuously." Once the

if clause is false, the last value at latch_out

will remain and is independent of the value

of din.

EX6: // Transparent latch example

 reg out;

always @(gate or din)

 if(gate)

 out = din; // Pass through state

 // Note that the else isn't required here.

The variable

 // out will follow the value of din while

gate is high.

 // When gate goes low, out will remain

constant.

The flip-flop is the next significant

template; in Verilog, the D-flop is the

simplest, and it can be modeled as:

reg q;

always @(posedge clk)

 q <= d;

The significant thing to notice in the

example is the use of the non-blocking

assignment. A basic rule of thumb is to

use <= when there is a

posedge or negedge statement within the

always clause.

A variant of the D-flop is one with

an asynchronous reset; there is a convention

that the reset state will be the first if clause

within the statement.

reg q;

always @(posedge clk or posedge reset)

 if(reset)

 q <= 0;

http://en.wikipedia.org/wiki/Transparent_latch
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Rule_of_thumb

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 45

 else

 q <= d;

The next variant is including both an

asynchronous reset and asynchronous set

condition; again the convention comes into

play, i.e. the reset term is followed by the

set term.

reg q;

always @(posedge clk or posedge reset or

posedge set)

 if(reset)

 q <= 0;

 else

 if(set)

 q <= 1;

 else

 q <= d;

Note: If this model is used to model

a Set/Reset flip flop then simulation errors

can result. Consider the following test

sequence of events. 1) reset goes high 2) clk

goes high 3) set goes high 4) clk goes high

again 5) reset goes low followed by 6) set

going low. Assume no setup and hold

violations.

In this example the always @

statement would first execute when the

rising edge of reset occurs which would

place q to a value of 0. The next time the

always block executes would be the rising

edge of clk which again would keep q at a

value of 0. The always block then executes

when set goes high which because reset is

high forces q to remain at 0. This condition

may or may not be correct depending on the

actual flip flop. However, this is not the

main problem with this model. Notice that

when reset goes low, that set is still high. In

a real flip flop this will cause the output to

go to a 1. However, in this model it will not

occur because the always block is triggered

by rising edges of set and reset - not levels.

A different approach may be necessary for

set/reset flip flops.

Note that there are no "initial" blocks

mentioned in this description. There is a

split between FPGA and ASIC synthesis

tools on this structure. FPGA tools allow

initial blocks where reg values are

established instead of using a "reset" signal.

ASIC synthesis tools don't support such a

statement. The reason is that an FPGA's

initial state is something that is downloaded

into the memory tables of the FPGA. An

ASIC is an actual hardware implementation.

7.5 Initial Vs Always:

There are two separate ways of

declaring a Verilog process. These are

the always and the initial keywords.

The always keyword indicates a free-

running process. The initial keyword

indicates a process executes exactly once.

Both constructs begin execution at simulator

time 0, and both execute until the end of the

block. Once an always block has reached its

end, it is rescheduled (again). It is a

common misconception to believe that an

initial block will execute before an always

block. In fact, it is better to think of

the initial-block as a special-case of

the always-block, one which terminates

after it completes for the first time.

//Examples:

initial

 begin

 a = 1; // Assign a value to reg a at time 0

 #1; // Wait 1 time unit

 b = a; // Assign the value of reg a to reg b

 end

always @(a or b) // Any time a or b

CHANGE, run the process

begin

 if (a)

 c = b;

 else

 d = ~b;

end // Done with this block, now return to

the top (i.e. the @ event-control)

always @(posedge a)// Run whenever reg a

has a low to high change

 a <= b;

These are the classic uses for these

two keywords, but there are two significant

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 46

additional uses. The most common of these

is an alwayskeyword without

the @(...) sensitivity list. It is possible to use

always as shown below:

always

 begin // Always begins executing at time 0

and NEVER stops

 clk = 0; // Set clk to 0

 #1; // Wait for 1 time unit

 clk = 1; // Set clk to 1

 #1; // Wait 1 time unit

 end // Keeps executing - so continue back

at the top of the begin

The always keyword acts similar to

the "C" construct while(1) {..} in the sense

that it will execute forever.

The other interesting exception is the

use of the initial keyword with the addition

of the forever keyword.

