

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1003

Understanding How Effective Memory Management Optimizes

the Overall Performance of Multitasking Computers

J.O. UGAH
1
 & M. E. IGBOKE

2

1,2
Department of Computer Science, Ebonyi State University, Abakaliki-Nigeria

email: ugahjohn@gmail.com; eshinaigboke@yahoo.com

Abstract
This paper gives a vivid explanation of how

effective memory management helps to optimize

the performance of multitasking computers. The

memory management component of an operating

system is concerned with the organization and

management of computer memory. It determines

how memory is allocated to processes, responds to

constantly changing demands, and interacts with

memory management hardware to maximize

efficiency of the computer system. Execution of

several processes at a goal brings about the

challenge of proper memory allocation to all the

processes involved. It also poses the challenge of

ensuring that corruptions of processes are

avoided. Operating system takes care of these

challenges by performing some specific functions

such as memory management. Again, speed is an

important factor in data processing and in view of

this, features to bring about speed must be put in

place when building a computer or developing any

computer software. Effective memory management

helps to boost the speed of computer system.

Memory management techniques discussed

includes single contiguous allocation, fix partition

allocation, swapping, paging, segmentation,

virtual memory, buffering and spooling. The key

advantage of memory management is that it makes

each process in a multitasking system look as if it

is having the sole control of the CPU and the

memory.

Keyword: Operating system; memory

management; multitasking; efficiency; CPU

process

Introduction

The early electronic digital computer systems

had no operating system [1]. Electronic

systems of that time were programmed on

rows of mechanical switches or by jumper

wires on plug boards. These were special-

purpose systems that, for example, generated

ballistics tables for the military or controlled

the printing of payroll checks from data on

punched paper cards with time, programmable

general purpose computers were invented and

machine language consisting of binary digits 0

and 1 were introduced. As at that time,

punched cards were used. At about middle

60’s operating systems were introduced to

help users communicate more effectively with

the computer system without much difficulty

[2]. However, computers and operating

systems of that age were built to perform a

series of single tasks like a calculator. In the

late 60’s, hardware features were added, that

enabled use of runtime libraries, interrupts,

and parallel processing. When personal

computers became popular in the 1980s,

operating systems were made for them similar

in concept to those used on larger computers.

Later machines came with libraries of

programs, which would be linked to a user's

program to assist in operations such as input

and output and generating computer code

from human-readable symbolic code. This

was the genesis of the modern-day operating

system [3]. However, machines still ran a

single job at a time. By at about 1980’s, the

microcomputer had evolved to the point

where, as well as extensive graphical user

interface (GUI) facilities, the robustness and

flexibility of operating systems of larger

computers became increasingly desirable [4].

As technology advanced, multitasking became

available and quickly evolved into the

industry standard for personal computers.

Multitasking refers to the ability of an

operating system to work with more than one

program (called a task) at a given point in time

[5]. It is a Process of having a computer

performs multiple tasks simultaneously.

These tasks, also known as processes, share

common processing resources such as a CPU,

memory and I/O devices. In multitasking, the

system seems to be working on several tasks

mailto:ugahjohn@gmail.com
http://en.wikipedia.org/wiki/Runtime_library
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Parallel_processing
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Assembly_language
http://www.wisegeek.com/what-are-personal-computers.htm

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1004

at the same time, however, in real sense, the

CPU which runs very fast spends a fraction of

time on one process, jumps to another process

and again spends some other fraction of time

at a fast rate on the second process. This is

continued until all the processes are executed

to the end. Multitasking is one of the

processing techniques utilized by the

operating system to help computers run more

efficiently. The advent of multitasking

operating systems compounds the complexity

of memory management, because as processes

are swapped in and out of the CPU, so must

their code and data be swapped in and out of

memory, all at high speeds and without

interfering with any other processes.

Therefore, the main focus of this article is to

look into how memory management helps in

multitasking computer systems to bring about

effectiveness and efficiency.

A review of multitasking operating system,

Operating system is software that manages the

hardware and the software resources of the

computer systems [6]. Operating system

serves as an intermediary between the

computer user and the computer hardware.

Operating system performs many functions

including process management,

authentication, resources management, file

management, memory management and

others. There are different types of operating

systems which include single user, batch

processing, real time, multitasking and so on

but our focus is on multitasking operating

system. In computing, multitasking is a

method by which multiple tasks, also known

as processes, share common processing

resources such as the memory [7].

