

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 244

Analysis of the computer caching scheme

Dr. Arinze S. Nwaeze
Dept. of Computer Science & Info. Tech. Caritas University, Amorji-Nike, Enugu

Abstract

Cache (pronounced cash) memory is extremely

fast memory that is built into a computer’s

central processing unit (CPU), or located next

to it on a separate chip. The CPU uses cache

memory to store instructions that are

repeatedly required to run programs,

improving overall system speed. The advantage

of cache memory is that the CPU does not have

to use the motherboard’s system bus for data

transfer. Whenever data must be passed

through the system bus, the data transfer speed

slows down to the motherboard’s capability.

The CPU can process data much faster by

avoiding the bottleneck created by the system

bus. Data is transferred between memory and

cache in blocks of fixed sizes, called cache

lines. When a cache line is copied from memory

into the cache, a cache entry is created. The

cache entry will include the copied data as well

as the requested memory location called a tag.

When the processor needs to read or write a

location in main memory, it first checks for a

corresponding entry in the cache. If the

processor finds that the memory location is in

the cache, a cache hit has occurred. However,

if the processor does not find the memory

location in the cache, a cache miss has

occurred. In order to make room for the new

entry on a cache miss, the cache may have to

evict one of the existing entries. In a simple

cache scheme, when a miss occurs, the contents

of the cache will be written out. It is possible

for code and data to be in the same memory

line in different blocks of memory. If this

happens, especially in a multitasking

architecture, it could cause constant misses if a

loop were accessing a particular block of

memory. It is common for code of each task

loaded to be aligned at the beginning of a

memory segment which often correlates to the

block size of the cache. As each task is

activated, a miss occurs. The more tasks loaded

the more often the miss. Caches can be

designed to avoid or limit pitfalls like this. This

thesis looks at ways to avoid pitfalls such as

described. It also looks at the heuristic that the

cache uses to choose the entry to evict. The

bottleneck created by the system bus as the

CPU processes data, will also be discussed.

Furthermore, this thesis will look at the entire

caching scheme, including the cache lines, the

replacement policy, cache mapping, cache

associativity, and when not to use the caching

technology.

Keywords:

Cache-lines; Cache-mapping; Associativity;

Spatial Locality; Temporal Locality;

Sequentiality; LFU; MRU

Introduction

Memory (RAM) is often the bottleneck when

executing code. This is an important fact to

remember. You may have, say, 2 GHz

machines, but typical RAM cannot retrieve

instructions from memory at that speed.

A solution is to use small, but fast memories.

For example, accessing registers is very quick,

while accessing RAM is comparatively slow.

This suggests that if we want speed, we need

more registers, and hope that most data stay in

the registers, and that we rarely need to access

RAM.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 245

This is not a reasonable assumption because

registers simply do not hold enough memory.

However, if we can use small, fast memory,

then it is going to be called cache, and cache

memory is faster than RAM, but slower than

registers, and we can keep the most commonly

used data (or instructions) in the cache. Cache

can hold more data (typically 512 K or so) than

a register (typically 128 bytes).

There is a basic principle about memory. If you

want lots of memory, it will not cost you much

but it is slow to access data. If you want very

fast memory, it will be small (holding little

data) and expensive per byte of memory. The

goal of the cache is to put frequently accessed

data in a place where it can be more quickly

and efficiently accessed. If a web page can be

read from local disk instead of going onto the

Internet, the page can be displayed faster by the

browser.

In the simplest model of a computer, there is a

CPU, and there is physical memory (RAM) and

there is a bus to connect the two. Over the

years, computers have become more

sophisticated, and implementation of memory

systems has also become more sophisticated.

In particular, RISC (Reduced Instruction Set

Computing) machines became popular. Even

though Intel processors dominate the market,

they use a lot of RISC ideas.

Basically, in RISC, some complex instructions

were eliminated in favor of running several

simpler instructions that did the same task.

