

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 641

Tiny Embedded Networked Sensor

Ketan Aggarwal1& Shubham Srivastava2

Electronics & Communication Engineering SRM University, Delhi NCR Campus

ABSTRACT
This paper discusses the background and

application requirements that motivated the

development of TinyOS. It enumerates the

characteristics associated with any typical

Networked sensor application. Technological

progress in integrated, low-power, CMOS

communication devices and sensors makes a rich

design space of networked sensors viable. They

can be deeply embedded in the physical world

and spread throughout our environment like

smart dust. The missing elements are an overall

system architecture and a methodology for

systematic advance. To this end, we identify key

requirements, develop a small device that is

representative of the class, design a tiny event

driven operating system, and show that it

provides support for efficient modularity and

concurrency-intensive operation. The analysis

lays a groundwork for future architectural

advances.

Keywords:

Tiny OS; Network Sensor; CMOS; Micro

threaded

1. INTRODUCTION

This paper provides an initial exploration of

system architectures for networked sensors. As

the post-PC era emerges, several new niches of

computer system design are taking shape with

characteristics that are quite different from

traditional desktop and server regimes. Many new

regimes have been enabled, in part, by “Moore's

Law” pushing a given level of functionality into a

smaller, cheaper, lower-power unit. In addition,

three other trends are equally important: complete

systems on a chip, integrated low-power

communication, and integrated low-power

transducers. All four of these trends are working

together to enable the networked sensor. The

basic micro-controller building block now

includes not just memory and processing, but

non-volatile memory and interface resources,

such as DACs, ADCs, UARTs, interrupt

controllers, and counters. Communication can

now take the form of wired, short range RF,

infrared, optical, and various other techniques.

Sensors now interact with various fields and

forces to detect light, heat, position, movement,

chemical presence, and so on. In each of these

areas, the technology is crossing a critical

threshold that makes networked sensors an

exciting regime to apply systematic design

methods. Today, networked sensors can be

constructed using commercial components on the

scale of a square inch in size and a fraction of a

watt in power. They use one or more

microcontrollers connected to various sensor

devices and to small transceiver chips.

The investigation is grounded in a prototype

“current generation" device constructed from off-

the-shelf components. Other research projects are

trying to compress this class of devices onto a

single chip. The key missing technology is the

system software support to manage and operate

the device. To address this problem, we have

developed a tiny microthreaded OS, called

TinyOS. It draws on previous architectural work

on lightweight thread support and efficient

network interfaces. While working in this design

regime two issues emerge strongly: these devices

are concurrency intensive - several different owes

of data must be kept moving simultaneously; and

the system must provide efficient modularity-

hardware specific and application specific

components must snap together with little

processing and storage overhead. We address

these two problems with our tiny microthreaded

OS. Analysis of this solution provides valuable

initial directions for future architectural

innovation.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 642

This paper Outlines the design requirements that

characterize the networked sensor regime and

guide our microthreading approach, describes our

baseline, current-technology hardware design,

develops our TinyOS for devices of this general

class, evaluates the effectiveness of the design

against a collection of preliminary benchmarks,

contrasts our approach with that of prevailing

embedded operating systems. Finally, draws

together the study and considers its implications

for architectural directions.

2. SENSOR CHARACTERSTICS
Small Physical Size and low power

consumption:

Minimal Size and power constrain the processing

time, storage and interconnect capacity of the

device. Due to these constrained resources, the

operating system and applications have to use

them efficiently.

Concurrency Intensive Operation:
These sensors have to communicate information

with little processing on the fly. Information may

be simultaneously captured from sensors,

manipulated and streamed onto a network. Data

may also be received from other nodes and have

to be forwarded to the next hop in the network.

Hence the system must handle multiple flows of

data concurrently and also perform processing

and communication parallel.

Limited Physical Parallelism and Controller

Hierarchy

The Number of independent device controllers,

their capabilities and complexity of the

interconnect are much lower for these Networked

Sensors when compared to conventional systems.

The sensors provide a primitive interface directly

to the central controller unlike conventional

systems that distribute concurrent processing over

multiple levels of controllers. This limited

hierarchy is a repercussion of the Resource

constraints.

Diversity in Design and Usage

These devices are application specific, rather than

general purpose. The hardware is specific to the

application and the variations in them are likely

to be large. Hence these devices require an

unusual degree of Software Modularity that must

be efficient. A generic development environment

is needed which allows the development of

specialized applications and allows easy

migration of components across the

software/hardware Boundary.