Multitasking permits multiple programs to run

concurrently. It is a method where multiple

tasks are performed during the same period of

time – they are executed concurrently (in

overlapping time periods, new tasks starting

before others have ended) instead of

sequentially (one completing before the next

starts). Multitasking does not necessarily

mean that multiple tasks are executing at

exactly the same instant. In other words,

multitasking does not imply parallelism, but it

does mean that more than one task can be

part-way through execution at the same time,

and more than one task is advancing over a

given period of time [8]. However, in real

sense, a computer cannot execute two or more

programs simultaneously, but it can give the

impression that it is running several programs

concurrently. What happens is a periodic

signal to force the CPU to switch from one job

to another and a mechanism to tell the

computer where it stopped when it last

executed a particular job so that it starts there

when next it is to execute that job. The

principles involved in multitasking include

generally the following:-

(i) The Operating system schedules a

process in the most efficient way

and makes best use of the facilities

available.

(ii) Operating system performs memory

management. If several processes

run concurrently, the operating

system must allocate memory

space to each of them. If the CPU

is to be available to one process

while another is accessing a disk or

using a printer, these devices must

be capable of autonomous

operations i.e ability to take part in

direct memory access (DMA) [9]

Types of Multitasking
Multitasking in computer systems is of two

types: non-preemptive (cooperative) and

preemptive multitasking.

(i) Non-Preemptive multitasking

(cooperative): This is a type of multitasking

by which a process is relied on to give time

to the other processes in a defined manner

[10]. Early multitasking systems used

applications that voluntarily ceded time to

one another. This approach, which was

eventually supported by many computer

operating systems, is known today as

cooperative multitasking. Although it is now

rarely used in larger systems except for

specific applications, cooperative

multitasking was once the scheduling

scheme employed by Microsoft Windows

(prior to Windows 95 and Windows NT)

and Mac OS (prior to OS X) in order to

enable multiple applications to be run

http://en.wikipedia.org/wiki/Task_%28computers%29
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Windows_95
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/OS_X

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1005

simultaneously. Windows 9x also used

cooperative multitasking, but only for 16-bit

legacy applications. Cooperative

multitasking is still used today on RISC OS

systems.

One issue that is crucial here is the fact that

because a cooperatively multitasked system

relies on each process to regularly gives up

time to other processes on the system, a poorly

designed program can consume all of the CPU

time for itself or cause the whole system to

hang. In a server environment, this is a hazard

that makes the entire network brittle and

fragile. All software must be evaluated and

cleared for use in a test environment before

being installed on the main server or a

misbehaving program on the server slows

down or freezes the entire network. Despite

the difficulty of designing and implementing

cooperatively multitasked systems, time-

constrained, real-time embedded systems

(such as spacecraft) are often implemented

using this paradigm. The lack of a pre-

empting scheduler allows highly reliable,

deterministic control of complex real time

sequences, for instance, the firing of thrusters

for deep space course corrections.

(ii) Preemptive multitasking: In pre-emptive

multitasking, the operating system slices

the CPU time and dedicates one slot to

each of the programs [11]. Preemptive

multitasking allows the computer system

to guarantee more reliably each process a

regular "slice" of operating time. It also

allows the system to deal rapidly with

important external events like incoming

data, which might require the immediate

attention of one or other process.

Operating systems were developed to take

advantage of these hardware capabilities

and run multiple processes preemptively.

Preemptive multitasking was supported on

DEC's PDP-8 computers, and

implemented in OS/360 MFT in 1967, in

MULTICS (1964), and Unix (1969); it is a

core feature of all Unix-like operating

systems, such as Linux, Solaris and BSD

with its derivatives [12].

At any specific time, processes can be

grouped into two categories: those that are

waiting for input or output called "I/O bound“,

and those that are fully utilizing the CPU

called "CPU bound" [13]. In primitive

systems, the software would often "poll", or

"busy-wait" while waiting for requested input

(such as disk, keyboard or network input).

During this time, the system was not

performing useful work. With the advent of

interrupts and preemptive multitasking, I/O

bound processes could be "blocked", or put on

hold, pending the arrival of the necessary data,

allowing other processes to utilize the CPU.

