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ABSTRACT
This paper discusses the background and 

application requirements that motivated the 

development of TinyOS. It enumerates the 

characteristics associated with any typical 

Networked sensor application. Technological 

progress in integrated, low-power, CMOS 

communication devices and sensors makes a rich 

design space of networked sensors viable. They 

can be deeply embedded in the physical world 

and spread throughout our environment like 

smart dust. The missing elements are an overall 

system architecture and a methodology for 

systematic advance. To this end, we identify key 

requirements, develop a small device that is 

representative of the class, design a tiny event 

driven operating system, and show that it 

provides support for efficient modularity and 

concurrency-intensive operation. The analysis 

lays a groundwork for future architectural 

advances. 
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1. INTRODUCTION 

This paper provides an initial exploration of 

system architectures for networked sensors. As 

the post-PC era emerges, several new niches of 

computer system design are taking shape with 

characteristics that are quite different from 

traditional desktop and server regimes. Many new 

regimes have been enabled, in part, by “Moore's 

Law” pushing a given level of functionality into a 

smaller, cheaper, lower-power unit. In addition, 

three other trends are equally important: complete 

systems on a chip, integrated low-power 

communication, and integrated low-power 

transducers. All four of these trends are working 

together to enable the networked sensor. The 

basic micro-controller building block now 

includes not just memory and processing, but 

non-volatile memory and interface resources, 

such as DACs, ADCs, UARTs, interrupt 

controllers, and counters. Communication can 

now take the form of wired, short range RF, 

infrared, optical, and various other techniques. 

Sensors now interact with various fields and 

forces to detect light, heat, position, movement, 

chemical presence, and so on. In each of these 

areas, the technology is crossing a critical 

threshold that makes networked sensors an 

exciting regime to apply systematic design 

methods. Today, networked sensors can be 

constructed using commercial components on the 

scale of a square inch in size and a fraction of a 

watt in power. They use one or more 

microcontrollers connected to various sensor 

devices and to small transceiver chips.  

The investigation is grounded in a prototype 

“current generation" device constructed from off-

the-shelf components. Other research projects are 

trying to compress this class of devices onto a 

single chip. The key missing technology is the 

system software support to manage and operate 

the device. To address this problem, we have 

developed a tiny microthreaded OS, called 

TinyOS. It draws on previous architectural work 

on lightweight thread support and efficient 

network interfaces. While working in this design 

regime two issues emerge strongly: these devices 

are concurrency intensive - several different owes 

of data must be kept moving simultaneously; and 

the system must provide efficient modularity- 

hardware specific and application specific 

components must snap together with little 

processing and storage overhead. We address 

these two problems with our tiny microthreaded 

OS. Analysis of this solution provides valuable 

initial directions for future architectural 

innovation. 
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This paper Outlines the design requirements that 

characterize the networked sensor regime and 

guide our microthreading approach, describes our 

baseline, current-technology hardware design, 

develops our TinyOS for devices of this general 

class, evaluates the effectiveness of the design 

against a collection of preliminary benchmarks, 

contrasts our approach with that of prevailing 

embedded operating systems. Finally, draws 

together the study and considers its implications 

for architectural directions. 

2. SENSOR CHARACTERSTICS 
Small Physical Size and low power   

consumption: 

Minimal Size and power constrain the processing 

time, storage and interconnect capacity of the 

device. Due to these constrained resources, the 

operating system and applications have to use 

them efficiently. 

 

Concurrency Intensive Operation: 
These sensors have to communicate information 

with little processing on the fly. Information may 

be simultaneously captured from sensors, 

manipulated and streamed onto a network. Data 

may also be received from other nodes and have 

to be forwarded to the next hop in the network. 

Hence the system must handle multiple flows of 

data concurrently and also perform processing 

and communication parallel. 

 

Limited Physical Parallelism and Controller 

Hierarchy  
  
The Number of independent device controllers, 

their capabilities and complexity of the 

interconnect are much lower for these Networked 

Sensors when compared to conventional systems. 

The sensors provide a primitive interface directly 

to the central controller unlike conventional 

systems that distribute concurrent processing over 

multiple levels of controllers. This limited 

hierarchy is a repercussion of the Resource 

constraints. 