7.6 Race Condition

The order of execution isn't always

guaranteed within Verilog. This can best be

illustrated by a classic example. Consider

the code snippet below:

initial

 a = 0;

initial

 b = a;

initial

 begin

 #1;

 $display("Value a=%b Value of

b=%b",a,b);

 end

What will be printed out for the values of a

and b? Depending on the order of execution

of the initial blocks, it could be zero and

zero, or alternately zero and some other

arbitrary uninitialized value. The $display

statement will always execute after both

assignment blocks have completed, due to

the #1 delay.

7.8 System Tasks:

System tasks are available to handle simple

I/O, and various design measurement

functions. All system tasks are prefixed

with $ to distinguish them from user tasks

and functions. This section presents a short

list of the most often used tasks. It is by no

means a comprehensive list.

$display - Print to screen a line followed by

an automatic newline.

$write - Write to screen a line without the

newline.

$swrite - Print to variable a line without the

newline.

$sscanf - Read from variable a format-

specified string. (*Verilog-2001)

$fopen - Open a handle to a file (read or

write)

$fdisplay - Write to file a line followed by

an automatic newline.

$fwrite - Write to file a line without the

newline.

$fscanf - Read from file a format-specified

string. (*Verilog-2001)

$fclose - Close and release an open file

handle.

$readmemh - Read hex file content into a

memory array.

$readmemb - Read binary file content into a

memory array.

$monitor - Print out all the listed variables

when any change value.

$time - Value of current simulation time.

$dumpfile - Declare the VCD (Value

Change Dump) format output file name.

$dumpvars - Turn on and dump the

variables.

$dumpports - Turn on and dump the

variables in Extended-VCD format.

$random - Return a random value.

CONCLUSION

In this paper, a NIST 256 prime field ECC

processor implementation in FPGA has

been presented. An RSD as a carry free

representation is utilized which resulted in

short datapaths and increased maximum

frequency. We introduced enhanced

pipelining techniques within Karatsuba

multiplier to achieve high throughput

performance by a fully LUT-based FPGA

implementation. An efficient binary GCD

modular divider with three adders and

http://en.wikipedia.org/wiki/Value_change_dump
http://en.wikipedia.org/wiki/Value_change_dump

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 47

shifting operations is introduced as well.

Furthermore, an efficient modular

addition/subtraction is introduced based on

checking the LSD of the operands only. A

control unit with add-on like architecture is

proposed as a reconfigurability feature to

support different point multiplication

algorithms and coordinate systems. The

implementation results of the proposed

processor showed the shortest datapath with

a maximum frequency of 160 MHz, which

is the fastest reported in the literature for

ECC processors with fully LUT-based

design. A single point multiplication is

achieved by the processor within 2.26 ms,

which is comparable with ECC processors

that are based on embedded multipliers and

DSP blocks within the FPGA. The main

advantages of our processor include the

exportability to other FPGA and ASIC

technologies and expandability to support

different coordinate systems and point

multiplication algorithms.

REFERENCES

[1] N. Koblitz, “Elliptic curve

cryptosystems,” Math. Comput., vol.

48, no. 177, pp. 203–209, Jan. 1987.

[2] W. Stallings, Cryptography and Network

Security: Principles and Practice, 5th

ed. Englewood Cliffs, NJ, USA:

Prentice-Hall, Jan. 2010.

[3] C. Rebeiro, S. S. Roy, and D.

Mukhopadhyay, “Pushing the limits of

high-speed GF(2m) elliptic curve scalar

multiplication on FPGAs,” in Proc.

Cryptograph. Hardw. Embedded Syst.

(CHES), vol. 7428. Jan. 2012, pp. 494–

511.

[4] Y. Wang and R. Li, “A unified

architecture for supporting operations

of AES and ECC,” in Proc. 4th Int.

Symp. Parallel Archit., Algorithms

Programm. (PAAP), Dec. 2011, pp.

185–189.

[5] S. Mane, L. Judge, and P. Schaumont,

“An integrated prime-field ECDLP

hardware accelerator with high-

performance modular arithmetic units,”

in Proc. Int. Conf. Reconfigurable

Comput. FPGAs, Nov./Dec. 2011, pp.

198–203.

[6] M. Esmaeildoust, D. Schinianakis, H.

Javashi, T. Stouraitis, and K. Navi,

“Efficient RNS implementation of

elliptic curve point multiplication over

GF(p),” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 8, pp.

1545–1549, Aug. 2012.

[7] D. M. Schinianakis, A. P. Fournaris, H.

E. Michail, A. P. Kakarountas, and T.

Stouraitis, “An RNS implementation of

an Fp elliptic curve point multiplier,”

IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 56, no. 6, pp. 1202–1213,

Jun. 2009.