As the arrival of the requested data would

generate an interrupt, blocked processes could

be guaranteed a timely return to execution.

Advantages of Multitasking

Some advantages of multitasking include;

(i) It makes for maximum utilization of

the CPU by eliminating wastage of

CPU time

(ii) It enables several users to gain access

to a computer at the same time.

However, the principal problem of a

multitasking operating system is deadlock

[14]. If two processes, for instance, process A

and process B demand the same facilities e.g

memory access, CPU and the printer at the

same time, process A may get CPU and waits

for printer, while process B may get printer

and waits for CPU. This leads to hanging the

system indefinitely, a phenomenon called

deadlock.

 Memory Management

Every programmer would like an infinitely

large and infinitely fast memory that does not

loose its content when the electric power fails;

however, this is not the case in real life. Most

computers have memory hierarchy with a

small amount of very fast, expensive, volatile

cache, hundreds of megabyte/few gigabyte

medium-speed volatile main RAM and

thousands of gigabyte of slow non-volatile

disk storage [15]. It is then the duty of the

operating in every computer to coordinate

how these memories should be used for

effectiveness and efficiency. Memory

management is a general term that covers all

the various techniques by which an address

generated by a CPU is translated into the

http://en.wikipedia.org/wiki/Windows_9x
http://en.wikipedia.org/wiki/RISC_OS
http://en.wikipedia.org/wiki/Hang_%28computing%29
http://en.wikipedia.org/wiki/PDP-8#Programming_facilities
http://en.wikipedia.org/wiki/PDP-8#Programming_facilities
http://en.wikipedia.org/wiki/PDP-8#Programming_facilities
http://en.wikipedia.org/wiki/OS/360_and_successors#MFT
http://en.wikipedia.org/wiki/MULTICS
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Solaris_%28operating_system%29
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
http://en.wikipedia.org/wiki/Comparison_of_BSD_operating_systems
http://en.wikipedia.org/wiki/I/O_bound
http://en.wikipedia.org/wiki/CPU_bound
http://en.wikipedia.org/wiki/Polling_%28computer_science%29
http://en.wikipedia.org/wiki/Busy_waiting

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1006

actual address of the data in memory [16]. The

memory management function keeps track of

the status of each memory location, either

allocated or free. It determines how memory is

allocated among competing processes,

deciding who gets memory, when they receive

it, and how much memory space they are

allowed. When memory is allocated it

determines which memory locations will be

assigned. It tracks when memory is freed or

unallocated and updates the status. The part of

the operating system which handles this

responsibility is called the memory manager.

Since every process must have some amount

of primary memory in order to execute, the

performance of the memory manager is

crucial to the performance of the entire

system.

In uni-tasking systems the main memory is

divided into two parts: one for operating

system, the other for the program being

executed. In multitasking systems, the user

part of the memory has to be further

subdivided to accommodate multiple

processes. According to [17], memory

management requirement include basically the

following:

 Relocation: Loading dynamically the

program into an arbitrary memory

space, whose address limits are known

only at execution time

 Protection: Each process should be

protected against unwanted

interference from other processes

 Sharing: Any protection mechanism

should be flexible enough to allow

several processes to access the same

portion in the main memory

 Logical organization: Most programs

are organized in modules some of

which are un-modifiable (read only

and/or execute only) and some of

which contain data that can be

modified; the operating system must

take care of the possibility of sharing

modules across processes.

• Physical organization: Memory is

organized as at least two level

hierarchy; The OS should hide this fact

and should perform the data movement

between the main memory and

secondary memory without the

programmer’s concern

Memory Management Techniques

According to [18], memory management

could be categorized basically into two; Those

that moves processes back and forth between

main memory and disk during execution

(swapping and paging) and those that do not.

Some specific memory management

techniques discussed in this paper include;

fixed partition allocation, swapping,

continuous allocation, multiple partition

allocation, virtual memory .paging,

segmentation. These memory management

techniques are discussed with a view on how

they can help in optimizing the efficiency of

multitasking computers.

Multiprogramming with Fixed Partitions

Multiprogramming to an ordinary computer

user means the ability of computers to run

more than one program at the same time.

Technically, multiprogramming means that

when one process is blocked waiting for

input/output (I/O) to finish, another process

can use the CPU [19]. In view of the fact that

every process will occupy a space in the

memory, the easiest way to achieve

multiprogramming would be to divide

memory up into unequal n possible partitions.