Initially, RISC used as few instructions as they

could get away with. Over time, people realized

this was not a reasonable way to develop an

Industry Standard Architecture (ISA). The

decision about which instructions to keep and

which instructions to get rid of was based on

benchmark programs. If simulations showed

that including an instruction in the ISA would

improve performance (speed) in many typical

programs, then the instruction was kept in the

ISA. Otherwise, it was discarded. As a result, a

typical RISC program might contain many

more instructions than its equivalent CISC

(Complex Instruction Set Computing) program,

since it may take more RISC instructions to run

the equivalent CISC code.

Since about 1990, cache has become

increasingly important. It lies between registers

and physical memory in terms of size and

speed. From slowest to fastest: disk, RAM,

cache, registers. Normally, one thinks of

memory in three levels: registers, RAM

(physical memory) and disk. This forms part of

the memory hierarchy.

On the left are registers. They give you the fastest access

time.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 246

Cache Replacement Policies

Consider that you are planning to write a very

long paper on the history of Democracy in

many different countries. You start with United

Kingdom, and work your way to America,

Australia, Russia, Asia, Nigeria, etc. You

divided your paper so that each chapter covers

one democracy.

You have a computer on your desk, and get

your books online. You can download only so

many books because your computer is limited

in memory. The advantage of downloading the

books onto your own computer is so that you

can access the materials quickly. Downloading

the books is quite slow, so you hope not to do it

very often. If it were not for the fact that you

collect related books and write from those

books on each chapter, you might be forever

downloading books. Even though the majority

of books remain at the central library site, the

books you need are on your computer, which is

quick to access.

What happens if you have already downloaded

10 books (assuming maximum available space),

and you want the 11th book? You will need to

delete one of your books off your computer, to

make room for the next book. Which one

should you pick? You could pick the one that

you have not read in the longest time. That

policy is called "least recently used". Or you

could see which book you have had on your

computer the longest time. That policy is called

"first in first out". Or perhaps the one you have

looked at the least number of times. That is

called "least frequently used". In any case, you

use some policy to decide which book to get rid

of to make space for the new book.

Extending this illustration

Let us assume your computer can still store 10

books. There are two sites you can access

books. There is the Virtual Central Library

(VCL), which has any book that you might

want, and there is also a Local Library (LL).

Whenever you want to access a book, you will

look in the Local Library (LL) first. If it is

there, you will copy the book to your own

computer. If it is not there, the LL will contact

the Virtual Central Library (VCL). The LL will

copy the book to its own library (possibly

removing a book from the LL to make space),

and then you will copy the book from the LL to

your own computer. The LL is much smaller

than the VCL, but can store more books than

you can on your computer. Thus, the LL serves

as a middle man. If the book you want is in the

LL, you access it much faster than if you have

to download it from the Virtual Central Library

(VCL).

If it takes 1 second to access the LL, and 100

seconds to access the VCL when you are unable

to find the book in the LL, you spend 100

seconds getting a copy from the VCL to the LL,

and one more second to get it from the LL to

your local computer. Thus, it is actually slower

to use the LL if the book you are looking for is

not there.

Cache works very similarly. Basically, you

want some data (or an instruction) at some

address. This data either appears in the cache

(which is like the LL) or it is not. If it is not

there, you need to access the data from RAM

(which is like the VCL). This data is then

copied to the cache, and then from the cache to

the registers. Thus, the registers act like your

local computer.

Cache Replacement Algorithms (Policy)

A cache algorithm is a detailed list of

instructions that decides which items should be

discarded in a computer's cache of information.

In order to make room for the new entry on a

cache miss, the cache may have to evict one of

the existing entries. The heuristic that it uses to

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 247

choose the entry to evict is called the

replacement algorithm or policy. The

fundamental problem with any replacement

policy is that it must predict which existing

cache entry is least likely to be used in the

future.

Suppose you have a cache miss, and all the

slots in the cache are being used. You will now

have to pick a slot to get rid of. You are

evicting a cache line. Which slot should you

pick?

There are many replacement policies,

including; LRU, LFU, FIFO.