  

Diversity in Design and Usage  

These devices are application specific, rather than 

general purpose. The hardware is specific to the 

application and the variations in them are likely 

to be large. Hence these devices require an 

unusual degree of Software Modularity that must 

be efficient. A generic development environment 

is needed which allows the development of 

specialized applications and allows easy 

migration of components across the 

software/hardware Boundary. 

 

Robust Operation  
These devices will be numerous, largely 

unattended and expected to be operational a large 

fractional of time. The application of redundancy 

techniques for fault-tolerance is constrained by 

space and power limitations. Thus, enhancing the 

reliability of individual devices is essential.  

As the previous embedded operating systems are 

more general purpose, they occupy too much 

memory and work on heavy weight processes. 

They also have a deep hierarchy of controllers 

and kernel layers and the context switch time to 

perform different functions is too much. As these 

Embedded OS do not cater to the needs of the 

Networked Sensor System, the development of 

Tiny OS was important. 

  

3.1. HARDWARE 

ORGANISATION 
 
The UC-Berkeley group developed a small, 

flexible networked sensor platform that expressed 

the key characteristics of the general class. Figure 

1 shows the hardware configuration of the device. 
 
There is a microcontroller MCU (ATMEL 

90LS8535) that has an 8-bit Harvard Architecture 

processor with 16- bit addresses. It has 32 8-bit 

general registers and runs at 4 MHz and 3.0 

Volts. It has 8 KB of Flash Program Memory and 

512 Bytes of SRAM as the data memory. A co-

processor is used to write instructions to the 

Program Memory. It also has a single-channel 

low power radio, an EEPROM secondary store 

and a range of sensors like Light (photosensor) 

and Temperature sensors connected to the Bus.  
 
There are 3 power modes that the processor 

operates on idle, which just shuts off the 

processor, power down, which shuts off 

everything but the watchdog and asynchronous 
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interrupt logic necessary for wake-up and power 

save which is similar to power down, but leaves a 

timer also running. The sensors use Analog to 

Digital Converters to communicate data to the 

processor. 

Three LEDs represent outputs connected through 

general I/O ports; they may be used to display 

digital values or status. The photosensor 

represents an analog input device with simple 

control lines. In this case, the control lines 

eliminate power drain through the photo resistor 

when not in use. The input signal can be directed 

to an internal ADC in continuous or sampled 

modes. 

The radio is the most important component. It 

represents an asynchronous input/output device 

with hard real time constraints. It consists of an 

RF Monolithics 916.50MHz transceiver 

(TR1000), antenna, and collection of discrete 

components to configure the physical layer 

characteristics such as signal strength and 

sensitivity. It operates in an ON-OFF key mode at 

speeds up to 19.2Kbps. Control signals configure 

the radio to operate in either transmit, receive, or 

power-off mode. The radio contains no buffering 

so each bit must be serviced by the controller on 

time. Additionally, the transmitted value is not 

latched by the radio, so jitter at the radio input is 

propagated into the transmission signal. 

The temperature sensor (Analog Devices 

AD7418) represents a large class of digital 

sensors which have internal A/D converters and 

interface over a standard chip-to-chip protocol. 

The serial port represents an important 

asynchronous bit-level device with byte-level 

controller support. It uses I/O pins that are 

connected to an internal UART controller. In 

transmit mode, the UART takes a byte of data 

and shifts it out serially at a specified interval. In 

receive mode, it samples the input pin for a 

transition and shifts in bits at a specified interval 

from the edge. Interrupts are triggered in the 

processor to signal completion events. The 

coprocessor represents a synchronous bit-level 

device with byte-level support. In this case, it is a 

very limited MCU (AT90LS2343, with 2 KB ash 

instruction memory, 128 bytes of SRAM and 

EEPROM) that uses I/O pins connected to an SPI 

controller. SPI is a synchronous serial data link, 

providing high speed full-duplex connections (up 

to 1 Mbit) between various peripherals. The 

coprocessor is connected in a way that allows it 

to reprogram the main microcontroller. The 

sensor can be reprogrammed by transferring data 

from the network into the coprocessor's 256 KB 

EEPROM (24LC256). Alternatively the main 

processor can use the coprocessor as a gateway to 

extra storage. 

 

3.2. POWER CHARACTERSTICS 
Table1 shows the current drawn by each 

hardware component under three scenarios: peak 

load when active, load in “idle” mode, and 

inactive. When active, the power consumption of 

the LED and radio reception are about equal to 

the processor. The processor, radio, and sensors 

running at peak load consume 19.5mA at 3 volts, 

or about 60mW. This figure should be contrasted 

with the 10A current draw in the inactive mode. 