Here, when process arrives, it can be put into

input queue for the smallest partition large

enough to hold it. One of the demerits of fixed

partition is that sometimes jobs have to wait

so long on queue to get into memory even

though plenty of memory is free. This happens

when the queue for large partition is empty

and the queue for small partition is full and

vise versa.

Swapping

In multitasking systems, there may not be

enough memory to hold all the currently

active processes and demands that excess

process must be kept in the disk and brought

in to run dynamically. Swapping and virtual

memory is used to handle this condition.

Swapping involves bringing in each process in

its totality, running it for a while, and then

putting it back on the disk while virtual

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1007

memory allows program to run even, when

they are partially in the main memory [20].

The basic difference between this and fixed

partition is that in swapping, the number,

location and size of the partition vary

dynamically but they are fixed in the case of

fixed partition. It is also worthy of note that

when swapping creates multiple holes in the

memory, it is possible to combine them all

into one big partition by moving all processes

downwards as far as possible.

Let us explain clearly that in swapping, a

process can be swapped temporarily out of

memory to a backing store, and then brought

back into memory for continued execution.

The backing store is a fast disk large enough

to accommodate copies of all memory images

for all users and should also provide direct

access to these memory images. The roll out,

roll in are swapping variant used for priority-

based scheduling algorithms; lower-priority

process is swapped out so higher-priority

process can be loaded and executed. Major

part of swap time is transfer time; total

transfer time is directly proportional to the

amount of memory swapped. Modified

versions of swapping are found on many

systems. System maintains a ready queue of

ready-to-run processes which have memory

images on disk. The Schematic view of

swapping among processes running

concurrently is shown in the figure 1 below:

Figure 1: The schematic View of Swapping in multitasking computers. Adapted from [15]

Continuous Allocation

In continuous allocation, main memory is usually into two partitions:

(i) Resident operating system, usually held in low memory with interrupt vector

(ii) User processes then held in high memory

Relocation registers used to protect user processes from each other, and from changing operating-

system code and data. Base register contains value of smallest physical address. Limit register

contains range of logical addresses – each logical address must be less than the limit register.

Memory management unit (MMU) maps logical address dynamically. The hardware support for

relocation is as illustrated in figure 2 below:

Process P1

Process P2

Operating

System

User

Space

 Swap Out 1

 Swap In 2

Main Memory
Backing Store

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1008

Figure 2: Hardware support for relocation. Adapted from [21]

Multiple-partition allocation

Using this technique of memory management, the entire computer memory with the exception of

a small portion reserved for the operating system, is available for users program. This is possible

by swapping the contents of memory to switch among users. Block of available memory (holes)

of various sizes are scattered throughout memory. When a process arrives, it is allocated memory

from a hole large enough to accommodate it. Operating system maintains information about the

allocated partitions and free partitions (hole). The figure 3 below illustrates this phenomenon.

Figure 3: Illustration of multiple partition allocation

Virtual Memory

According to [22], the basic idea behind

virtual memory is that combined size of the

program, data, and stack may exceed the

amount of physical memory available for it.

The operating system however keeps the

only part of the program that is currently in

use in the main memory and the rest on the

disk. Virtual memory actually makes the

system appear to the user that unlimited

Limit

Register

Relocation

register

CPU

Memory

< +

Logical

address
Physical

address

Trap: addressing

error

Yes

no

Process 2
 Terminates

Process 4
 Starts

 Process 1

Process 3

Unused space

Process 1

Process 2

Process 3

 OS

 OS

Process 1

Process 4

Process 3

 OS

http://en.wikipedia.org/wiki/Paging#Terminology

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1009

amount of main memory is available. The

implication of this is that individual program

can be much larger than the actual number of

memory cells. Virtual, memory also permits

multiprogramming to operate more

efficiently. The brain behind virtual memory

is the creative use of direct access storage

devices (DASDs) with the operating system

switching portions of programs (called

pages) between main memory and DASDs.

Virtual memory actually allows program to

run even, when they are partially in the main

memory. With virtual memory only a few

pages of the program are kept in main

memory, with the rest relegated to DASDs.

Virtual memory employs either paging or

segmentation.