Robust Operation
These devices will be numerous, largely

unattended and expected to be operational a large

fractional of time. The application of redundancy

techniques for fault-tolerance is constrained by

space and power limitations. Thus, enhancing the

reliability of individual devices is essential.

As the previous embedded operating systems are

more general purpose, they occupy too much

memory and work on heavy weight processes.

They also have a deep hierarchy of controllers

and kernel layers and the context switch time to

perform different functions is too much. As these

Embedded OS do not cater to the needs of the

Networked Sensor System, the development of

Tiny OS was important.

3.1. HARDWARE

ORGANISATION

The UC-Berkeley group developed a small,

flexible networked sensor platform that expressed

the key characteristics of the general class. Figure

1 shows the hardware configuration of the device.

There is a microcontroller MCU (ATMEL

90LS8535) that has an 8-bit Harvard Architecture

processor with 16- bit addresses. It has 32 8-bit

general registers and runs at 4 MHz and 3.0

Volts. It has 8 KB of Flash Program Memory and

512 Bytes of SRAM as the data memory. A co-

processor is used to write instructions to the

Program Memory. It also has a single-channel

low power radio, an EEPROM secondary store

and a range of sensors like Light (photosensor)

and Temperature sensors connected to the Bus.

There are 3 power modes that the processor

operates on idle, which just shuts off the

processor, power down, which shuts off

everything but the watchdog and asynchronous

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 643

interrupt logic necessary for wake-up and power

save which is similar to power down, but leaves a

timer also running. The sensors use Analog to

Digital Converters to communicate data to the

processor.

Three LEDs represent outputs connected through

general I/O ports; they may be used to display

digital values or status. The photosensor

represents an analog input device with simple

control lines. In this case, the control lines

eliminate power drain through the photo resistor

when not in use. The input signal can be directed

to an internal ADC in continuous or sampled

modes.

The radio is the most important component. It

represents an asynchronous input/output device

with hard real time constraints. It consists of an

RF Monolithics 916.50MHz transceiver

(TR1000), antenna, and collection of discrete

components to configure the physical layer

characteristics such as signal strength and

sensitivity. It operates in an ON-OFF key mode at

speeds up to 19.2Kbps. Control signals configure

the radio to operate in either transmit, receive, or

power-off mode. The radio contains no buffering

so each bit must be serviced by the controller on

time. Additionally, the transmitted value is not

latched by the radio, so jitter at the radio input is

propagated into the transmission signal.

The temperature sensor (Analog Devices

AD7418) represents a large class of digital

sensors which have internal A/D converters and

interface over a standard chip-to-chip protocol.

The serial port represents an important

asynchronous bit-level device with byte-level

controller support. It uses I/O pins that are

connected to an internal UART controller. In

transmit mode, the UART takes a byte of data

and shifts it out serially at a specified interval. In

receive mode, it samples the input pin for a

transition and shifts in bits at a specified interval

from the edge. Interrupts are triggered in the

processor to signal completion events. The

coprocessor represents a synchronous bit-level

device with byte-level support. In this case, it is a

very limited MCU (AT90LS2343, with 2 KB ash

instruction memory, 128 bytes of SRAM and

EEPROM) that uses I/O pins connected to an SPI

controller. SPI is a synchronous serial data link,

providing high speed full-duplex connections (up

to 1 Mbit) between various peripherals. The

coprocessor is connected in a way that allows it

to reprogram the main microcontroller. The

sensor can be reprogrammed by transferring data

from the network into the coprocessor's 256 KB

EEPROM (24LC256). Alternatively the main

processor can use the coprocessor as a gateway to

extra storage.

3.2. POWER CHARACTERSTICS
Table1 shows the current drawn by each

hardware component under three scenarios: peak

load when active, load in “idle” mode, and

inactive. When active, the power consumption of

the LED and radio reception are about equal to

the processor. The processor, radio, and sensors

running at peak load consume 19.5mA at 3 volts,

or about 60mW. This figure should be contrasted

with the 10A current draw in the inactive mode.

Clearly, the biggest savings are obtained by

making unused components inactive whenever

possible. The system must embrace the

philosophy of getting the work done as quickly as

possible and going to sleep.