LRU (Least Recently Used):

One popular replacement policy is the least-

recently used (LRU), which replaces the least

recently accessed entry. Marking some

memory ranges as non-cacheable can improve

performance, by avoiding caching of memory

regions that are rarely re-accessed. This avoids

the overhead of loading something into the

cache without having any reuse. A good

approximation to this algorithm is based on the

observation those slots that have been heavily

used in the last few instructions will probably

be heavily used again in the next few.

Conversely, slots that have not been used for

ages will probably remain unused for a long

time. This idea suggests a realizable algorithm:

when a miss occurs, throw out the slot that has

been unused for the longest time. This strategy

is called LRU (Least Recently Used) caching.

LFU (Least Frequently Used)

This algorithm discards the least recently used

items first. In other words, it discards the slot

that been used the least often. This algorithm

requires keeping track of what was used and

when. It is expensive if one wants to make sure

the algorithm always discards the least recently

used item. General implementations of this

technique require keeping age bits for cache-

lines and tracking the Least Recently Used

cache-line based on age-bits. In such an

implementation, every time a cache-line is

used, the age of all other cache-lines changes.

FIFO (First In First Out)

First In First Out algorithm picks the slot that

has been in the cache the longest (which is

NOT the same as LRU).

These policies often require additional

hardware to indicate time of use or frequency of

use.

When you are programming in assembly, you

are not even aware of the cache. Much of the

actual interactions with cache are handled by

the hardware and the operating system.

Cache Line

A cache line is the unit of data you transfer to a

cache. The size of this unit (or chunk of

memory) is called the cache-line size.

Common cache-line sizes are 32, 64, 128 bytes.

Data is transferred between memory and cache

in blocks of fixed sizes, called cache lines.

When a cache line is copied from memory into

the cache, a cache entry is created. The cache

entry will include the copied data as well as the

requested memory location called a tag.

When the processor needs to read or write a

location in main memory, it first checks for a

corresponding entry in the cache. The cache

checks for the contents of the requested

memory location in any cache lines that might

contain that address. If the processor finds that

the memory location is in the cache, a cache hit

has occurred. However, if the processor does

not find the memory location in the cache, a

cache miss has occurred. In the case of a cache

hit, the processor immediately reads or writes

the data in the cache line. In the case of a cache

miss, the cache allocates a new entry and copies

in data from main memory, then the request is

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 248

fulfilled from the contents of the cache. The

concept of caching occurs everywhere in the

computer world. Anytime you have to access

data from a location that is slow, you may want

to cache a copy at a location which allows you

to access the data faster.

For example, suppose you visit a particular

webpage at a website. Initially, that webpage

may be slow to download. Once downloaded, a

local copy of it is kept on your hard drive.

Thus, your computer's hard drive (or possibly

memory) is being used as a cache for that

webpage. This can sometimes create problem,

especially if the content of the webpage is

always being updated.

These days, hard disks also have memory that

serves as cache. Recall that hard disks are used

to store files. Recall that hard disks are also

slow. So, one idea is to use RAM as a cache for

the disk. As files are accessed, they are placed

in a special area in the RAM just for files.

When you want to edit a file, you check in the

RAM first, and if it is not there, then you check

on the disk. The operating system does that

automatically for you. So, as you can see, the

principle of caching is to use faster memory to

store frequently accessed data.

Cache efficiency pitfalls

In a simple cache scheme, when a miss occurs,

the contents of the cache will be written out. It

is possible for code and data to be in the same

memory line in different blocks of memory. If

this happens, especially in a multitasking

architecture, it could cause constant misses if a

loop were accessing a particular block of

memory. It is common for code of each task

loaded to be aligned at the beginning of a

memory segment which often correlates to the

block size of the cache. As each task is

activated, a miss occurs. The more tasks loaded

the more often the miss.

Caches can be designed to avoid or limit pitfalls

like this.

The cache can be split such that you have

separate caches for data and code. This allows

the same line from the code segment and the

data segment to be loaded at the same time. It

also allows the system to skip the write back on

miss for the code portion of the cache. In

splitting the cache, the designer must decide

whether to double the cache size or half the

number of data and cache lines that can be

cached at any time.