Clearly, the biggest savings are obtained by 

making unused components inactive whenever 

possible. The system must embrace the 

philosophy of getting the work done as quickly as 

possible and going to sleep. 

 

Component Active Idle Inactive 

 (mA) (mA) ( A) 

MCU core 

(AT90S8535) 5 2 1 

MCU pins 1.5 - - 

LED 4.6 each - - 

Photocell .3 - - 

Radio (RFM TR1000) 12 tx - 5 

Radio (RFM TR1000) 4.5 rx - 5 

Temp (AD7416) 1 0.6 1.5 

Co-proc 

(AT90LS2343) 2.4 .5 1 

EEPROM (24LC256) 3 - 1 

Table 1: Current per hardware component of 

base-line networked sensor platform. Our 

prototype is powered by an Energizer CR2450 

lithium battery rated at 575mAh. At peak load, 

the system consumes 19.5mA of current, or can 

run about 30 hours on a single battery. In the idle 
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mode, the system can run for 200 hours. When 

switched into inactive mode, the system draws 

only 10 A of current, and a single battery can run 

for over a year. 

The minimum pulse width for the RFM radio is 

52s. Thus, it takes on the order of 1.9J of energy 

to transmit a single bit 1 and on the order of 0.5J 

of energy to receive a bit. During this time, the 

processor can execute 208 cycles (roughly 100 

instructions) and can consume up to 0.8J. A 

fraction of this instruction count is devoted to bit 

level processing. The remainder can go to higher 

level processing (byte-level, packet level, 

application level) amortized over several bit 

times. Unused time can be spent in idle or power-

down mode. 

To broaden the coverage of our study, we deploy 

these networked sensors in two configurations. 

One is a mobile sensor that picks up temperature 

and light readings and periodically presents them 

on the wireless network as tagged data objects. It 

needs to conserve its limited energy. The second 

is a stationary sensor that bridges the radio 

network through the serial link to a host on the 

Internet. It has power supplied by its host, but 

also has more demanding data flows. 

 

 

Figure 1. Photograph and schematic for representative network sensor platform
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4.1.TINY MICROTHREADING 

OPERATING SYSTEM (TinyOS) 
 
The core challenge we face is to meet the 

requirements for networked sensors put forth in 

Section  2 upon the class of platforms 

represented by the design in Section  3 in manner 

that scales forward to future technology. Small 

physical size, modest active power load and tiny 

inactive load are provided by the hardware 

design. An operating system framework is 

needed that will retain these characteristics by 
managing the hardware capabilities effectively, 

while supporting concurrency intensive operation 

in a manner that achieves efficient modularity 

and robustness. 

Our system is designed to scale with the current 
technology trends supporting both smaller, 

tightly integrated designs as well as the crossover 
of software components into hardware. This is in 
contrast to traditional notions of scalability that 
are centered on scaling up total power resources 
work for a given computing paradigm. It is 
essential that network sensor architectures plan 
for the eventual integration of sensors, 
processing and communication. The days of 
sensor packs being dominated by interconnect 
and support hardware, as opposed to physical 
sensors, are numbered. 

In TinyOS, we have chosen an event model so 
that high levels of concurrency can be handled in 
a very small amount of space. A stack-based 
threaded approach would require that stack space 
be reserved for each execution context. 
Additionally, it would need to be able to multi-
task between these execution contexts at a rate of 
40,000 switches per second, or twice every 50s - 
once to service the radio and once to perform all 
other work. It is clear that an event-based regime 
lends itself to these requirements. It is not 

surprising that researchers in the area of high 
performance computing have seen this same 
phenomena- that event based programming must 
be used to achieve high performance. 
In this design space, power is the most precious 
resource. We believe that the event-based 
approach creates a system that uses CPU 
resources efficiently. The collection of tasks 

associated with an event are handled rapidly, and 
no blocking or polling is permitted. Unused CPU 
cycles are spent in the sleep state as opposed to 
actively looking for an interesting event. 
Additionally, with real-time constraints the 

calculation of CPU utilization becomes simple- 
allowing for algorithms that adjust processor 
speed and voltage accordingly. 