Paging

Paging is a memory management technique

in which physical memory is broken into

blocks of fixed sized blocks called page

frames (size is power of 2 between 512 bytes

and 8,192 bytes) and divides logical memory

into the same size called pages [23]. Tracks

of all free frames are kept. To run a program

of size n pages, need to find n free frames

and load program. Page table is also set up to

translate logical address to physical

addresses. Paging techniques aims at

achieving certain goals such as to eliminate

fragmentation due to large segments, avoid

allocating memory space that will not be

used and enable fine-grained sharing. Paging

techniques could be summarized with the

following points:

(i) Logical address space of a process

can be noncontiguous; process is

allocated physical memory

whenever the latter is available.

(ii) Divide physical memory into fixed-

sized blocks called frames (size is

power of 2, between 512 bytes

and 8,192 bytes).

(iii)Divide logical memory into blocks of

same size called pages.

(iv) Keep track of all free frames.

(v) To run a program of size n pages,

need to find n free frames and

load program

(vi) Set up a page table to translate

logical to physical addresses

Given below is some illustration of how

paging works:

Address generated by CPU is divided into:

(i) Page number (p) – used as an

index into a page table which

contains base address of each

page in physical memory

(ii) Page offset (d) – combined with

base address to define the

physical memory address that is

sent to the memory unit

(iii) For given logical address space

2
m

and page size

2

n

Figure 4: Address generated by the CPU

Paging Works well if page size = size of

memory block size (page frames) = size of

disk section (sector, block).

Usually, before executing a program,

memory manager determines number of

pages in program, locates enough empty

page frames in main memory and loads all of

the program’s pages into them.

 P d

 M - n n

Page number Page offset

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1010

Paging hardware: The Paging model of logical and physical memory in multitasking operating

system could be illustrated as shown in figure 5 below:

Figure 5: Paging model of logical and physical memory. Adapted from [21]

 Demand Paging

Demand paging introduces the concept of

loading only a part of the program into

memory for processing [24]. When a process

begins to run, pages are brought into

memory only as they are needed. It was the

first widely used scheme that removed the

restriction of having the entire job in

memory from the beginning to the end of its

processing. With demand paging, jobs are

still divided into equally sized pages that

initially reside in secondary storage. When

the job begins to run, its pages are brought

into memory only as they are needed.

Demand paging takes advantage of the fact

that programs are written sequentially so that

while one section, or module, is being

processed all of the other modules are idle.

Demand paging allows users to run

processes with less main memory than would

be required if the operating system was using

any of the schemes described earlier.

Demand paging can give the appearance of

almost infinite amount of physical memory.

Implementation of table could be summarizes as

follows:

(i) Page table is kept in main memory

(ii) Page-table base register (PTBR)

points to the page table

(iii) Page-table length register (PRLR)

indicates size of the page table

(iv) In this scheme every data/instruction

access requires two memory accesses. One

for the page table and one for the

data/instruction.

(v) The two memory access problem can

be solved by the use of a special fast-lookup

hardware cache called associative memory

or translation look-aside buffers (TLBs)

Some TLBs store address-space identifiers

(ASIDs) in each TLB entry – uniquely

identifies each process to provide address-

space protection for that process

Figure 6: Illustration of page and frame

structure

Associative memory – parallel search

P

CPU

P d F d

Logical
address

Physical
address

Page table

Physical

Memory
address

f1111…1111

f0000…0000

table

 f

f

Page # Frame #

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1011

Address translation (p, d): If p is in associative register, get frame # out, otherwise get frame # from

page table in memory.

Paging hardware with translation look-aside buffer (TLBs) is illustrated in figure 7 below

Figure 7: paging hardware with TLBs. Adapted from [21]

To calculate the effective Access time, you would do the following computation

Associative Lookup = time unit

Assume memory cycle time is 1 microsecond

Hit ratio – percentage of times that a page number is found in the associative registers;

ratio related to number of associative registers

Hit ratio =

Effective Access Time (EAT)

 EAT = (1 +) + (2 +)(1 –)

 = 2 + –

Segmentation

Segmentation is a process is dividing the memory space in to a number of segments that don’t

need to be equal in size. [25]. This is the only memory management technique that does not

provide the user's program with a 'linear and contiguous address space. Segments are areas of

memory that usually correspond to a logical grouping of information such as a code procedure or

a data array. Segments require hardware support in the form of a segment table which usually

contains the physical address of the segment in memory, its size, and other data such as access

protection bits and status (swapped in, swapped out, etc.). Segmentation seem to allow better

access protection than other schemes because memory references are relative to a specific

segment and the hardware will not permit the application to reference memory not defined for that

segment. It is possible to implement segmentation with or without paging. Without paging

support the segment is the physical unit swapped in and out of memory if required. With paging

support the pages are usually the unit of swapping and segmentation only adds an additional level

of security. Addresses in a segmented system usually consist of the segment id and an offset

relative to the segment base address, defined to be offset zero.