The idea of splitting the cache can be taken one

step further and create additional complete sets

of „N‟cache lines. Now there is a set of „N‟

cache lines available for each line in memory.

A cache of this type is called an N-way set

associative cache, where „N‟ is the number of

duplicate cache lines. This cache requires

additional circuits to search the complete set for

a particular line. Additionally, the size of the

expensive cache memory has increased by „N‟.

In practice, a 2-way or 4-way cache is the best

trade off for improved efficiency vs. cost. With

additional lines in a line set, any memory

reference has to check each copy of the line for

a hit. This takes a little longer but the chances

of a hit have gone up by „N‟. In most modern

computer architectures, the code and data are

kept in separate places in memory.

The hierarchy of Cache

Cache has become so useful, most modern

CPUs often have two levels of cache. They are

called L1 and L2 caches for level 1 and level 2

cache.

Here's how to visualize an L2 cache. Imagine a

State Library (SL), which is bigger than the LL,

but smaller than the VCL. Every book in the

LL is in the State Library SL. However, the SL

has more books than the LL. Every book the SL

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 249

is also in the VCL. Thus, LL is a subset of SL,

which is a subset of VCL.

To access a book, you go to the LL. If it is not

there, you check the SL. If it is not there, you

go to the VCL. That data gets copied to the SL,

then back to the LL, and finally to your

computer.

In principle, you can carry this idea of caching

many, many levels. Each level is a subset of the

next level. The higher the level, the more

memory, and the slower it gets. For example,

we could label the levels of memory as L1, L2,

L3, etc. where all the data in level L1 is a subset

of that in level L2 and so on. When you look

for data at a particular address, you search for it

at the smallest level, and if you could not find it

there, you look at the next level. Once you find

the data you are looking for, you copy it down

to the lower levels, possibly getting rid of a

cache line in the process.

The memory hierarchy would not be very

effective if two facts about programs were not

true. Programs exhibit spatial locality and

temporal locality.

 Spatial locality: Spatial locality says

that if you access memory address x,

you are likely to access memory address

x plus or minus Delta where Delta is a

small number. That is, you are likely to

access addresses very near x in the near

future. Programs exhibit spatial

locality. For example, when you

accessing data from arrays, you are

accessing memory locations that are

contiguous. Also, instructions usually

run sequentially (with the occasional

branch or jump). Since instructions are

contiguous in memory, they exhibit

spatial locality. When you run one

instruction, you are likely to run the

next one too.

 Temporal locality: Temporal locality

says that if you access memory address

x at time t, you are like to access

memory address x at time t +/- Delta.

That is, you are likely to access the

same address sometime soon. This

happens when you run code in a loop.

You access the same instructions over

and over. If you process an array in a

loop, then you access array elements

over and over again too.

How Locality impacts caching

We can go back to our library example.

Suppose you wish to access random books from

the VCL. Each time you download a book, you

would look in the local library. Assuming it is

random, the probability that the book is in the

LL would be low (since it stores only a small

subset of the VCL). So you would have to go to

the Virtual Central Library to find the book.

Since accessing the VCL is very slow, you pay

a fairly large cost (in time) for accessing books.

Furthermore, you have to copy that book from

the VCL to the LL too. We copy the book to the

LL, so it can be cached, and accessed again in

the near future. However, since you are

accessing books randomly, the books in the LL

would not be used in the near future, and you

will always have to access the VCL. In effect,

the LL is useless to you immediately. You get

benefit from using the Local Library if you are

accessing the books found in the LL all the

time. When you search for the same books over

and over, they appear in the LL, and access

time is much smaller to access the LL than the

VCL.

To apply the analogy to hardware, if you want

to access data and it is found in cache, you get

savings in access time, since accessing data (or

instructions) found in the cache is much quicker

than accessing main memory, all the time. On

the other hand, if you do not access data in the

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 250

cache very often, then the cache is not useful,

and may in fact, cause a small delay than not

having the cache at all.