 

4.2. TinyOS Design 
TinyOS uses an Event model so that high levels 

of concurrency can be handled in a very small 

amount of space unlike the stack based threaded 

approach that uses too much stack space and also 

has a high context switch time.  

Since Power is a precious resource, CPU 

resources must be utilized efficiently. The event-

based approach handles tasks associated with 

events rapidly without allowing blocking or 

polling. Unused CPU cycles are spent in sleep 

state as opposed to actively looking for events. 

TinyOS was developed in C. 
 
Components, Commands, Events and Tasks 
 
TinyOS is divided into a collection of Software 

Components. A TinyOS application consists of a 

scheduler and a graph of components describing 

their interaction. 
 
A Component has four parts: a set of Command 

Handlers, a set of Event Handlers, an 

encapsulated fixed size frame and a bundle of 

simple tasks. Each component declares the 

commands it uses and events it signals. 
 
The fixed sized frames are statically allocated 

which helps to know the memory requirements of 

a component at compile time. The frame is an 

internal storage space that contains the state of 

the component and is used by the events, 

commands and tasks. 

Each Component is described by its interface and 

its internal implementation. An interface contains 

commands and events. These declarations are 

used to compose the modular components and 

this composition creates layers of components 
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that are application specific. The higher-level 

components issue commands to lower-level 

components while the lower ones signal events to 

the higher-level components. Hence we can think 

of the component to have an upper interface, 

which names the commands it implements and 

the events it signals a lower interface which 

names the commands it uses and events it 

handles.  

 

Commands are non-blocking requests made to 

lower level components. A command will deposit 

request parameters into its frame and 

conditionally post a task for a later execution. It 

also provides feedback to its caller (from a higher 

level component) by returning status of success 

or failure.  

 

Event Handlers are invoked to deal with 

Hardware events either directly or indirectly. The 

lowest level components have handlers connected 

directly to hardware interrupts. An event Handler 

can deposit information in its frame, post tasks, 

signal higher-level events or call lower level 

commands. Events help in forwarding changes 

upwards while commands forward processing 

downwards. In order to avoid cycles, command 

cannot signal events.  

Tasks perform the work and are atomic with 

respect to other tasks. They run to completion and 

can call lower commands, signal higher-level 

events and schedule other tasks within the same 

component. The run-to completion property helps 

to allocate a single stack to the currently 

executing task and this conserves space. Tasks 

also allow concurrency within each component as 

they execute asynchronously. They must never 

block to avoid delaying progress in other 

components. Hence we can look at these tasks as 

blocks of computation.  

 

The Task scheduler is a simple FIFO scheduler 

that has a bounded size scheduling data Structure. 

It is power sensitive and puts the processor to 

sleep when the task queue is empty, but leaves 

the peripherals operating to wake up the system 

in case of any new hardware event. There is a two 

level scheduling hierarchy in the TinyOS – events 

preempt tasks but tasks do not preempt other 

tasks. Since all components have bounded 

storage, a component has to refuse commands.  

 

4.3. Example Component  
A typical component including a frame, event 

handlers, commands and threads for a message 

handling component is pictured in Figure 2. Like 

most components, it exports commands for 

initialization and power management. 

Additionally, it has a command for initiating a 

message transmission, and signals events on the 

completion of a transmission or the arrival of a 

message. In order to perform its function, the 

message component issues commands to a packet 

level component and handles two types of events: 

one that indicates a message has been transmitted 

and one that signals that a message has been 

received. 
 
Since the components describe both the resources 

they provide and the resources they require, 

connecting them together is very simple. The 

programmer simply matches the signatures of 

events and commands required by one 

component with the signatures of events and 

commands provided by another component. The 

communication across the components takes the 

form of a function call, which has low overhead 

and provides compile time type checking. 
 

4.4. TYPES OF COMPONENT 
In general, components fall into one of three 

categories: hardware abstractions, synthetic 

hardware, and high level software components. 

Hardware abstraction components map physical 

hardware into our component model. The RFM 

radio component (shown in lower left corner of 

Figure3) is representative of this class. This 
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component exports commands to manipulate the 

individual I/O pins connected to the RFM 

transceiver and posts events informing other 

components about the transmission and reception 

of bits. Its frame contains information about the 

current state of the component (the transceiver is 

in sending or receiving mode, the current bit rate, 

etc.). The RFM consumes the

 
Figure 2: A sample messaging component. Pictorially, we represent the component as a bundle of 

threads, a block of state (component frame) a set of commands (upside-down triangles), a set of 

handlers (triangles), solid downward arcs for commands they use, and dashed upward arcs for 

events they signal. All of these elements are explicit in the component code.