P

CPU

P d

F d

Logical
address

TLB hit

Page frame
number number

 f

Page

table

TLB

TLB miss

Physical

address

Physical

address

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1012

Segmentation Architecture

Usually, a program is a collection of segments. A segment is a logical unit such as: main program,

procedure function, method, object, local variables, global variables, common block, stack,

symbol table, arrays etc. User’s view of a program is as shown in the figure 8 below:

Figure 8: User’s view of a Program

The logical view of segmentation could also be illustrated as shown in figure 9 below

Figure 9: Logical View of Segmentation

Logical address consists of a two tuple: <segment-number, offset>,

Segment table – maps two-dimensional physical addresses; each table entry has:

(i) base – contains the starting physical address where the segments reside in memory

(ii) limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment table’s location in memory

Segment-table length register (STLR) indicates number of segments used by a program;

1

4

2

3

1

3

2

4

User Space

Physical Memory Space

Subroutine

Sqrt

Stack

Symbol
Table

Main
Program

Logical address

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1013

Note: Segment number s is legal if s < STLR

Protection: With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

Since segments vary in length, memory allocation is a dynamic storage-allocation.

 Segmentation Hardware: The hardware view of segmentation is shown in the figure 10 below:

Figure 10: Segmentation hardware in multitasking operating system [22]

Buffering and Spooling

Compared to today’s CPU processing speed,

some input and output devices are

exceedingly slow. As a result of this, if the

CPU had to wait for these slower devices to

finish their work, the computer system

would face an unbearable bottleneck. For

example, suppose a user just sent a 30-page

document to the printer. Assuming the

printer can output 5 pages per minute, it

would take 6 minutes for the document to

finish printing. If the computer had to wait

for the print job to be completed before

performing other tasks, the computer would

be tied up for 6 minutes; to avoid this

problem, most operating systems uses

buffering and spooling. A buffer is an area

in RAM or on the hard drive designated to

hold input and output on their way in or out

of the system [26]. For instance, a keyboard

buffer stores a certain number of characters

as they are entered on the keyboard, and a

print buffer stores documents that are

waiting to be printed. The process of placing

items in a buffer so that they can be retrieved

by the appropriate device when needed is

called spooling [27]. The most common use

of spooling and buffering is for print jobs.

 It allows multiple documents to be sent to

the printer at one time and they will print,

one after the other, in the background while

the computer and user are performing other

tasks. The documents waiting to be printed

are said to be in a print queue, which

designates the order the documents will be

printed. While in the queue, some operating

systems allow the order of the documents to

CPU

< +

segment

table

s

Trap: addressing error

Yes

no

Limit base

S d

Physical memory

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1014

be rearranged, as well as the cancellation of a

print job

Strategies used to Allocate Memory in a

Multitasking System (Memory

management policies)

The real challenge of efficiently managing

the computer memory is seen in the case of a

system which has multiple processes running

at the same time. Since primary memory can

be space-multiplexed, the memory manager

can allocate a portion of primary memory to

each process for its own use. However, the

memory manager must keep track of which

processes are running in which memory

locations, and it must also determine how to

allocate and de-allocate available memory

when new processes are created and when

old processes complete execution. While

various different strategies are used to

allocate space to processes competing for

memory, three of the most popular are “best

fit”, “worst fit”, and “first fit”. Each of these

strategies are described below

(i) Best fit: In this type of strategy, the

allocator places a process in the smallest

block of unallocated memory in which it will

fit [22],. For example, suppose a process

requests 12KB of memory and the memory

manager currently has a list of unallocated

blocks of 6KB, 14KB, 19KB, 11KB, and

13KB blocks. The best-fit strategy will

allocate 12KB of the 13KB block to the

process.