Component Active Idle Inactive

 (mA) (mA) (A)

MCU core

(AT90S8535) 5 2 1

MCU pins 1.5 - -

LED 4.6 each - -

Photocell .3 - -

Radio (RFM TR1000) 12 tx - 5

Radio (RFM TR1000) 4.5 rx - 5

Temp (AD7416) 1 0.6 1.5

Co-proc

(AT90LS2343) 2.4 .5 1

EEPROM (24LC256) 3 - 1

Table 1: Current per hardware component of

base-line networked sensor platform. Our

prototype is powered by an Energizer CR2450

lithium battery rated at 575mAh. At peak load,

the system consumes 19.5mA of current, or can

run about 30 hours on a single battery. In the idle

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 644

mode, the system can run for 200 hours. When

switched into inactive mode, the system draws

only 10 A of current, and a single battery can run

for over a year.

The minimum pulse width for the RFM radio is

52s. Thus, it takes on the order of 1.9J of energy

to transmit a single bit 1 and on the order of 0.5J

of energy to receive a bit. During this time, the

processor can execute 208 cycles (roughly 100

instructions) and can consume up to 0.8J. A

fraction of this instruction count is devoted to bit

level processing. The remainder can go to higher

level processing (byte-level, packet level,

application level) amortized over several bit

times. Unused time can be spent in idle or power-

down mode.

To broaden the coverage of our study, we deploy

these networked sensors in two configurations.

One is a mobile sensor that picks up temperature

and light readings and periodically presents them

on the wireless network as tagged data objects. It

needs to conserve its limited energy. The second

is a stationary sensor that bridges the radio

network through the serial link to a host on the

Internet. It has power supplied by its host, but

also has more demanding data flows.

Figure 1. Photograph and schematic for representative network sensor platform

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 645

4.1.TINY MICROTHREADING

OPERATING SYSTEM (TinyOS)

The core challenge we face is to meet the

requirements for networked sensors put forth in

Section 2 upon the class of platforms

represented by the design in Section 3 in manner

that scales forward to future technology. Small

physical size, modest active power load and tiny

inactive load are provided by the hardware

design. An operating system framework is

needed that will retain these characteristics by
managing the hardware capabilities effectively,

while supporting concurrency intensive operation

in a manner that achieves efficient modularity

and robustness.

Our system is designed to scale with the current
technology trends supporting both smaller,

tightly integrated designs as well as the crossover
of software components into hardware. This is in
contrast to traditional notions of scalability that
are centered on scaling up total power resources
work for a given computing paradigm. It is
essential that network sensor architectures plan
for the eventual integration of sensors,
processing and communication. The days of
sensor packs being dominated by interconnect
and support hardware, as opposed to physical
sensors, are numbered.

In TinyOS, we have chosen an event model so
that high levels of concurrency can be handled in
a very small amount of space. A stack-based
threaded approach would require that stack space
be reserved for each execution context.
Additionally, it would need to be able to multi-
task between these execution contexts at a rate of
40,000 switches per second, or twice every 50s -
once to service the radio and once to perform all
other work. It is clear that an event-based regime
lends itself to these requirements. It is not

surprising that researchers in the area of high
performance computing have seen this same
phenomena- that event based programming must
be used to achieve high performance.
In this design space, power is the most precious
resource. We believe that the event-based
approach creates a system that uses CPU
resources efficiently. The collection of tasks

associated with an event are handled rapidly, and
no blocking or polling is permitted. Unused CPU
cycles are spent in the sleep state as opposed to
actively looking for an interesting event.
Additionally, with real-time constraints the

calculation of CPU utilization becomes simple-
allowing for algorithms that adjust processor
speed and voltage accordingly.

4.2. TinyOS Design
TinyOS uses an Event model so that high levels

of concurrency can be handled in a very small

amount of space unlike the stack based threaded

approach that uses too much stack space and also

has a high context switch time.

Since Power is a precious resource, CPU

resources must be utilized efficiently. The event-

based approach handles tasks associated with

events rapidly without allowing blocking or

polling. Unused CPU cycles are spent in sleep

state as opposed to actively looking for events.

TinyOS was developed in C.

Components, Commands, Events and Tasks

TinyOS is divided into a collection of Software

Components. A TinyOS application consists of a

scheduler and a graph of components describing

their interaction.

A Component has four parts: a set of Command

Handlers, a set of Event Handlers, an

encapsulated fixed size frame and a bundle of

simple tasks. Each component declares the

commands it uses and events it signals.