The principles of spatial and temporal locality

are applied to cache design. Temporal locality

is simple. You simply place data in the cache,

because it is likely to be accessed in the near

future. Since cache access is quicker than

physical memory (RAM) access, placing data

you just used into the cache should make it

much quicker to access in the near future.

What about spatial locality? This says that if

you access address X, you are likely to access

memory address x plus or minus Delta where

Delta is a small number addresses near X too.

Spatial locality suggests the following strategy

when accessing data. Load the data from many

contiguous addresses near X from RAM into

the cache. That is, copy a block of data from

memory to cache. This idea would not be so

great if it were not quicker to access the entire

block at once, as opposed to accessing the bytes

one at a time. This makes some sense if you

think about it. Suppose you were ordering

books. If ordering 10 books at once took just as

much time as ordering each book individually,

then there is no need to order 10 books at a

time. Just order them whenever you want them.

How Cache is organized (Cache mapping)

Cache is organized in three basic manners,

namely: Fully Associative, Direct-mapped, Set

Associative.

In fully associative mapping, instead of hard-

allocating cache lines to particular memory

locations, it is possible to design the cache so

that any line can store the content of any

memory location. When a request is made to

the cache, the requested address is compared in

a directory against all entries in the directory. If

the requested address is found (a directory hit),

the corresponding location in the cache is

fetched and returned to the processor;

otherwise, a miss occurs.

In a direct mapped cache, lower order line

address bits are used to access the directory.

Since multiple line addresses map into the same

location in the cache directory, the upper line

address bits (tag bits) must be compared with

the directory address to ensure a hit. If a

comparison is not valid, the result is a cache

miss, or simply a miss. The simplest way to

allocate the cache to the system memory is to

determine how many cache lines there are

(16,384 for example) and just chop the system

memory into the same number of chunks. Then

each chunk gets the use of one cache line. This

is called direct mapping. So if we have 64 MB

of main memory addresses, each cache line

would be shared by 4,096 memory addresses

(64 M divided by 16 K).

The set associative cache operates in a fashion

somewhat similar to the direct-mapped cache.

This is a compromise between the direct

mapped and fully associative designs. In this

case the cache is broken into sets where each

set contains "N" cache lines, let's say 4. Then,

each memory address is assigned a set, and can

be cached in any one of those 4 locations within

the set that it is assigned to. In other words,

within each set the cache is associative, and

thus the name.

This design means that there are "N" possible

places that a given memory location may be in

the cache. The tradeoff is that there are "N"

times as many memory locations competing for

the same "N" lines in the set. Let's suppose in

our example that we are using a 4-way set

associative cache. So instead of a single block

of 16,384 lines, we have 4,096 sets with 4 lines

in each. Each of these sets is shared by 16,384

memory addresses (64 M divided by 4 K)

instead of 4,096 addresses as in the case of the

direct mapped cache. So there is more to share

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 251

(4 lines instead of 1) but more addresses

sharing it (16,384 instead of 4,096).

Indeed, the direct-mapped and fully associative

caches are just special cases of the set

associative cache. This is because, if you set

your “N” to 1, then you have 1-way set

associative cache. That means there is only one

line per set, which is the same as a direct-

mapped cache because each memory address is

back to pointing to only one possible cache

location. On the other hand, suppose you set your

"N" really large; say, you set "N" to be equal to the

number of lines in the cache (16,384 in our

example). If you do this, then you only have one set,

containing all of the cache lines, and every memory

location points to that huge set. This means that any

memory address can be in any line, and you are

back to a fully associative cache.

Cache Slots

When you choose a slot to be evicted, you look

at the dirty bit. A slot consists of the following:

 V, the valid bit, indicating whether

the slot holds valid data. If V = 1,

then the data is valid. If V = 0, the

data is not valid. Initially, it is

invalid until data is placed into it.

 D, the dirty bit. This bit only has

meaning if V = 1. This indicates that

the data in the slot has been

modified (written to) or not. If D =

1, the data has been modified since

being in the cache. If D = 0, then the

data is the same as it was when it

first entered the cache.

 Tag: The tag represents the upper

bits of the address, which includes

the copied data as well as the

requested memory location. The tag

contains (part of) the address of the

actual data fetched from the main

memory.

