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Abstract 
Edge-preserving image smoothing is an important step for many low-level vision problems. 
Though many algorithms have been proposed, there are several difficulties hindering its 
further development. First, most existing algorithms cannot perform well on a wide range of 
image contents using a single parameter setting. Second, the performance evaluation of edge 
preserving image smoothing remains subjective, and there is a lack of widely accepted 
datasets to objectively compare the different algorithms. To address these issues and further 
advance the state of the art, in this paper, we propose a benchmark for edge-preserving image 
smoothing. This benchmark includes an image dataset with ground truth image smoothing 
results as well as baseline algorithms that can generate competitive edge-preserving 
smoothing results for a wide range of image contents. A novel procedure for this problem is 
proposed based on local linear kernel smoothing, in which local neighbourhoods are adapted 
to the local smoothness of the surface measured by the observed data. The procedure can 
therefore remove noise correctly in continuity regions of the surface, and preserve 
discontinuities at the same time. Since an image can be regarded as a surface of the image 
intensity function and such a surface has discontinuities at the outlines of objects, this 
procedure can be applied directly to image denoising. Numerical studies show that it works 
well in applications, compared to some existing procedures. 
 
Keywords: Edge-preserving smoothing, benchmark, image dataset, deep convolutional 
networks. 
 
Introduction 
Images and videos have become an integral part of our life in recent times. Applications now 
extend from more general documentation of an event and visual communication to more 
serious surveillance and medical fields. This has raised the massive demand for images with 
high accuracy and visual quality. However, digital images captured by modern cameras often 
get corrupted by noise at the time of image acquisition (digitization) and/or transmission. 
This form of corruption may result in degradation of visual appearance of an image. The 
efficiency of imaging sensors is affected by a number of factors, such as environmental 
conditions during image acquisition and by the quality of the sensing elements themselves. 
For example, in acquiring images with a CCD camera, sensor temperatures and light levels 
are major factors that can affect the amount of noise in the resulting image. The corruption in 
images may also occur during transmission. Reason being the interference in the channel 
used for transmission. For instance, an image transmitted through a wireless medium might 
be corrupted due to lighting effects or other atmospheric disturbance. Image denoising is a 
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well explored topic in the field of image processing where the prime objective is to improve 
the visual quality of an image by reducing noise from its given noisy version. Numerous 
image denoising techniques have been developed to minimize the effect of noise(s) occurred 
due to any of the above mentioned noise sources. A major challenge is to preserve the image 
details and local geometries while removing the undesirable noise. 
 
In many image analysis and manipulation tasks, such as contour detection, image 
segmentation, and image stylization, it is important to preserve major image structures, such 
as salient edges and contours, while smoothing insignificant details. This can be achieved by 
edge-preserving image smoothing, a fundamental problem in image processing and low-level 
computer vision. Though a number of algorithms with diverse design philosophies have been 
proposed [1]–[12], there exist three problems that hinder the further development of edge-
preserving image smoothing algorithms. First, the performance evaluation of edge-preserving 
smoothing algorithms remains subjective. At present, the prevailing method is visual 
inspection by subjects on the smoothed images. Such an approach is time-consuming and 
cannot be applied in automatic systems. There lacks an objective metric to evaluate the edge-
preserving smoothing algorithms. 
 
Second problem is that an edge-preserving smoothing algorithm is typically evaluated on a 
very small image set against other algorithms. There lacks a widely accepted large-scale 
image database for algorithm evaluation. While a smoothing algorithm produces impressive 
results on certain types of images, it may not perform well on other types of images. Thus, a 
large database for a holistic evaluation of edgepreserving smoothing algorithms is much 
needed. Third, smoothing algorithms typically have tunable parameters and images with 
different categories of contents need different parameter settings. To the best of our 
knowledge, no smoothing algorithms can perform reasonably well on a wide range of image 
contents using a single parameter setting. To address the aforementioned problems, in this 
paper we propose a benchmark for edge-preserving image smoothing. This benchmark 
includes an image dataset with “groundtruth” image smoothing results as well as baseline 
models that are capable of generating reasonable edge-preserving smoothing results for a 
wide range of image contents. Our image dataset contains 500 training and testing images 
with a number of visual object categories, including humans, animals, plants, indoor scenes, 
landscapes and vehicles. The groundtruth smoothing results in our dataset are not directly 
generated by handcraft approaches, but manually chosen from results generated by existing 
state-of-the-art edge-preserving smoothing algorithms. This is justified by two reasons. First, 
as discussed earlier, a single state-of-the-art smoothing algorithm is capable of producing 
high-quality smoothing results over a small range of image contents especially when its 
parameters have been fine-tuned. Therefore, a collection of smoothing algorithms are able to 
generate high-quality results over a wide range of contents. The only caveat is that the best 
results generated by these algorithms for a specific image need to be hand-picked by humans. 
Second, since an image has hundreds of thousands of pixels, directly annotating pixelwise 
smoothing results by humans is too labor-intensive and error-prone. 
 
To establish the baseline algorithms in our benchmark, we resort to the latest deep neural 
networks. Deep neural networks have a large number of parameters (weights). Once these 
weights have been trained, they can be fixed and the resulting network has very strong 
generalization capability and can deal with different types of inputs. Thus, a trained deep 
neural network on edge-preserving smoothing dataset is expected to perform consistently 
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well in spite of the diverse image contents, which is the goal we want to achieve for edge-
preserving image smoothing. We also note that deep learning has been broadly applied to 
low-level computer vision problems and has achieved state-of-the-art results. Examples 
include reproducing edge-preserving filters [13]–[15], image denoising [16], [17], image 
super-resolution [18]–[22], and JPEG deblocking [17], [23]. Specifically, we use the 
following two existing representative network architectures as our baseline methods, very 
deep convolution networks (VDCNN) and deep residual networks (ResNet). On top of these 
network architectures, we design novel loss functions well suited for edge-preserving image 
smoothing. The deep networks trained over our dataset run faster than most state of-the-art 
edge-preserving smoothing algorithms, while the smoothing performance of our ResNet-
based model outperforms these algorithms both qualitatively and quantitatively. Our 
benchmark will be publicly released. 
 