 

 

hardware interrupt, which is transformed into 

either the RX_bit_evt or into the TX_bit_evt. 

There are no tasks within the RFM because the 

hardware itself provides the concurrency. This 

model of abstracting over the hardware resources 

can scale from very simple resources, like 

individual I/O pins, to quite complex ones, like 

UARTs. 

Synthetic hardware components simulate the 

behavior of advanced hardware. A good example 

of such component is the Radio Byte component 

(see Figure.3). It shifts data into or out of the 

underlying RFM module and signals when an 

entire byte has completed. The internal tasks 

perform simple encoding and decoding of the 

data. Conceptually, this component is an 

enhanced state machine that could be directly cast 

into hardware. From the point of view of the 

higher levels, this component provides an 

interface and functionality very similar to the 

UART hardware abstraction component: they 

provide the same commands and signal the same  

 

 

events, deal with data of the same granularity, 

and internally perform similar tasks (looking for a 

start bit or symbol, perform simple encoding).The 

high level software components perform control, 

routing and all data transformations. A 

representative of this class is the messaging 

module presented above, in Figure 2. It performs 

the function of filling in a packet buffer prior to 

transmission and dispatches received messages to 

their appropriate place. Additionally, components 

that perform calculations on data or data 

aggregation fall into this category. 

This component model allows for easy migration 

of the hardware/software boundary. This is 

possible because our event based model is 

complementary to the underlying hardware. 

Additionally, the use of fixed size, preallocated 

storage is a requirement for hardware based 

implementations. This ease of migration from 

software to hardware will be particularly 

important for networked sensors, where the 

system designers will want to explore the 

tradeoffs between the scale of integration, power 

requirements, and the cost of the system. 
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5. EVALUATION  
Small Physical Size  

The source code size for various components of 

the TinyOS system and the sample Multi hop 

routing application is shown below. The 

important TinyOS component „scheduler‟ 

occupies only 178 Bytes. The data size of the 

scheduler is only 16 bytes and it utilizes only 3% 

of the available data memory.  

 

Software Footprint refers to the total number of 

bytes occupied by a software component on the 

device. The Active Message Layer occupies a 

total of 322 Bytes. The total device Binary is 2.6 

Kbytes and includes the packet level, byte level 

and bit level controllers, the AM component and 

the routing Application. 40 Bytes is used for 

static data. Hence the software footprint of the 

TinyOS is very small and this is very useful when 

memory is strictly constrained.  

 

Component Name Code Size  

      (bytes) 

Data Size 

       (bytes) 

Multihop router 

AM_dispatch 

AM_temperature 

AM_light 

AM 

Packet 

Radio_byte  

RFM 

Photo 

Temperature 

UART 

UART_packet 

I2C_bus 

88 

40 

78 

146 

356 

334 

810 

310 

84 

64 

196 

314 

192 

0 

0 

32 

8 

40 

40 

8 

1 

1 

1 

1 

40 

8 

Processor_init 

TinyOS Scheduler 

C runtime 

172 

178 

82 

30 

16 

0 

Total 3480 226 

Table 2. Code & Data size for TinyOS and an 

application 

Concurrency-Intensive Operations  

  
Network Sensors need to handle multiple flows 

of information simultaneously. An important 

characteristic is the context switch speed. The 

table below shows this aspect when compared to 

the hardware cost for moving bytes in memory.  
 
The cost of propagating an event is roughly 

equivalent to that of copying one byte of data. 

Posting a thread and switching context costs 

about as much as moving 6 bytes of memory. 

Hence the TinyOS supports concurrency 

intensive operations effectively due to reduced 

context switch time.  
 
Operations Average 

Cost 

(cycles) 

Time 

(microsec) 

Normalized 

to byte  copy 

Byte Copy 8 2 1 

Post an event 

Call a 

command 

Post a thread 

to scheduler 

Context 

Switch 

Overhead 

10 

10 

 

46 

 

51 

2.5 

2.5 

 

11.5 

 

12.75 

1.25 

1.25 

 

6 

 

6 

Interrupt 

(hardware 

cost) 

9 2.5 1 

Interrupt 

(software 

cost) 

71 17.75 9 

Table 3: Cost of Primitive operations in 

TinyOS 

 

Efficient Modularity  

The events and commands propagate through the 
TinyOS components very quickly. The event 
model triggers events quickly and commands are 
executed in real time. Since the context switch 
time is very less and the TinyOS active messages 
do not waste time in copying data, a good 
response time is achieved. 
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Communications Model Evaluation  
The performance of the Active message model can 

be evaluated by using Round Trip Time (RTT) and 

throughput.  
 