The fixed sized frames are statically allocated

which helps to know the memory requirements of

a component at compile time. The frame is an

internal storage space that contains the state of

the component and is used by the events,

commands and tasks.

Each Component is described by its interface and

its internal implementation. An interface contains

commands and events. These declarations are

used to compose the modular components and

this composition creates layers of components

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 646

that are application specific. The higher-level

components issue commands to lower-level

components while the lower ones signal events to

the higher-level components. Hence we can think

of the component to have an upper interface,

which names the commands it implements and

the events it signals a lower interface which

names the commands it uses and events it

handles.

Commands are non-blocking requests made to

lower level components. A command will deposit

request parameters into its frame and

conditionally post a task for a later execution. It

also provides feedback to its caller (from a higher

level component) by returning status of success

or failure.

Event Handlers are invoked to deal with

Hardware events either directly or indirectly. The

lowest level components have handlers connected

directly to hardware interrupts. An event Handler

can deposit information in its frame, post tasks,

signal higher-level events or call lower level

commands. Events help in forwarding changes

upwards while commands forward processing

downwards. In order to avoid cycles, command

cannot signal events.

Tasks perform the work and are atomic with

respect to other tasks. They run to completion and

can call lower commands, signal higher-level

events and schedule other tasks within the same

component. The run-to completion property helps

to allocate a single stack to the currently

executing task and this conserves space. Tasks

also allow concurrency within each component as

they execute asynchronously. They must never

block to avoid delaying progress in other

components. Hence we can look at these tasks as

blocks of computation.

The Task scheduler is a simple FIFO scheduler

that has a bounded size scheduling data Structure.

It is power sensitive and puts the processor to

sleep when the task queue is empty, but leaves

the peripherals operating to wake up the system

in case of any new hardware event. There is a two

level scheduling hierarchy in the TinyOS – events

preempt tasks but tasks do not preempt other

tasks. Since all components have bounded

storage, a component has to refuse commands.

4.3. Example Component
A typical component including a frame, event

handlers, commands and threads for a message

handling component is pictured in Figure 2. Like

most components, it exports commands for

initialization and power management.

Additionally, it has a command for initiating a

message transmission, and signals events on the

completion of a transmission or the arrival of a

message. In order to perform its function, the

message component issues commands to a packet

level component and handles two types of events:

one that indicates a message has been transmitted

and one that signals that a message has been

received.

Since the components describe both the resources

they provide and the resources they require,

connecting them together is very simple. The

programmer simply matches the signatures of

events and commands required by one

component with the signatures of events and

commands provided by another component. The

communication across the components takes the

form of a function call, which has low overhead

and provides compile time type checking.

4.4. TYPES OF COMPONENT
In general, components fall into one of three

categories: hardware abstractions, synthetic

hardware, and high level software components.

Hardware abstraction components map physical

hardware into our component model. The RFM

radio component (shown in lower left corner of

Figure3) is representative of this class. This

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 647

component exports commands to manipulate the

individual I/O pins connected to the RFM

transceiver and posts events informing other

components about the transmission and reception

of bits. Its frame contains information about the

current state of the component (the transceiver is

in sending or receiving mode, the current bit rate,

etc.). The RFM consumes the

Figure 2: A sample messaging component. Pictorially, we represent the component as a bundle of

threads, a block of state (component frame) a set of commands (upside-down triangles), a set of

handlers (triangles), solid downward arcs for commands they use, and dashed upward arcs for

events they signal. All of these elements are explicit in the component code.

hardware interrupt, which is transformed into

either the RX_bit_evt or into the TX_bit_evt.

There are no tasks within the RFM because the

hardware itself provides the concurrency. This

model of abstracting over the hardware resources

can scale from very simple resources, like

individual I/O pins, to quite complex ones, like

UARTs.

Synthetic hardware components simulate the

behavior of advanced hardware. A good example

of such component is the Radio Byte component

(see Figure.3). It shifts data into or out of the

underlying RFM module and signals when an

entire byte has completed. The internal tasks

perform simple encoding and decoding of the

data. Conceptually, this component is an

enhanced state machine that could be directly cast

into hardware. From the point of view of the

higher levels, this component provides an

interface and functionality very similar to the

UART hardware abstraction component: they

provide the same commands and signal the same

events, deal with data of the same granularity,

and internally perform similar tasks (looking for a

start bit or symbol, perform simple encoding).The

high level software components perform control,

routing and all data transformations. A

representative of this class is the messaging

module presented above, in Figure 2. It performs

the function of filling in a packet buffer prior to

transmission and dispatches received messages to

their appropriate place. Additionally, components

that perform calculations on data or data

aggregation fall into this category.