Motivation for the work 
 In the last few decades, a lot of research has been conducted in the field of image denoising. 
However, there still remain some problems which have not been answered satisfactorily. First 
and foremost problem is of preserving important image features such as edges, corners and 
other sharp structures during the denoising process. Researchers all over the globe are 
working in the direction of achieving edge-preserving image denoising. Numerous 
approaches for denoising have been proposed in spatial and transform domain. The methods 
in both the domain have some problems that need to be overcome. In this work, we have 
identified such problems and tried to provide an effective solution to these problems. Apart 
from this, the study of denoising methods reveals a fact that transform domain methods such 
as wavelet-based approaches are found more dominant. Reason being wavelet transforms 
show localization in both time and frequency. Such localized nature of the wavelet transforms 
results in denoising with effective edge preservation [Luo (2006), Silva et al. (2012)]. Thus, 
all the proposed methods in this work used wavelet as a base to perform edge-preserving 
image denoising. 
 
Literature Review 
Reducing noise has always been one of the standard problems of the image analysis and 
processing community. Often though, at the same time as reducing the noise in a signal, it is 
important to preserve the edges. Edges are of critical importance to the visual appearance of 
images. Ideally denoising is all about filtering noise from the degraded image while keeping 
other details unchanged. Indeed, filtering is the most fundamental operation of image 
processing and computer vision, and it is used widely in various applications, including 
image smoothing and sharpening, noise removal, edge detection etc. In the broadest sense of 
the term “filtering”, the value of the filtered image at a given location is a function of the 
values of the input image in a small neighborhood of the same location [Gonzalez and Woods 
(2008), Jain and Tyagi (2013)]. 
 
 The simplest form of filtering is an explicit Linear Translation Invariant (LTI) filtering, 
which can be implemented using a local neighborhood. For example, box filtering, also 
known as mean filtering or averaging [Gonzalez and Woods (2008)], is implemented by a 
local averaging operation where the value of each pixel is replaced by the average of all its 
neighbors. Although box filter gives the quickest filtering output, but its smoothing effect is 
often not sufficient. Other LTI filters that do not involve the computation of the mean of a 
neighborhood are also often used for smoothing. Most common of these are the Gaussian 
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smoothing filter [Shapiro and Stockman (2001), Gonzalez and Woods (2008)] and Weiner 
filter [Jain (1989), Benesty et al. (2010)]. The weights for Gaussian filter are chosen 
according to the shape of a Gaussian function. Gaussian filter has been proved to be a good 
choice for removing noise drawn from a normal distribution and the multi-scale space 
representation of an image can be obtained easily by Gaussian smoothing with increasing 
variance. Wiener filters are a class of optimum linear filters which involve linear estimation 
of a desired signal sequence from another related sequence. 
 
Although LTI filtering is the simplest form of filtering and is used widely in early vision 
processing, it also has some drawbacks. LTI filtering is the quickest approach for smoothing 
the noise but some important structures are also often get blurred along with noise. To reduce 
these undesirable effects of linear filtering, a variety of edge-preserving filtering techniques 
have been proposed during the last few years. 
 
Evolution of Edge-Preserving Image Denoising Research  
Though, traditional LTI filtering techniques like mean filtering [Gonzalez and Woods 
(2008)], Gaussian filtering [Shapiro and Stockman (2001), Gonzalez and Woods (2008)], 
Wiener filtering [Jain (1989), Benesty et al. (2010)] exist for a long time for their simplicity 
and are able to achieve significant noise removal when the variance of noise is low, they tend 
to blur sharp edges, destroy lines and other fine image details. To resolve the above issues, a 
variety of nonlinear filters such as median [Gonzalez and Woods (2008), Pitas and 
Venetsanooulos (1990)], weighted median [Yang et al. (1995)], rank conditioned rank 
selection [Hardie and Barner (1994)], and relaxed median [Hamza et al. (1999)] have been 
developed. 
 
 Apart from above nonlinear median type filters, other edge preserving denoising methods 
have been introduced to resolve the issues arised with linear spatial filtering during past few 
years. 
 
These methods are non-linear and can preserve the image details and local geometries while 
removing the undesired noise, because they considers local structures and statistics during the 
filtering process.  
 
Most of popular denoising techniques in this class have been developed based on Partial 
Differential Equations (PDEs) and variation models. The nonlinear Anisotropic Diffusion 
(AD) [Perona and Malik (1990), Black et al. (1998), Weickert et al. (1998)] methods were 
suggested to overcome blurring issues of the Gaussian filter [Shapiro and Stockman (2001), 
Gonzalez and Woods (2008)] by smoothing the image only in the direction orthogonal to the 
gradient. The regularization methods based on Total Variation (TV) [Rudin et al. (1992), 
Chambolle (2004)] were given to smooth the homogenous regions of the image but not its 
edges. Similarly, another approach based on low level processing to provide better edge 
preserving denoising known as the Smallest Univalue Segment Assimilating Nucleus 
(SUSAN) [Smith and Brady (1997)] filter has been proposed that can average all pixels in the 
local neighborhood which are from the same spatial region as the central pixel. 
 Based on the work [Aurich and Weule (1995), Smith and Brady (1997)], Tomasi and 
Manduchi (1998) proposed a simple, non-iterative, local filtering method known as the 
bilateral filter which was further modified and improved in [Elad (2002)]. Although bilateral 
filter was non-iterative and had simple formulation, but its direct implementation was known 
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to be slow. The brute force implementation has the time complexity O(Nr2), which is 
prohibitively high when the kernel radius r is large. To speed up the evaluation of the 
bilateral filter, several techniques [Durand and Dorsey (2002), Paris and Durand (2006), 
Porikli (2008), Yang et al. (2009), Chaudhury et al. (2011), Chaudhury (2013)] have been 
proposed, fast implementation of these techniques is still a challenging problem. Another 
issue concerning the bilateral filter [Durand and Dorsey (2002), Bae et al. (2006), Farbman et 
al. (2008)] is that it may have the gradient reversal artifacts in detail decomposition and High 
Dynamic Range (HDR) compression.  
 