The RTT measures the time for a message to be sent 

from a Host PC to a specific sensor device and 

back. The RTT is plotted for various route lengths. 

A route length of one measures the Host-PC to base 

station RTT and is about 40ms. This reflects the 

cost of wired link, device processing and Host OS 

overhead. For routes greater than one hop, the RTT 

also includes the latency of the wireless link

between two devices. The difference between the 

two and one hop RTT yields the device-to-device 

RTT of 78ms.These RTT measures indicate that the 

Tiny Active message Model is really fast. 
 
Since the RTT is very less, the throughput or the 

messages handled in unit time is more. 
 

6. Comparison of TinyOS with 

other Embedded OS  
Comparison of TinyOS with common Desktop 
and Server OS like MS-Windows, Sun Solaris, 
UNIX or IBM‟s AIX is not meaningful as their  

application environments are totally different. 
These Desktop OS are meant for a broad range of 
applications and really not suited for small-
embedded devices, whereas TinyOS is suited 
only for Networked Sensors that are embedded in 
a Data collection Network. 
 
However we can compare TinyOS with some of 
the real time operating systems like VxWorks, 
WinCE, PalmOS and QNX that are also meant 
for embedded devices. Many of these are based 

on Micro kernels that allow for capabilities to be 
added or removed based on system needs. These 
systems provide memory protection and fault 
isolation features that TinyOS doesn‟t provide. 
Security of applications is very important in 
larger commercial systems. Tiny OS design does 
not incorporate security features at all. But still 
security may not be that important an issue in 
Data collection Networks and situation 
monitoring. 
 
TinyOS does not guarantee 100% packet 

delivery, as it has no time-out mechanism and 
receipt acknowledgement features. It is found 
that about 5% of the bytes received were 
corrupted even after some error correction. 
Hence some newer error correction scheme with 
CRC check is required.  
 
TinyOS does very well on Context Switch time. 
It is about 12.75 µsec whereas a QNX context 
switch takes about 7.3 msec. TinyOS does well 
on Software footprint also as it requires only 2.16 

Kbytes whereas VxWorks, memory footprint is 
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in the hundreds of Kilobytes.  
There is also a collection of smaller real time 
OS like Creem, pOSEK and Ariel that are 
minimal OS designed for deeply embedded 
systems such as motor controllers or Microwave 

ovens. They also have severely constrained 
storage and execution models. But their models 
tend to be Control Centric that is controlling 
access to hardware resources as opposed to 
TinyOS‟s Data flow centric approach. Even the 
pOSEK, that meets TinyOS‟s memory 
requirements, exceeds the context switch 
limitations and hence cannot meet real-time 
requirements. There is no preemption in Creem 
and this totally prevents real time processing. 
 
Most of these OS are based on a Thread based 

Model and these systems need to reserve 
additional storage for every thread created. 
Though there might be better separation of work 
using threads, the storage penalty is too much. 
On the other hand TinyOS is an event based 
model and because of good buffer management, 
it does well on storage constraints. 
 
The TinyOS‟s Active message model helps a lot 
in the reduction of power consumption. Sensors 
can switch to a power save mode when they are 

not active and events would trigger them to 
come back into normal-operational mode. The 
other threaded models have to keep polling for 
some event to occur. This results in 
considerable power consumption. Another 
advantage of using events is that polling based 
I/O mechanisms see significant performance 
degradation when the number of interfaces that 
must be periodically checked increases. 
 
A traditional socket based TCP/IP 

communication model (used by MS-Windows 
and Unix) is not optimal for the Networked 
Sensors. First of all the use of a socket model 
forces the system into a thread based 
programming model. This is because sockets 
have a stream-based interface where the user 
application polls or blocks as it waits for data to 
arrive. The overhead associated with context 
switches and the storage of inactive execution 
contexts is too much in the case of these socket 
models. 