This component model allows for easy migration

of the hardware/software boundary. This is

possible because our event based model is

complementary to the underlying hardware.

Additionally, the use of fixed size, preallocated

storage is a requirement for hardware based

implementations. This ease of migration from

software to hardware will be particularly

important for networked sensors, where the

system designers will want to explore the

tradeoffs between the scale of integration, power

requirements, and the cost of the system.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 648

5. EVALUATION
Small Physical Size

The source code size for various components of

the TinyOS system and the sample Multi hop

routing application is shown below. The

important TinyOS component „scheduler‟

occupies only 178 Bytes. The data size of the

scheduler is only 16 bytes and it utilizes only 3%

of the available data memory.

Software Footprint refers to the total number of

bytes occupied by a software component on the

device. The Active Message Layer occupies a

total of 322 Bytes. The total device Binary is 2.6

Kbytes and includes the packet level, byte level

and bit level controllers, the AM component and

the routing Application. 40 Bytes is used for

static data. Hence the software footprint of the

TinyOS is very small and this is very useful when

memory is strictly constrained.

Component Name Code Size

 (bytes)

Data Size

 (bytes)

Multihop router

AM_dispatch

AM_temperature

AM_light

AM

Packet

Radio_byte

RFM

Photo

Temperature

UART

UART_packet

I2C_bus

88

40

78

146

356

334

810

310

84

64

196

314

192

0

0

32

8

40

40

8

1

1

1

1

40

8

Processor_init

TinyOS Scheduler

C runtime

172

178

82

30

16

0

Total 3480 226

Table 2. Code & Data size for TinyOS and an

application

Concurrency-Intensive Operations

Network Sensors need to handle multiple flows

of information simultaneously. An important

characteristic is the context switch speed. The

table below shows this aspect when compared to

the hardware cost for moving bytes in memory.

The cost of propagating an event is roughly

equivalent to that of copying one byte of data.

Posting a thread and switching context costs

about as much as moving 6 bytes of memory.

Hence the TinyOS supports concurrency

intensive operations effectively due to reduced

context switch time.

Operations Average

Cost

(cycles)

Time

(microsec)

Normalized

to byte copy

Byte Copy 8 2 1

Post an event

Call a

command

Post a thread

to scheduler

Context

Switch

Overhead

10

10

46

51

2.5

2.5

11.5

12.75

1.25

1.25

6

6

Interrupt

(hardware

cost)

9 2.5 1

Interrupt

(software

cost)

71 17.75 9

Table 3: Cost of Primitive operations in

TinyOS

Efficient Modularity

The events and commands propagate through the
TinyOS components very quickly. The event
model triggers events quickly and commands are
executed in real time. Since the context switch
time is very less and the TinyOS active messages
do not waste time in copying data, a good
response time is achieved.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 649

Communications Model Evaluation
The performance of the Active message model can

be evaluated by using Round Trip Time (RTT) and

throughput.

The RTT measures the time for a message to be sent

from a Host PC to a specific sensor device and

back. The RTT is plotted for various route lengths.

A route length of one measures the Host-PC to base

station RTT and is about 40ms. This reflects the

cost of wired link, device processing and Host OS

overhead. For routes greater than one hop, the RTT

also includes the latency of the wireless link

between two devices. The difference between the

two and one hop RTT yields the device-to-device

RTT of 78ms.These RTT measures indicate that the

Tiny Active message Model is really fast.

Since the RTT is very less, the throughput or the

messages handled in unit time is more.

6. Comparison of TinyOS with

other Embedded OS
Comparison of TinyOS with common Desktop
and Server OS like MS-Windows, Sun Solaris,
UNIX or IBM‟s AIX is not meaningful as their

application environments are totally different.
These Desktop OS are meant for a broad range of
applications and really not suited for small-
embedded devices, whereas TinyOS is suited
only for Networked Sensors that are embedded in
a Data collection Network.