To resolve the issues raised with bilateral filter, He et al. (2010) proposed a new filter, called 
guided filter that can perform effective edge-preserving denoising by considering the content 
of a guidance image. One advantage of the guided filter over the bilateral filter was that it 
automatically had an O(N) time exact algorithm. O(N) time implies that, unlike the bilateral 
filter, the time complexity was independent of the window radius r, so they were free to use 
arbitrary kernel sizes in the applications. Unlike the bilateral filter, the guided filter avoided 
the gradient reversal artifacts that could appear in detail enhancement and HDR compression.  
The past few years have witnessed substantial developments in the area of image denoising. 
Buades et al. (2005a) presented an excellent survey on image denoising algorithms and also 
proposed an algorithm (Non-Local Means) for improvements in denoising results. The main 
focus of the work was, first, to define a general mathematical and experimental methodology 
to compare and classify the classical image denoising algorithms, second, to propose an 
algorithm (Non Local Means) addressing the preservation of structure in a digital image. It 
soon became clear that self-similarity and nonlocality are the characteristics of natural images 
with by far the biggest potential for image denoising. The Non-local Means (NLM) [Buades 
et al. (2005b)] filter is the first one which makes use of the self-similarity in the whole image. 
With the NLM filter, a denoised patch can be obtained by weighted averaging all other 
patches in the same image. It is an extension of the bilateral filter [Tomasi and Manduchi 
(1998)] in the sense of replacing the Euclidean distance between two pixels with the weighted 
Euclidean distance between two patches. 
 
One of the most powerful and effective extensions of the non local filtering approach is the 
BM3D image denoising algorithm [Dabov et al. (2006)]. Maggioni et al. (2013) recently 
presented an extension of the BM3D algorithm, namely BM4D, to volumetric data denoising.  
Singular Value Decomposition (SVD) is also used in image noise filtering. Numerous 
approaches based on SVD filtering have been proposed in [Natarajan (1995), Konstantinides 
et al. (1997), Wongsawat et al. (2005), Orchard et al. (2008), Cai et al.(2010), Gu et al. 
(2014)]. Apart from edge-preserving filters mentioned so far, wavelets also gave superior 
performance in edge-preserving denoising due to properties such as sparsity and 
multiresolution structure.  
 
With wavelet transform gaining popularity in the last few decades, numerous algorithms for 
image denoising in wavelet domain have been developed. Wavelet thresholding [Donoho and 
Johnstone (1994), Donoho and Johnstone (1995), Donoho (1995), Chang et al. (2000a), 
Chang et al. (2000b), Sendur and Selesnick (2002b), Silva et al. (2012), Jain and Tyagi 
(2014a)] is the key concept for wavelet domain denoising. The wavelet based methods 
exploit the decomposition of the data into a wavelet basis and modify the wavelet coefficients 
to denoise the data. The coefficients obtained through wavelet transform are modified 
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according to thresholding rule applied. This process of obtaining a denoised image from 
given noisy image using wavelet thresholding is termed as wavelet shrinkage. 
 Fodor and Kamath (2001) provided an empirical study on denoising using wavelet 
shrinkage. Inspired by the SURE-LET method [Blu and Luisier (2007)] and the guided filter 
[He et al. (2010)], Qiu et al. (2013) presented a novel edge-preserving smoothing filter, called 
LLSURE filter which is based on a local linear model and the principle of Stein’s Unbiased 
Risk Estimate (SURE). The LLSURE filter has the edge-preserving smoothing property that 
can filter out noise 
 
Existing System 
Edge-preserving Image Smoothing using Block SVD 
The wavelets have a strong influence on edge preserving image denoising problems. With 
wavelet transform, one can decompose the image signal into multiple subbands (a 
lowfrequency or smooth subband at coarsest scale and three detail subbands at all resolution 
levels) of wavelet coefficients. For most signals, energy mainly distributes in the smooth 
subband and energy in the detail subbands is clustered on a few large wavelet coefficients, 
corresponding to the edge structure of the original signal. In contrast, noise energy spreads 
over both the smooth subband and the detail subbands. Thus, noise can be suppressed through 
the thresholding of the small coefficients by using an appropriate threshold. At last, the 
thresholded coefficients are transformed back to the original domain to reconstruct the image. 
As described earlier that in wavelet domain, the noise energy dominates at lower scales, 
where the signal energy is highly localized and mainly distributes in a few large coefficients 
corresponding to the edge structures of images. Hence, wavelet transform provides a space 
which is quite suitable for the proposed adaptive thresholding to perform image denoising. 
Also, it was mentioned earlier that the proposed approach follows the divide-and-conquer 
strategy, i.e. it firstly divides the detail subband of wavelet domain into the blocks and then 
performs an edgepreserving block adaptive thresholding based on SVD for noise reduction. 
Although the idea of divide-and-conquer approach is not new, there exist two essential 
differences with respect to the conventional ones. First, conventional divide-and-conquer 
approach is devoted to reducing the cost of a filtering method. Whereas the divide-and-
conquer approach used here is based on three aspects 
 (a) natural images usually posses inhomogeneous nature; 
 (b) most inhomogeneous images admit a partition into several homogeneous parts and 
 (c) the SVD estimate has suitability with images showing homogeneous variations [Johnston 