(ii) Worst fit: Here the memory manager

places a process in the largest block of

unallocated memory available [22],. The idea

is that this placement will create the largest

hold after the allocations, thus increasing the

possibility that compared to best fit; another

process can use the remaining space. Using

the same example as above, worst fit will

allocate 12KB of the 19KB block to the

process, leaving a 7KB block for future use.

(iii) First fit: There may be many free holes

in the memory, so in order for the operating

system to reduce the amount of time it

spends analyzing the available spaces, it

begins at the start of primary memory and

allocates memory from the first hole it

encounters large enough to satisfy the

request. Using the same example as above,

first fit will allocate 12KB of the 14KB

block to the process.

The functions memory management in a

multitasking computer system

Memory management as earlier stated

involves providing ways to allocate portions

of memory to programs at their request, and

freeing it for reuse when no longer needed.

The management of main memory is critical

to the computer system especially in a

multitasking computer system. Some

functions that memory management provides

include among others the following:

(i) Memory management is used in a

multitasking computer system to

make it look as if each process

has sole control of the Central

Processing Unit (CPU).

(ii) Memory management, in conjunction

with the operating system, helps

in the allocation of memory to

variables and processes.

(iii)Memory management permits

computers with small main stores

to execute programs that are far

larger than the main store.

(iv) It is used to protect one process from

being corrupted by another

process.

(v) It prevents one process from

interfering with another process

since the system time is shared

among the processes.

Conclusion

The truth remains that every programmer

would like an infinitely large and infinitely

fast memory that does not loose its content

when the electric power fails but at the

moment, it is not yet obtainable. Most

computers have memory hierarchy with a

small amount of very fast, expensive,

volatile cache, few gigabyte medium-speed

volatile main memory (RAM) and thousands

of gigabyte slow permanent storage disk. In

order for programs to be executed by the

processor, that program must be loaded into

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1015

main memory. In view of the conditions,

every programmer and even computer

manufactures need to have a proper

understanding of how operating system

through memory management brings about

efficient management of available memory

and in turn brings about overall efficiency of

computer. The requirements of memory

management in a multitasking computer

system are protection, relocation, sharing,

logical and physical organization. First fit,

worst fit and best fit are some of the

strategies used in managing the memory in a

multitasking computer system. Some of the

importances of memory management include

making the computer look as if each process

has sole control of the central processing

unit, helping in the allocation of memory to

variables and processes. It also permits

computers with small main stores to execute

programs that are far larger than the main

store; it is used to protect one process from

being corrupted by another process and also

prevents one process from interfering with

another process since the system time is

shared among the processes. The operating

system uses memory management

techniques to process, control and coordinate

computer memory allocating portions called

blocks to various running programs and de-

allocating it after use to optimize overall

system performance. Knowing this would

help computer manufacturers to design and

re-design new system with even more

enhanced memory management techniques

that would boost the performance of

computers in these days of distributed

processing. Programmers on their own

would come to know issues to concentrate

on having been delivered from bordering

much about the size of the physical memory

while writing programs.

.

References

[1] Ceruzzi, P., (2000). The history of modern

computing. The MIT press London. Retrieved

online 10
th
 February, 2015 from

http:/www.computerfundamental/history.html

 [2] Patterson, S. and Hennessey, J. (1998).

Computer organization and design 2
nd

 edition.

Morgan Kaufmann, San Francisco

[3] Silberschatz, A., Gagne, G., Baer, P, and

Galvin, C. (2002). Operating System Concepts”,

Ninth Edition. John Wiley & sons Inc. United

State of America.

[4] Venkatasubramanian, N. (2004). Principles

of operating systems. lecture note on

introduction and overview adapted from :

Silberschatz textbook authors, John Kubiatowicz

(Berkeley), John Ousterhout (Stanford) and

others. Retrieved online from:

https://www.wisegeek.com

[5] Berger, E., Zorn, B., and McKinley, K.,

(2001). Composing High Performance Memory

allocators. Proceedings of the ACM SIGPLAN

2001 conference on Programming language

design and implementation. PLDI '01. pp. 114–

124

[6] Andrew, T. (2001). Modern operating

system, second edition Pearson education

incorporated. China machine press, pretence hall.

[7] Abraham, S., Galvin, P. and Gagne, G.