However we can compare TinyOS with some of
the real time operating systems like VxWorks,
WinCE, PalmOS and QNX that are also meant
for embedded devices. Many of these are based

on Micro kernels that allow for capabilities to be
added or removed based on system needs. These
systems provide memory protection and fault
isolation features that TinyOS doesn‟t provide.
Security of applications is very important in
larger commercial systems. Tiny OS design does
not incorporate security features at all. But still
security may not be that important an issue in
Data collection Networks and situation
monitoring.

TinyOS does not guarantee 100% packet

delivery, as it has no time-out mechanism and
receipt acknowledgement features. It is found
that about 5% of the bytes received were
corrupted even after some error correction.
Hence some newer error correction scheme with
CRC check is required.

TinyOS does very well on Context Switch time.
It is about 12.75 µsec whereas a QNX context
switch takes about 7.3 msec. TinyOS does well
on Software footprint also as it requires only 2.16

Kbytes whereas VxWorks, memory footprint is

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 650

in the hundreds of Kilobytes.
There is also a collection of smaller real time
OS like Creem, pOSEK and Ariel that are
minimal OS designed for deeply embedded
systems such as motor controllers or Microwave

ovens. They also have severely constrained
storage and execution models. But their models
tend to be Control Centric that is controlling
access to hardware resources as opposed to
TinyOS‟s Data flow centric approach. Even the
pOSEK, that meets TinyOS‟s memory
requirements, exceeds the context switch
limitations and hence cannot meet real-time
requirements. There is no preemption in Creem
and this totally prevents real time processing.

Most of these OS are based on a Thread based

Model and these systems need to reserve
additional storage for every thread created.
Though there might be better separation of work
using threads, the storage penalty is too much.
On the other hand TinyOS is an event based
model and because of good buffer management,
it does well on storage constraints.

The TinyOS‟s Active message model helps a lot
in the reduction of power consumption. Sensors
can switch to a power save mode when they are

not active and events would trigger them to
come back into normal-operational mode. The
other threaded models have to keep polling for
some event to occur. This results in
considerable power consumption. Another
advantage of using events is that polling based
I/O mechanisms see significant performance
degradation when the number of interfaces that
must be periodically checked increases.

A traditional socket based TCP/IP

communication model (used by MS-Windows
and Unix) is not optimal for the Networked
Sensors. First of all the use of a socket model
forces the system into a thread based
programming model. This is because sockets
have a stream-based interface where the user
application polls or blocks as it waits for data to
arrive. The overhead associated with context
switches and the storage of inactive execution
contexts is too much in the case of these socket
models.

Secondly, the communication is extremely

expensive for network sensors and it is
advantageous to transmit as few bits as possible.
In TCP/IP and UDP, there are different fields
that come as an overhead like sequence
numbers, addresses, port numbers, protocol

types etc. A single TCP/IP packet has an
overhead of 48 Bytes.

Finally the TCP/IP protocol has a lot of
overhead in the memory management
associated with a stream based interface. The
networking stack must buffer incoming data
until the application requests it, whereupon it
must be copied into the application's buffer
while any remaining data remains buffered by
the protocol stack. This buffer management
greatly increases complexity and overhead.

Creation of intermediate copies & data
fragmentation proves too costly for the sensors.

There is an assortment of OS such as VxWorks,
OS-9, PalmOS and QNX that provide TCP/IP
based network connectivity to embedded
devices. However, these real time OS consume
significantly more resources than that are
currently available on the class of hardware that
TinyOS works with.

Small Devices like Palm Pilots and PDA‟s
(using PalmOS) are optimized for user response
times. They have quick periods of very high
activity and long periods of idle time.
Networked Sensor regimes have long periods of
constant data collection.

The Wireless Application Protocol (WAP)
addresses many of the same wireless device
issues presented in this paper (e.g. power and
CPU constraints). However, WAP is targeted

mainly at client server type applications.
Networked Sensor domain has small
autonomous devices that may operate in large
numbers.

But TinyOS caters to a very small range of
applications and hardware platforms. It was
mainly built for Embedded Networked Sensors
where applications generally perform
monitoring of some specific events, data
collection and forwarding to a Centralized

point. The event-based model using Active

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 651

Messages may not be really suitable for other
traditional computing environments.