and Silverman (1990)].  
Secondly, a unique threshold is associated to all blocks in conventional divide-and-conquer 
approach. Since coefficients in one block might be more relevant to coefficients in other 
block in terms of edge details, so the global threshold is obviously not the best choice when 
we are considering the piecewise homogeneous characteristic of most blocks. Opposite to 
this, in the proposed approach, the threshold is associated with each block based on the 
decision about the presence of edge structure within the block. Similar to the WASVD 
(Adaptive SVD filtering in Wavelet domain) method [Hou (2003)], the proposed approach: 
divides the detail subbands of wavelet transform domain into blocks; applies SVD-based 
procedure to each block for checking the presence of edge structure in that block; associates 
different thresholds with edge present and edge absent blocks. However, unlike the WASVD, 
the proposed approach: instead of using fixed thresholds ݁݃݀݁݊݊ߣ for all edge absent blocks 
and ݁݃݀݁ߣ for all edge present blocks, determines these thresholds locally for each block by 
considering the coefficients within the block and noise variance; instead of using the fixed 
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value of the noise variance which is used in the computation of threshold, the noise variance 
is estimated separately at each resolution level by taking the noise strength of that level into 
consideration; instead of using SVD filtering, performs the noise suppression through wavelet 
thresholding. 
This scheme includes the computation of noise level and estimation of thresholding 
parameters independently for each block. The main stages of the proposed denoising method 
are illustrated in Fig. 1. 
 
Proposed System 
Adaptive Patch-based Edge-preserving Image Smoothing 
Image denoising is one of the most diversified research areas in the field of image processing 
and computer vision. It is highly desirable for a denoising technique to preserve important 
image features e.g. edges, after denoising. Wavelet transforms show excellent proficiency in 
providing efficient edge-preserving image denoising, due to their capability of separating 
noise signals from image signals. 
In this, we have presented a new technique for noise reduction using wavelet transforms. A 
Locally Adaptive Patch-Based (LAPB) thresholding which involves estimation of 
thresholding parameters in a local neighborhoodand relies on the aggregation of multiple 
thresholded estimates of a wavelet coefficient, is employed to effectively suppress Gaussian 
noise while preserving relevant features of the original image. The proposed denoising 
approach is motivated by the spatial domain edge-preserving filtering method LLSURE [Qiu 
et al. (2013)]. Similar to their approach, our method also relies on aggregating the multiple 
filtered results of a pixel obtained due to its participation in overlapping regions of local 
neighborhoods. However, we have used this mechanism in wavelet domain which shows 
improvement over the LLSURE method. Since the proposed method itself is a wavelet based 
denoising method, so its main motive is to point out the existing limitations of the wavelet-
based methods considered here and improving them. The following differences make the 
proposed method superior to the other wavelet-based denoising methods considered for 
comparison:   
 
In other methods, the noise variance used for the threshold computation is estimated from the 
coefficients of HH1 subband (i.e. highest frequency subband) by using a robust median 
estimator [Donoho and Johnstone (1994)], and is kept fixed during the thresholding process 
through all resolution scales. However, the noise strength decreases with the increment in the 
resolution scale. Therefore, instead of using fixed noise variance, it should be estimated 
separately at each resolution scale from the coefficients of HH subband of that scale. The 
proposed method follows this way of estimating the noise variance.  Unlike the other 
considered wavelet-based methods, the proposed method utilizes the sliding neighborhood 
mechanism to perform thresholding of wavelet coefficients. Each coefficient within the range 
of the sliding neighborhood, which is centered on a pixel location, is thresholded using the 
threshold computed locally usingthe member coefficients of the neighborhood. 
 
In locally adaptive thresholding schemes, each pixel (coefficient) definitely is a member of 
all the neighborhoods around every member coefficient in its neighborhood and accordingly 
participates in the computation of thresholds corresponding to all the member coefficients in 
its neighborhood. This fact leads us to consider the cumulative effect of all these thresholds to 
obtain the desired thresholded value of the coefficient. The proposed denoising method in the 
next section is based on this hypothesis. A new locally adaptive patch-based (LAPB) 
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thresholding scheme is proposed to threshold the small wavelet coefficients which are 
considered to be noise while preserving edges. This sort of thresholding involves 
computation of multiple thresholded estimates of a wavelet coefficient in a subband and the 
aggregation of such multiple estimates to obtain the desired thresholded value of that 
particular coefficient. In addition to this, it includes the calculation of noise level and 
estimation of thresholding parameters in a local neighborhood. 
 
Edge-preserving surface estimation 
An edge can be defined as a curve in the (X, Y ) plane, along which the surface is 
discontinuous. Of course, the conventional estimator bac(x, y) is biased for estimating m(x, 
y), if there is an edge in the neighbourhood of (x, y). Next, we present a solution to overcome 
this limitation. 
By its definition, the gradient ( ∂m/∂x , ∂m/∂y ) indicates the direction of the maximal 
increase in m around (x, y). If the point (x, y) is on an edge segment, then the gradient 
direction would be asymptotically perpendicular to the tangent direction of the edge segment. 
The support of the kernel function K is then divided into two parts by a line passing the point 
(x, y) and perpendicular to the gradient direction ( ∂m/∂x , ∂m/ ∂y ). 