 Cache Line This is the actual data

itself. There are N bytes, where N is

a power of 2. We will also call this

the data block.

Cache Hits and Cache Misses

When you look for data at a given address, and

find it stored in cache, then you have a cache

hit. If you do not find the data, then it is a cache

miss. You want to maximize cache hits, because

then you have much improved performance

(speed). But what happens in a cache miss?

As you run your program, it needs data at an

address. This can either be the address of actual

data being loaded or stored, or it can be the

address of an instruction.

You look for the address to see if it is one of the

addresses in cache. If the address (and its

contents) is NOT in the cache, then you must

access it from main memory. This means that

you must copy the data from memory to the

cache. Since the cache is a small subset of

main memory, there may be data that you need

to remove from the cache (just as you had to

remove books from your computer, if you

needed other books to replace it).

Categories of Cache Misses

We can subdivide cache misses into one of

three categories: compulsory miss, conflict miss,

and capacity miss.

Compulsory miss (or cold miss) occurs when

there is little or no data in the cache. Initially,

you are going to have a cache miss, no matter

how big the cache is, and no matter how many

bytes the cache line contains. Once a program

has been running, the cache becomes more fully

utilized, and such misses don't occur.

Conflict miss usually occurs in direct-mapped

caches. Two cache lines may map to the same

cache slot, even as there may be empty slots

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 252

that could store both cache lines. Such a

conflict would force an unnecessary eviction of

a cache line, but this is the price you pay for

direct-mapped cache. Set-associative caches

have this problem too, to a lesser degree. Fully

associative caches avoid this kind of problem.

Capacity miss can be one of two sorts. One is a

miss that would not have occurred if the cache

size were larger (more slots). The other occurs

with the number of bytes in a cache line.

Suppose you are processing a large int array. If

the cache line has 16 bytes, you will get a cache

miss after processing 4 elements of the array.

Had the cache line been larger, you would not

have had this miss. These misses also occur in

virtual memory.

Types of Caches

Caches are differentiated by the way they

handle updates to the cache. Caching systems

typically come in one of three forms: Write-

through, Write-around, Write-back.

Write-through: Updates (writes) to the data

being cached are written both to the cache and

to the primary copy. A write is not considered

complete until the write to the primary is

completed. This says that you update main

memory at the same time you update cache.

Write-through caches tend to be the most

common because they provide a good balance

of performance and reliability. A block of data

can get into the cache by an application either

reading or writing data. Once data is read or

written, any subsequent read of the block is

quickly returned to the application from the

cache instead of slower primary storage.

Write-around: The cache contains only copies

of data that have been READ. Updates to data

are not written to the cache. They go only to

primary storage. A write-around cache behaves

just like a write-through cache, except that the

cache cannot receive blocks of data from a

write operation. A write cannot cause a block to

initially be placed into the cache, but if a write

causes an update to a block already residing in

the cache, then the cached block is updated.

Write-around caches are used when the

application is writing a lot of data that is seldom

accessed shortly after the write occurs. This

approach avoids populating the cache with data

that might not be frequently accessed. There are

few, select systems that benefit significantly

from write-around caches.

Write-back: Updates are written only to the

cache. Afterwards, and in the background, the

cached data is used to update the primary

storage. This says that you update main

memory only when the cache line is evicted.

Otherwise, only update the cache

All caches have one additional similarity; they

all are of finite size and therefore need to

manage their limited ability to store active data.

All caches have replacement algorithms that

determine when more recently accessed data

should be retained and therefore manage when

older data can be safely released from the cache

and the space reclaimed. A write-back cache

stores both read and write requests directly in

the cache, so it can significantly speed up both

reading and writing operations. However, write-

back caches have the added complexity of

ensuring that the cached write block eventually

reaches primary storage. This approach requires

handling a number of error conditions to protect

against data corruption if the cache and the

primary storage get out of synch. This added

complexity and risk reduces the popularity of

write-back caches, so they are deployed much

less frequently than write-through or write-

around caches.