[8] J.-W. Lee, S.-C. Chung, H.-C. Chang,

and C.-Y. Lee, “Efficient

poweranalysis-resistant dual-field

elliptic curve cryptographic processor

using heterogeneous dual-processing-

element architecture,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst.,

vol. 22, no. 1, pp. 49–61, Feb. 2013.

[9] J.-Y. Lai and C.-T. Huang, “Energy-

adaptive dual-field processor for high-

performance elliptic curve

cryptographic applications,” IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 19, no. 8, pp. 1512–1517,

Aug. 2011.

[10] S.-C. Chung, J.-W. Lee, H.-C. Chang,

and C.-Y. Lee, “A highperformance

elliptic curve cryptographic processor

over GF(p) with SPA resistance,” in

Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2012, pp. 1456–1459.

[11] J.-Y. Lai and C.-T. Huang, “Elixir:

High-throughput cost-effective

dualfield processors and the design

framework for elliptic curve

cryptography,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no.

11, pp. 1567–1580, Nov. 2008.

[12] D. Karakoyunlu, F. K. Gurkaynak, B.

Sunar, and Y. Leblebici, “Efficient and

side-channel-aware implementations of

elliptic curve cryptosystems over prime

International Journal of Research
Available at https://journals.pen2print.org/index.php/ijr/

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 07 Issue 07

July 2020

Available online: https://journals.pen2print.org/index.php/ijr/ P a g e | 48

fields,” IET Inf. Secur., vol. 4, no. 1,

pp. 30–43, Mar. 2010.

[13] D. Schinianakis and T. Stouraitis,

Multifunction residue architectures for

cryptography,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 61, no. 4, pp.

1156–1169, Apr. 2014.

[14] J. Vliegen et al., “A compact FPGA-

based architecture for elliptic curve

cryptography over prime fields,” in

Proc. 21st IEEE Int. Conf. Appl.-

Specific Syst. Archit. Process. (ASAP),

Jul. 2010, pp. 313–316.

[15] T. Güneysu and C. Paar, “Ultra high

performance ECC over NIST primes on

commercial FPGAs,” in Proc. 10th Int.

Workshop Cryptograph. Hardw.

Embedded Syst. (CHES), 2008, pp. 62–

78.

[16] P. L. Montgomery, “Modular

multiplication without trial division,”

Math. Comput., vol. 44, no. 170, pp.

519–521, Apr. 1985.

[17] K. Sakiyama, N. Mentens, L. Batina,

B. Preneel, and I. Verbauwhede,

“Reconfigurable modular arithmetic

logic unit for high-performance public-

key cryptosystems,” in Proc. 2nd Int.

Workshop Reconfigurable Comput.,

Archit. Appl., vol. 3985. 2006, pp. 347–

357.

[18] A. Byrne, E. Popovici, and W. P.

Marnane, “Versatile processor for

GF(pm) arithmetic for use in

cryptographic applications,” IET

Comput. Digit. Tech., vol. 2, no. 4, pp.

253–264, Jul. 2008.

[19] J. Solinas, “Generalized Mersanne

number,” Univ. Waterloo, Waterloo,

ON, Canada, Tech. Rep. CORR 99-39,

1999.

[20] B. Ansari and M. A. Hasan, “High-

performance architecture of elliptic

curve scalar multiplication,” IEEE

Trans. Comput., vol. 57, no. 11, pp.

1443–1453, Nov. 2008.

[21] N. Smyth, M. McLoone, and J. V.

McCanny, “An adaptable and scalable

asymmetric cryptographic processor,”

in Proc. Int. Conf. Appl.-Specific Syst.,

Archit. Processors (ASAP), Sep. 2006,

pp. 341–346.

[22] C. J. McIvor, M. McLoone, and J. V.

McCanny, “Hardware elliptic curve

cryptographic processor over GF(p),”

IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 53, no. 9, pp. 1946–1957,

Sep. 2006.

[23] K. Ananyi, H. Alrimeih, and D.

Rakhmatov, “Flexible hardware

processor for elliptic curve

cryptography over NIST prime fields,”

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 17, no. 8, pp. 1099–

1112, Aug. 2009.

[24] M. Hamilton and W. P. Marnane,

“FPGA implementation of an elliptic

curve processor using the GLV

method,” in Proc. Int. Conf.

Reconfigurable Comput. FPGAs

(ReConFig), Dec. 2009, pp. 249–254.