 
In the two parts, we define two one-sided local linear kernel estimators as follows: 

 
for j = 1, 2. In (3), K(1)B and K(2)B are the same as KB in (2), except that their supports have 
been restricted to the two half-circles, as demonstrated. Then, a1 (x, y) and a2(x, y) provide 
two one-sided estimators of m(x, y). 
By now, we have obtained three estimators for m(x, y): the conventional estimator ac(x, y) 
and two one-sided estimators a1(x, y) and a2(x, y). If there are no edge pixels in the 
neighbourhood of (x, y), then ac(x, y) should be selected for estimating m(x, y), because it 
averages more observations around the point (x, y) and thus is more powerful in removing 
noise. If there is an edge segment around (x, y), then the conventional estimator ac(x, y) is not 
a good estimator of m(x, y) any more. In such a case, however, one of the two one-sided 
estimators a1(x, y) and a2(x, y) should still estimate the surface well, because most 
observations used by this estimator are located on a single side of the edge segment, 
guaranteed by the statistical properties of the estimated gradient direction from (2). 
In practice, the edge locations are usually unknown; so, we need to choose among the three 
estimators ac, a1 and a2 in a data-driven way, which is discussed below. The quality of the 
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three estimators ac, a1 and a2 can be measured by the Weighted Residual Mean Squares 
(WRMS) of the related fitted surfaces, defined by: 

 
 
The behaviour of these quantities depends on whether there are edge pixels in the 
neighbourhood of the point (x, y). If there are no edge pixels in the neighbourhood, then all 
WRMS’s are good estimators of the noise variance σ2. Otherwise, those WRMS’s who use 
data points on both sides of edge segments would be biased for estimating σ2, and the bias 
would depend on the jump size and the Euclidean distance between the point (x, y) and the 
edge segments. 
Based on these results, our edge-preserving surface estimator is defined by: 

 
where u is a threshold value a 
diff(x, y) = max{WRMSc(x, y) − WRMS1(x, y), WRMSc(x, y) − WRMS2(x, y) 
So our surface estimator mb (x, y) is defined by one of the three estimators: ac(x, y), a1(x, y) 
and a2(x, y), depending on whether there are edge pixels around (x, y), judged by the WRMS 
values. If we are in a continuity region of the surface, then all three WRMS’s are close to σ2 , 
so that diff(x, y) is close to zero. On the other hand, if we are close to an edge segment, then 
one of the two one-sided WRMS’s would be smaller than WRMSc, and thus diff(x, y) would be 
relatively large. Therefore, diff(x, y) can be used to judge whether there are edge pixels around 
(x, y). In (5), the case WRMS1(x, y) = WRMS2(x, y) has, for n tending to infinity, probability 
zero to occur under some regularity conditions. It is included just for completeness. The 
explicit formulation of the estimator (5) is helpful when investigating theoretical properties of 
the estimator. 
 
Edge Preservation Properties 
Edges are fundamental features of images. They often contain valuable information and are 
important for human visual perception. In addition, edge information is used for image 
analysis and object classification. Median filters have good edge preservation properties. In 
fact, the median filter adapts to the signal characteristics in the sense that it behaves like a 
lowpass filter in the homogeneous regions for suppressing noise components, while it 
exhibits highpass behaviour close to the edges for preserving them. Images may contain 
horizontal, vertical and/or diagonal edges. The effectiveness of the median filter in preserving 
these edges depends on the geometry of the filter window. Cross-shaped windows are good at 
preserving horizontal and vertical edges, while the X-shaped filters are preferred for 
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preserving the diagonal edges. Square windows do not have preference for the edge direction 
and are found to preserve the edges of all orientations fairly well. Square-shaped filters are 
commonly used, since most of the images contain edges along all directions. 
 
Noise Removing Filters  
In the early development of signal and image processing, linear filters were the primary tools. 
Their mathematical simplicity and the existence of some desirable properties made them easy 
to design and implement. Moreover linear filters offered satisfactory performance in many 
applications. However linear filters have poor performance in the presence of noise that is not 
additive as well as in problems where system nonlinearities or nonGaussian statistics are 
encountered. In addition, various criteria such as the maximum entropy criterion lead to 
nonlinear solutions. In image processing applications, linear filters tend to blur the edges and 
do not remove impulsive noise effectively. They do not perform well in the presence of signal 
dependent noise. It is obvious that when the exact characteristics of our visual system are not 
well understood. Experimental results indicate that the first processing levels of our visual 
system possess nonlinear characteristics. For such reasons, nonlinear filtering techniques for 
signal/image processing were considered as early as 1958. There is a tremendous and 
dynamic development in the field of nonlinear filtering since then. Research in the field 
showcases its popularity. There is a widespread use of nonlinear digital filters in a variety of 
applications, notably in telecommunications, image processing and geophysical signal 
processing. Most of the currently available image processing software packages includes 
nonlinear filters (e.g. median filters and morphological filters). 
 