Secondly, the communication is extremely 

expensive for network sensors and it is 
advantageous to transmit as few bits as possible. 
In TCP/IP and UDP, there are different fields 
that come as an overhead like sequence 
numbers, addresses, port numbers, protocol 

types etc. A single TCP/IP packet has an 
overhead of 48 Bytes. 
 
Finally the TCP/IP protocol has a lot of 
overhead in the memory management 
associated with a stream based interface. The 
networking stack must buffer incoming data 
until the application requests it, whereupon it 
must be copied into the application's buffer 
while any remaining data remains buffered by 
the protocol stack. This buffer management 
greatly increases complexity and overhead. 

Creation of intermediate copies & data 
fragmentation proves too costly for the sensors. 
 
There is an assortment of OS such as VxWorks, 
OS-9, PalmOS and QNX that provide TCP/IP 
based network connectivity to embedded 
devices. However, these real time OS consume 
significantly more resources than that are 
currently available on the class of hardware that 
TinyOS works with. 
 

Small Devices like Palm Pilots and PDA‟s 
(using PalmOS) are optimized for user response 
times. They have quick periods of very high 
activity and long periods of idle time. 
Networked Sensor regimes have long periods of 
constant data collection. 
 
The Wireless Application Protocol (WAP) 
addresses many of the same wireless device 
issues presented in this paper (e.g. power and 
CPU constraints). However, WAP is targeted 

mainly at client server type applications. 
Networked Sensor domain has small 
autonomous devices that may operate in large 
numbers.  
 
But TinyOS caters to a very small range of 
applications and hardware platforms. It was 
mainly built for Embedded Networked Sensors 
where applications generally perform 
monitoring of some specific events, data 
collection and forwarding to a Centralized 

point. The event-based model using Active 
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Messages may not be really suitable for other 
traditional computing environments. 

7. Commercial Applications and  

Future Research Directions 
The various applications of these Networked 
Sensors and Tiny OS are:  
1) Personnel Tracking and information 
distribution  

2) Monitoring of Real-time environments and 
Data collection like Temperature, light, pressure 
etc. 
3) Secure Messaging that requires trusted 
communication to bases using RC5 
cryptography. 
4) Studying Life Science patterns such as Bird‟s 
Migration and retrieving ecological parameters 
like toxic contents in a river.  
5) Monitoring Enemy targets and other targets 
of importance  

 
Crossbow Inc. and UC Berkeley‟s Computer 
Science Department are commercializing 
microsensor Modes, that help in detecting and 
monitoring a wide variety of targets such as an 
enemy personnel or chemical threats. TinyOS 
would be used in these Motes. Crossbow 
manufactures and sells the Networked Sensor 
hardware using TinyOS. 
The department of Computer Science, UC-
Berkeley released a new version of TinyOS 0.6 

on January 31, 2002. It can be installed over 
Windows 2000 and Red Hat Linux platforms. 
Intel has opened a new R&D laboratory in 
Berkeley, California that focuses on Pro-active 
computing technologies. This includes the Mote 
project and further development of TinyOS.  
Some of the Future Research Works in TinyOS 
are: 
1) Development of a better MAC layer that fits 
the requirements of Network Sensors.  
2) Incorporating Security features in Data 
Transmission using RC5 cryptography and 

some form of Memory protection schemes 
3) Determine all possible limitations of  TinyOS 
4) Incorporate TinyOS to newer Hardware 
Architectures 
5) Develop techniques to deliver data more 
reliably and reduce data corruption. 
  

 

7. CONCLUSION 
The TinyOS approach has proven quite 
effective in supporting general purpose 
communication among potentially many devices 
that are highly constrained in terms of 
processing, storage, bandwidth, and energy with 
primitive hardware support for I/O. Efficiency 
and low energy use and modularity is taking 
precedence over FLOPS and throughput. 
 
Its event driven model facilitates interleaving 
the processor between multiple flows of data 

and between multiple layers in the stack for 
each flow while still meeting the severe real-
time requirements. Since storage is very limited, 
it is common to process messages incrementally 
at several levels, rather than buffering entire 
messages and processing them level-by-level. 
 
By adopting a non-blocking , event-driven 
approach, TinyOS avoids supporting traditional 
threads, with the associated multiple stacks and 
complex synchronization support. The 

component approach has yielded not only robust 
operation despite limited debugging 
capabilities, it has greatly facilitated 
experimentation. 
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