Summary

One major advantage of cache is that it holds or

stores data that are frequently used by the

processor. It is a mechanism used to store

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 253

frequently accessed data in fast memory. Cache

is a subset of the data found in RAM, which

means any data you find in cache, you can also

find in RAM. When data at an address is

needed, the CPU first searches in the cache. If it

finds it there, then a load or store is performed

to or from a register. If a cache miss occurs,

then a cache line needs to be copied from main

memory to a slot in a cache, which may require

the eviction of a slot. In an inclusive scheme,

L1 data would have to be stored into the L2

cache. If the L2 is write back (as is the case

with pretty much any CPU), then it frees the

CPU core up since the write back logic is part

of the L2 cache, not the core.

Ideally, you want the percentage of cache hits

to be high, to give the illusion that all the useful

data is in the cache, and being accessed at the

speed of the cache, as opposed to the speed of

main memory. How effective this is depends on

how much spatial and temporal locality, the

mapping and replacement policy, of the

scheme.

Conclusion

One problem caches have to address is keeping

the data copies consistent. Cache is always

stored for later use. If you are using something

stored, the chance is that you are not getting the

newest version of it. When a web page is

cached, for example, what happens if that

original page gets modified? Subsequent reads

of that data require checking that the cached

copy is current. Caches can also be used to

speed writes. In this case, the caching

technology must ensure that when the cached

copy is updated, the primary copy of data is

always protected and up-to-date. Caching must

also take into account the possibility that the

primary copy of the data has been modified

from another source, rendering the copy in the

cache now obsolete.

Caching only benefits situations where data is

accessed repeatedly. In situations where data is

accessed only once and not again for a very

long time (such as a single person playing

music or watching a movie), caching provides

very little benefit. But in the case of a web

server that is responding to requests for the

same web pages over and over, caching can

dramatically improve performance.

Ideally, an exclusive cache scheme will give

you the most available room to store

information. However, the scheme requires

more logic and, similar to increasing

associativity, there comes a point when the

logic required to perform the task is not

justified by the benefits. This is especially true

when the lower level cache is much smaller in

size compared to the higher levels of cache. The

case of the original Pentium4 is instructive. It

has a separate high speed trace cache and a

small L1 data cache with a large unified L2

cache. So, Intel would have needed to put in

logic to save some space. P4 is optimized by

design for streaming data. In that case, an

exclusive cache hierarchy would be useless

since you would be filling the L2 cache with

new information on every bus cycle. The 8kB is

probably sufficient to store basic data for

simple, non-streaming threads.

References

[1.] Anderson T., Gupta A, and Martonosi M.

(2013). Computer System Laboratory.

Stanford, CA.

[2.] Bianchi, G., Detti, A., Caponi, A., and

Melazzi, N.B., (2013). Check before

storing: what is the performance price of

content integrity verification in lru

caching?. SIGCOMM Comput. Comm.

Rev. , vol. 43, pp. 59–67.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 254

[3.] Castro, R.S, Lago, A.P and Silva, D.D

(2003). Adaptive Compressed Caching:

Design and Implementation. In Proceedings

of the 15th Symposium on Computer

Architecture and High Performance

Computing.

[4.] Che, H., Tung, Y, and Wang, Z (2002).

Hierarchical Web caching systems:

modeling, design and experimental results.

IEEE JSAC, vol. 20, no. 7, pp. 1305–1314,

2002.

[5.] Daintith, J. (2014). Memory hierarchy. A

Dictionary of Computing.

Encyclopedia.com.URL:http://www.encycl

opedia.com/doc/1O11-

memoryhierarchy.html

[6.] Dan, A. and Towsley, D. (1990). An

approximate analysis of the LRU and FIFO

buffer replacement schemes. SIGMETRICS

Perform. Eval. Rev. , vol. 18, pp. 143–152.

[7.] Fink, M. (2014). The end of a necessary

evil: collapsing the memory hierarchy.

Retrieved 9/04/2015. 10:44 am. URL:

http://www8.hp.com/hpnext/posts/end-

necessary-evil-collapsing-memory-

hierarchy#.VSZJRy4k3XQ

[8.] Fricker, C., Robert, P., and Roberts, J.