Edge-preserving algorithms 
 Edge-preserving smoothing filters are much more suitable for feature extraction. Some 
examples of this filter class are:  
• Median Filter  
• Symmetrical Nearest Neighbour Filter (SNN)  
• Maximum Homogeneity Neighbour Filter (MHN)  
• Conditional Averaging Filter  
These non linear algorithms are calculating the filtered gray value in dependence of the 
content of a defined neighbourhood. From the list of the neighbourhood pixels, only these are 
taken for the averaging, which have similar gray values compared to the pixel in 
consideration. Each edge-preserving filter has its own specific algorithm, but they all have in 
common, that the effect of this smoothing strategy is to preserve edges. Unfortunately, these 
smoothing filters have the characteristic not to smooth satisfyingly, because small gray value 
fluctuations existing in the really homogeneous areas are emphasized and not reduced. In 
addition, the Symmetrical Nearest Neighbour Filter is unable to produce reliable results in 
case of small areas. 
Adaptive Median Filter 
Some of the nonlinear filers are normally optimised for specific type of noise and specific 
type of images. Images are modelled as 2-D stochastic processes whose statistics vary from 
application to application. The noise statistics vary in various regions of the image. The types 
of noise vary in the application from one image to another. Since the image and noise 
statistics are unknown, non-adaptive filters cannot perform well. Adaptive filters can be 
expected to perform better. General Median filters often exhibit blurring for large window 
sizes, or insufficient noise suppression for small window sizes. Preservation of signal features 
and elimination of noise are two different issues in signal and image processing. To 
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overcome these limitations Adaptive Median Filter is designed and offers a better approach to 
achieve good noise filtering and fine details preservation. The Signal Adaptive Median filter, 
reported by, adjusts its window length automatically depending on the local signal to noise 
ratio and on the nature of the signal, that is, whether it is an edge or a flat region. The filter 
allows simultaneous removal of a combination of signal dependent and additive random noise 
in addition to mixed impulse noise in images. 
The median filter and its variants such as weighted median filter, center weighted median 
filter performs well, as long as the spatial density of the impulsive noise is not large. A 
decision based Adaptive Median Filter (AMF) (Hwang and Haddad 1995) has been proposed 
to remove impulse noise with variable window size. Adaptive median filters can handle 
impulse noise with higher probabilities and preserve image sharpness. The adaptive median 
filter works in a rectangular window area that increases in size during the filtering operation, 
depending on density of the noise. The problem is that the standard median filter replaces 
every point in an image by the median of  the corresponding neighbourhood. This causes 
unnecessary loss of image details. If the median value of the pixels in the window too is an 
impulse, adaptive median filter increases the window size and replaces the pixel under test by 
the median value of the new window. The AMF is superior to Lin's adaptive scheme because 
it is simpler and better performing in removing the high density of impulsive noise as well as 
nonimpulsive noise and in preserving fine details. In the case of high density impulse noise, 
the adaptive algorithm performed quite well. The choice of maximum allowed window size 
depends on the application, but a reasonable starting value can be estimated by experimenting 
with various sizes of the standard median filter first. 
A novel robust estimation, based filter is proposed to remove low to high density salt and 
pepper noise effectively. The robust formulation aims at eliminating the noise outliers while 
preserving the edge structures in the restored image. Many of the existing filters, such as, 
Adaptive Median Filter (Hwang and Haddad 1995), Progressive Switching Median Filter 
(Wang and Zhang 1999), Boundary Discriminative Noise Detector (Pei-Eng Ng and Ma 
2006), Srini-Ebenezer method (Srinivasan and Ebenezer 2007) are removing high density salt 
and pepper noise effectively. However, they fail to restore the edges and fine details when the 
noise density increases above 70%. Hence, the aim of the chapter is, to propose a new 
nonlinear algorithm to remove high density impulse noise with edge and detail preservation, 
up to a noise level of 90%. The function of the proposed filter is to detect the outlier pixels 
and restore the original value, using robust estimation. The restoration results are compared 
with the standard median filter, weighted median filter, progressive switching median filter, 
adaptive median filter and a recently proposed Srini-Ebenezer method and BDND method 
and MTND method. Experimental results show that the proposed filter removes low to high 
density salt and pepper noise and preserves edges and fine details very satisfactorily upto a 
noise density as high as 90% 
Let {x (i)} and {y (i)} denote the input and output sequences respectively. A one-dimensional 
median filter slides a 2N+1 point wide window. 
over {x (i)}. At each point the samples inside the window are sorted out and the median or 
middle value is used as the filter output. The median output is associated with the time 
sample at the center of the window. The filtering procedure can be expressed as: 

y (i) = median (x (i-N), x (i-N+1),..., x (i), ..., x (i+N)), i e Z 
The Equation is also called moving median or running median. For the window to reach the 
front and rear ends of the input signal sequence, N number of samples are appended both at 
the beginning and at the end. The front endpoints take the value of the first sample while the 
rear endpoints take the value of the last sample. An example of one-dimensional median 



  International Journal of Research 
  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 08 Issue 01 

January 2021 
  

P a g e  | 144 
 

filtering with window length is illustrated in Figure 2. The two-dimensional median filtering 
process has the following definition: 

y (i, j) = median (x (i+r, j+s)), (r, s) e A and (i, j) e Z2 

 
Figure 2 Illustration of one-dimensional median filtering with window size 5 

The set AcZ2 defines the neighbourhood of the central pixel (i, j). It is called the filter 
window. The commonly used window structures in two-dimensional median filtering are 
shown in Figure 3. The border samples of twodimensional signals are processed by 
replicating them as done in onedimensional median filtering. The median filters have been 
used with success in speech (Jayant 1976 and Rabiner et al 1975) and image (Pratt 1991 and 
Pitas and Venetsanopoulos 1990 and Perlman et al 1987) processing applications. In addition, 
fast algorithms and hardware implementation for median filtering have been developed 
(Ataman et al 1980, Huang et al 1979, Ahmad and Sundararajan 1987 and Oflazer 1983). 

 
Figure 3 Window structures used for two-dimensional median filtering 

Properties of Median Filters  
Conventional tools such as frequency response and impulse response cannot be used for 
analyzing median filters as they do not come within the scope of linear system theory. As a 
result, new tools had to be developed to analyze and characterize the behaviour of these 
nonlinear filters deterministically and statistically (Gallagher, Jr. and Wise 1981, Nodes and 
Gallagher, Jr. 1984, Ataman et al 1981, Kuhlmann and Wise 1981, Bovik 1987a, Fitch et al 
1985, Wendt et al 1986, Arce and Gallagher 1982, Astola et al 1987, Zeng 1994, Eberly et al 
1991 and Mao and Gan 1993). The deterministic properties describe the effect of filtering on 
the structure of the signal. On the other hand, the statistical analysis shows how effective the 
filter is in removing the different types of noise. 
 