(2013). Operating system concepts. Ninth

edithion. John Wiley & sons Inc. United State of

America

[8] Martin, H., (2012). Understanding operating

systems. Unpublished lecture materials on

operating system concept. Retrieved online on

20
th
 June 2014 from

http://www.sei.cmu.edu/library/abstracts/reports/

10tn009.cfm

[9] Donald, K., (1997), Fundamental

Algorithms: Dynamic Storage allocations.

Addison-Wesley, pp. 433-456.

[10] Wilson, P, Johnstone, M., Neely, M,, and

Boles, D. (1995). "Dynamic storage allocation: A

survey and critical review". memory

management. Unpublished lecture Notes in

Computer Science 986. pp. 1–116.

[11] https://www.princeton.edu

[12] Tanenbaum, A. and Woodhull, A. (1997).

Operating Systems: Design and implementation,

second edition. Upper Saddle River, NJ:

Prentice Hall

http://searchmobilecomputing.techtarget.com/definition/memory
http://searchsqlserver.techtarget.com/definition/block
http://searchsoftwarequality.techtarget.com/definition/program
https://www.wisegeek.com/
http://en.wikipedia.org/wiki/Kathryn_S._McKinley
http://en.wikipedia.org/wiki/Programming_Language_Design_and_Implementation
http://www.sei.cmu.edu/library/abstracts/reports/10tn009.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tn009.cfm
https://www.princeton.edu/

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 05, May 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 1016

[13] Berger, E., Zorn, B., and McKinley, K.,

(2002). "Reconsidering Custom Memory

Allocation". Proceedings of the 17th ACM

SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications. OOPSLA '02. pp. 1–12.

[14] Igboke, M., (2014), A lecture note on

“Operating System” unpublished. Department of

computer science Ebonyi State University,

Abakaliki.

[15] Archer, H. (2002). Operating Systems.

Schaum’s outlines of theory and problems of

operating system. Tata McGraw-Hill publishing

company limited. New Delhi

[16] Yang, J., (2010). Segmentation and paging.

Lecture note adapted from modern operating

systems, third edition. Operating system

concepts previous W4118, and OS at MIT,

Sanford, and UWisc.

[17] Insup, L. (2002). Understanding operating

system memory management; unpublished

lecture note from university of Pennsylvania.

[18] Bacon, J., and Harris T. (2003). Operating

systems : Concurrent and distributed software

design, Perason education limited, Edinburgh

Gate Harlow England

[19] Abrossimov, V., Rozier M., and Gien, M.

(1989). Virtual memory management. A

proceeding in distributed operating systems

management, Berlin, 1989.

[20] Silberschatz, A. and Galvin, P. (1998).

Operating System Concepts. Fifth edition.

Addison-Wesely.

[21] Gorman, J. (2000). Operating systems.

Grassroots series. Palgrave. Houndmils,

Basingstoke, Hampshire RG21 6XS and 175

fifth Avenue, New York.

[22] Richard, R., Avadis, T., William, J. (1987).

Machine independent virtual memory for paged

uniprocessor and multiprocessor architecture.

Proceedings of the 2nd International Conference

on Architectural Support for Programming

Languages and Operating Systems (1987)

[23] Petronel, B., (2011). The basics of memory

management. Unpublished lecture note on

operating system concept.

[24] Mahadev, S. (2010) Mobile computing: the

next decade. Proceedings of the 1st ACM

Workshop on Mobile Cloud Computing and

Services: Social Networks and Beyond (2010).

[25] Falla, W. (2007). Operating Systems

concepts. (Slides include materials from

Operating System Concepts, 7
th
 ed., by

Silbershatz, Galvin, & Gagne and from Modern

Operating Systems, 2
nd

 ed., by Tanenbaum).

[26] Alan, C, (2000). The principle of computer

hardware. Oxford University Press, London.

[27]

http://www.sei.cmu.edu/library/abstracts/whitepa

pers/cloudcomputingbasics.cfm

http://en.wikipedia.org/wiki/Kathryn_S._McKinley
http://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://en.wikipedia.org/wiki/OOPSLA
http://www.sei.cmu.edu/library/abstracts/whitepapers/cloudcomputingbasics.cfm
http://www.sei.cmu.edu/library/abstracts/whitepapers/cloudcomputingbasics.cfm