7. Commercial Applications and

Future Research Directions
The various applications of these Networked
Sensors and Tiny OS are:
1) Personnel Tracking and information
distribution

2) Monitoring of Real-time environments and
Data collection like Temperature, light, pressure
etc.
3) Secure Messaging that requires trusted
communication to bases using RC5
cryptography.
4) Studying Life Science patterns such as Bird‟s
Migration and retrieving ecological parameters
like toxic contents in a river.
5) Monitoring Enemy targets and other targets
of importance

Crossbow Inc. and UC Berkeley‟s Computer
Science Department are commercializing
microsensor Modes, that help in detecting and
monitoring a wide variety of targets such as an
enemy personnel or chemical threats. TinyOS
would be used in these Motes. Crossbow
manufactures and sells the Networked Sensor
hardware using TinyOS.
The department of Computer Science, UC-
Berkeley released a new version of TinyOS 0.6

on January 31, 2002. It can be installed over
Windows 2000 and Red Hat Linux platforms.
Intel has opened a new R&D laboratory in
Berkeley, California that focuses on Pro-active
computing technologies. This includes the Mote
project and further development of TinyOS.
Some of the Future Research Works in TinyOS
are:
1) Development of a better MAC layer that fits
the requirements of Network Sensors.
2) Incorporating Security features in Data
Transmission using RC5 cryptography and

some form of Memory protection schemes
3) Determine all possible limitations of TinyOS
4) Incorporate TinyOS to newer Hardware
Architectures
5) Develop techniques to deliver data more
reliably and reduce data corruption.

7. CONCLUSION
The TinyOS approach has proven quite
effective in supporting general purpose
communication among potentially many devices
that are highly constrained in terms of
processing, storage, bandwidth, and energy with
primitive hardware support for I/O. Efficiency
and low energy use and modularity is taking
precedence over FLOPS and throughput.

Its event driven model facilitates interleaving
the processor between multiple flows of data

and between multiple layers in the stack for
each flow while still meeting the severe real-
time requirements. Since storage is very limited,
it is common to process messages incrementally
at several levels, rather than buffering entire
messages and processing them level-by-level.

By adopting a non-blocking , event-driven
approach, TinyOS avoids supporting traditional
threads, with the associated multiple stacks and
complex synchronization support. The

component approach has yielded not only robust
operation despite limited debugging
capabilities, it has greatly facilitated
experimentation.

8. REFRENCE

[1.] Jason Hill, Robert Szewczyk, Alec
Woo, Seth Hollar, David Culler, and Kristofer
Pister. “System architecture directions for
networked sensors”. In Proceedings of the Ninth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, Cambridge, MA, November

2000.

[2.] David E. Culler, Jason Hill, Philip
Buonadonna, Robert Szewczyk, and Alec Woo.

[3.] “A Network-Centric Approach to
Embedded Software for Tiny Devices”. In
Proceedings of the International Workshop on
Embedded Systems (EMSOFT) 2001: Tahoe
City, CA, USA, October 2001

[4.] Jason Hill. “A Software Architecture
Supporting Networked Sensors”. Masters thesis

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 652

submitted to the Department of Electrical
Engineering and Computer Sciences, University
of California at Berkeley, December 2000

[5.] Philip Buonadonna, Jason Hill, David

Culler. “Active Message Communication for
Tiny Networked Sensors”. In Proceedings of the
IEEE conference Infocom 2001, Anchorage,
Alaska, April 2001

[6.] The Official TinyOS Project Website at
University of California, Berkeley.
http://tinyos.millennium.berkeley.edu/

[7.] Presentation Slides on “A System
Architecture for Networked Sensors“
http://tinyos.millennium.berkeley.edu/presentati

ons/ASPLOS_2000.ppt

[8.] Presentation Slides on “ How to use
TinyOS”
http://tinyos.millennium.berkeley.edu/presentati
ons/TinyOS.ppt

[9.] Presentation Slides on “ Towards
System Architecture for Tiny Networked
Devices”
http://tinyos.millennium.berkeley.edu/presentati

ons/TinyOSTalk.ppt

[10.] Presentation Slides on “ TinyOS –
Communication and Computation at the
extremes”
http://tinyos.millennium.berkeley.edu/presentati
ons/Ninja_Retreat_highlight_2001.ppt

[11.] The TinyOS Software Website.
http://webs.cs.berkeley.edu/tos/

[12.] The Abstract Web-page on TinyOS:
Operating System for Sensor Networks
http://buffy.eecs.berkeley.edu/IRO/Summary/01
abstracts/szewczyk.1.html

[13.] A News Article Web-Page on the
“Daily Illini Online Magazine”.
http://www.dailyillini.com/oct00/oct16/news/ca
mpus02.shtml