Deterministic Properties ofMedian Filters 
 The deterministic properties of median filters are described by their root signal set. The root 
signal set is defined as a set of signals, which remain invariant to further filtering. The 



  International Journal of Research 
  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 08 Issue 01 

January 2021 
  

P a g e  | 145 
 

concept of root signal with reference to the median filter is explained as follows. Under 
steady state conditions, when a sinusoidal signal is passed through a linear system, the 
frequency of the sinusoid is not changed; only its phase and amplitude are altered. This fact is 
not valid for median filters, because they are basically nonlinear systems. However, proved 
that if any signal of finite-length is repeatedly median filtered using the same window, then 
the resultant signal becomes invariant to further filtering at one point. Such a signal is called 
the root signal. That is, for a median filter of length k = 2N+1, this means that: 

 
If the above condition is satisfied for all i, then {x (i)} is called the root signal of that 
particular median filter. The meaning of root signals for median filtering is analogous to the 
meaning of sinusoids in the passband of linear filters. If the original signal is of length L 
points (without counting the appended points at the beginning and the end), then 

 
filter passes are the maximum required to reach a root. The fact that the root signals are 
invariant to further filtering offers interesting possibilities. For example, in image filtering, a 
common approach is to design a median filter such that certain prescribed features, such as 
lines are root signals and thus not disturbed by the filtering operation. Root signals of median 
filters have been used for speech and image coding 
Statistical Properties ofMedian Filters 
 Median is the best location estimator in the Li sense, because it minimizes: 

 
The median filter is robust in the presence of long tailed noise. The effect of an outlier 
(impulse) on the performance of an estimator can be studied by a function called Influence 
Function (IF). The IF of the estimator T, at the distribution F for those x e X, is denoted as IF 
(x; T, F), where X is the sample space. The IF of the mean and median estimators at the 
Gaussian distribution of zero mean and unit variance is shown in Figure 4. It can be seen 
from Figure 4 that the influence of an outlier on the mean estimator keeps increasing with the 
magnitude of x, while it gets bounded at  on the median estimator, irrespective of 
the magnitude of x 
The most important measure of robustness based on the IF is the gross error sensitivity v* of 
T at the distribution F 

 
where sup denotes supremum. The gross error sensitivity measures the worst £ effect of 
contamination at any point x e X. If v is finite, T is called the robust estimator. From the 
Equation and Figure 4, it is evident that v* is unbounded for the mean estimator for 
unbounded values of x. Therefore, the mean is not a robust estimator; even one distant outlier 
can cause catastrophic effects on the arithmetic mean. The gross error sensitivity of the 
median estimator for zero mean Gaussian distribution of unit variance is : 
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Figure 4 Influence function of the mean and median estimators for zero mean Gaussian 

distribution of unit variance 

 
The finite value of v* indicates that the median is a robust estimator.  
To evaluate the median as an estimator of location, a measure called Asymptotic Relative 
Efficiency ARE(T, S) of two estimators T(F) and S(F) is used and it is defined as: 

 
where V(S, F) and V(T, F), respectively, are the asymptotic variance of estimators S and T at 
the distribution F. To obtain an idea of the performance of the median, it is compared with 
the arithmetic mean x for different distributions. The asymptotic relative efficiency of the 
median estimator with respect to the mean at the distribution F is: 

 
When ARE (median (x (i)), x) is greater than one, the median performs better, that is, it 
exhibits lower output variance than the arithmetic mean. ARE (median (x(i)), x) values 
evaluated at different distributions are summarized in Table 1 

 
Table 1 Asymptotic Relative Efficiency of Median Estimator with respect to Mean 

Estimator 
The median performs at its worst for the short tailed uniform distribution and performs at its 
best for the long tailed laplacian distribution. 
Advantages 
The proposed method has several desirable features due to which it achieves an effective 
edgepreserving denoising. First, the approach of divide-and-conquer used in our method 
adapts to the inhomogeneous nature of natural images. Second, block-dependent thresholding 
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which relies on the estimation of thresholding parameters locally for each block, enhances the 
denoising performance as it can characterize the local features better than a subband-
dependent thresholding. Third, instead of having fixed noise variance, estimating it locally at 
each resolution scale makes it more beneficial as it takes the noise strength at that scale into 
consideration. Fourth, edge adaptive thresholding is applied to each block which considers 
the edge strength of that block for better edge-preservation. 
 
Experimental Results 
The results shown in tables demonstrate that the proposed method is superior to all the 
methods in the left half section regarding the PSNR and SSIM measures. However, when 
only wavelet-based approaches are considered, the proposed method is at times contested by 
the SURELET method in respect to all available performance measures. Although the 
proposed method is not always superior to the other methods in terms of all three 
performance measures. 
A more detailed visual comparison between the deep models and the L1 smoothing algorithm 
[12] is given in Figure 4 considering the fact that the L1 smoothing algorithm is the most 
frequently chosen algorithm and it achieves the lowest WRMSE and WMAE among existing 
state-of-the-art algorithms. From Figure 4 we can see that the L1 smoothing algorithm 
wrongly increases the color contrast between two flattened regions on the airplane. The 
results from VDCNN and ResNet models do not have such artifacts. As mentioned earlier, 
we do not aim to reproduce individual filters like [13]–[15], [27]. By utilizing the constructed 
dataset, our baseline algorithm aims to train a deep CNN model that can produce reasonable 
edge-preserving smoothing results for a wide range of image contents without further tuning 
parameters. To the best of our knowledge, existing smoothing algorithms cannot perform 
consistently well on a wide range of image contents using a single parameter setting.. We can 
see that the L0 smoothing algorithm needs to set different parameters for the ‘Racing car’ and 
the ‘Gloves’ images. If we set _ = 0.03 for the ‘Racing Car’ image, the edge between grass 
and road will blur. _ = 0.01 is the proper setting for the ‘Racing Car’ image. However, if we 
set _ = 0.01 for the ‘Gloves’ image, there still remain undesirable noises. In contrast, our 
ResNet model produces robust visual results on different images without tuning parameters. 
More results can be found in the supplementary file. 
 