(2012). A versatile and accurate

approximation for lru cache performance

ITC.

[9.] Gallo, M., Kauffmann, B., Muscariello, L.,

Simonian, A., and Tanguy, C., (2012).

Performance evaluation of the random

replacement policy for networks of caches.

SIGMETRICS Perf. Eval. Rev. , vol. 40(1),

pp. 395–396.

[10.] Gupta, A., and Rothberg, E. (1982)

Parallel ICCG on a Hierarchical Memory

Multiprocessor:Addressing the Triangular

Solve Bottleneck. Technical Report CSL-

TR-90-449, Stanford University Computer

Systems Laboratory.

[11.] Higbee L. Quick and easy cache

performance analysis. ACM Sigarch

Computer Architecture News. Vol 18, No.

2, 1990. Pages 33-44. NY, USA

[12.] Intel Corporation (2002). Intel

Architecture Software Developer's Manual,

Volume 1: Basic Architecture.

URL:ftp://download.intel.com/design/PentiumII

/manuals/24319002.pdf

[13.] Jiang, W. Ioannidis, S. Massouli ́e,

L. and Picconi, F. (2012). Orchestrating

massively distributed CDNs. ACM

CoNEXT.

[14.] Rosenthal, D. (2014). Bringing data

infrastructures to horizon2020. Economic

Sustainability of Digital Preservation. 3rd

UPDATE Conference. Amsterdam, The

Netherlands. p. 10.

[15.] Rosenthal, D.S.H. (2010). Keeping

Bits Safe: How Hard Can It Be?. ACM

Queue. Retrieved 5/04/2014.

URL:http://queue.acm.org/detail.cfm?id=18

66298

[16.] Rosensweig, E., Kurose, J., and

Towsley, D. (2010). Approximate Models

for General Cache Networks. INFOCOM.

[17.] Shibu, A. (2014). Different types of

mappings used in cache memory. Computer

Architecture & Design.

CareerRide.com.www.careerride.com/view.

aspx?id=2274. Retrieved 8/04/2014

[18.] Wikipedia. (2013). Performance

Tuning.URL:http://en.wikipedia.org/wiki/Perfo

rmance_tuning

http://www.encyclopedia.com/doc/1O11-memoryhierarchy.html
http://www.encyclopedia.com/doc/1O11-memoryhierarchy.html
http://www.encyclopedia.com/doc/1O11-memoryhierarchy.html
http://www8.hp.com/hpnext/posts/end-necessary-evil-collapsing-memory-hierarchy#.VSZJRy4k3XQ
http://www8.hp.com/hpnext/posts/end-necessary-evil-collapsing-memory-hierarchy#.VSZJRy4k3XQ
http://www8.hp.com/hpnext/posts/end-necessary-evil-collapsing-memory-hierarchy#.VSZJRy4k3XQ
ftp://download.intel.com/design/PentiumII/manuals/24319002.pdf
ftp://download.intel.com/design/PentiumII/manuals/24319002.pdf
ftp://download.intel.com/design/PentiumII/manuals/24319002.pdf
http://www.eudat.eu/events/3rd-conference-sustainability-plenary
http://www.eudat.eu/events/3rd-conference-sustainability-plenary
http://www.eudat.eu/events/3rd-conference-sustainability-plenary
http://eudat.eu/3rd-eudat-conference
http://eudat.eu/3rd-eudat-conference
http://eudat.eu/3rd-eudat-conference
http://queue.acm.org/detail.cfm?id=1866298
http://queue.acm.org/detail.cfm?id=1866298
http://queue.acm.org/detail.cfm?id=1866298
http://www.careerride.com/view.aspx?id=2274
http://www.careerride.com/view.aspx?id=2274
http://www.careerride.com/view.aspx?id=2274
http://en.wikipedia.org/wiki/Performance_tuning
http://en.wikipedia.org/wiki/Performance_tuning
http://en.wikipedia.org/wiki/Performance_tuning