Tone Mapping 
Tone mapping is a popular technique to map one set of colors to another to reproduce the 
appearance of a high dynamic range (HDR) image on a low dynamic range (LDR) displayer. 
The state-of-the-art tone mappers commonly adopt a layer decomposition scheme to 
decompose the HDR image into low- and high-frequency layers and then process them 
separately. In particular, the low frequency layer is estimated by applying an edge-preserving 
filter to the original HDR image. The edge-preserving property is very important for avoiding 
halo artifact and achieving naturalness in the tonemapped images. Thus, a stable and effective 
edge-preserving filter is highly desirable to improve the tone mapping performance. 
 
To avoid halo artifact, an edge-preserving filter should be able to preserve the strong edge 
regions and flatten other regions in the image, regardless of the image contents and types. 
Our ResNet baseline model can handle this task well, because it is trained on our dataset 
which is constructed with such criteria. We use the tone mapping framework in [33] by 
replacing the original bilateral filter by our ResNet model. We compare the tone mapped 
results with several state-of-theart tone mappers, including bilateral filter method (BF) [33], 
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visual adaptation (VAD) [34], and local edge-preserving filter (LEP) [35]. BF-based tone 
mapper [33] may not be as effective as the recently proposed approaches, but BF is widely 
adopted in different image processing tasks. On the other hand, VAD [34] and LEP [35] are 
selected because they obtain stateof-the-art performance. We do not compare with [41] 
because saliency is beyond the scope of this work. Fig. 5 shows our tone mapping results 
compared with these tone mappers. We can see that our tone mapper with ResNet model 
reaches an excellent balance between halo removal and naturalness preservation. Other tone 
mappers suffers from either halo artifact or over-enhancement problems. 
 
Peak Signal to Noise Ratio  
The peak signal to noise ratio often abbreviated as PSNR, is the ratio between the maximum 
possible power of a signal and the power of corrupting noise that affects the fidelity of its 
representation. Because many signals have a very wide dynamic range, PSNR is usually 
expressed in terms of the logarithmic decibel scale. The PSNR is most commonly used as a 
measure of quality of reconstruction in image denoising and image restoration. It is easily 
defined via the Mean Square Error (MSE). For 2D M×N monochrome images, the formula 
for PSNR calculation is given by equation 

 
Where MAX is the maximum pixel value of the image. When the pixels are represented using 
8 bits per sample, this is 255. Higher the PSNR better is the quality 
Mean Square Error (MSE) 
Mean Square Error indicates average error of the pixels throughout the image. A definition of 
a MSE does not indicate that the denoised image suffers more errors instead it refers to a 
greater difference between the original and denoised image. This means that there is a 
significant noise reduction. The formula for the MSE calculation is given by Equation 

 
where ri j is the original image, xi j is the restored image 
 
Structural Similarity Index (SSIM) 
The structural similarity index is a method for measuring the similarity between two images. 
The index can be viewed as a quality measure of one of the images being compared provided 
the other image is regarded as of perfect quality. The SSIM metric is calculated on various 
windows of an image. The measure between two windows x and y of common size N×N is: 

 
where µX the average of X; µY the average of Y; σx the variance of X; σy the variance of Y; 
σxy the covariance of X and Y; c1 = (k1L)2 , c2 = (k2L)2 two variables to stabilize the division 
with weak denominator; L the dynamic range of the pixel-values. 
 
CONCLUSIONS 
We presented a benchmark for edge-preserving image smoothing for the purpose of 
quantitative performance evaluation and further advancing the state-of-the-art. This 
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benchmark consists of 500 source images and their “groundtruth” image smoothing results as 
well as baseline learning models. The baseline models are representative deep convolutional 
network architectures, on top of which we design novel loss functions well suited for edge-
preserving image smoothing. Our trained deep networks run fast at test time while their 
smoothing results outperform state-of-the-art smoothing algorithms both quantitatively and 
qualitatively. 
 
Future Work 
In the future, work can be done to provide more effective solutions for the identified 
problems. In addition the presented image denoising techniques can be tested on other 
grayscaleimage datasets for further establishing their efficacy. Also the work can be extended 
to denoising of color images as well as video sequences. The proposed techniques in tetrolet 
domain are well suited for denoise square natural grayscale images with dimensions in the 
exponential order of two. However, if image is not a square then it has to be extended to 
make it a suitable input image. After denoising, the image is cropped to get the original size. 
But such adjustment may severely affect the denoising performance. Also choosing an 
appropriate number of tetromino coverings being averaged is a crucial point. In future, the 
work can be done to resolve these issues.  
All the denoising techniques presented in this thesis havedevelopedusing Discrete Wavelet 
Transforms (DWT) which, due to its filter-bank implementation, offers a high flexibility in 
implementation andthe possibility of using a wide number of wavelet families. Besides all the 
benefits of this transform, it has also a series of limitations such as its shift sensitivity and its 
poor directional selectivity. These limitations can be somewhat overcome by using some of 
DWT’s extensions, such as the Undecimated Discrete Wavelet Transform (UDWT) which is 
translation invariant or the Discrete Wavelet Packet Transform, that offers a better directional 
selectivity. Another way of overcoming these limitations is given by the use of Complex 
Wavelet Transforms (CWT). These variants of wavelet transforms can be used for future 
enhancement of denoising techniques. 
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