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Abstract 

Cache (pronounced cash) memory is extremely 

fast memory that is built into a computer’s 

central processing unit (CPU), or located next 

to it on a separate chip. The CPU uses cache 

memory to store instructions that are 

repeatedly required to run programs, 

improving overall system speed. The advantage 

of cache memory is that the CPU does not have 

to use the motherboard’s system bus for data 

transfer. Whenever data must be passed 

through the system bus, the data transfer speed 

slows down to the motherboard’s capability. 

The CPU can process data much faster by 

avoiding the bottleneck created by the system 

bus.  Data is transferred between memory and 

cache in blocks of fixed sizes, called cache 

lines. When a cache line is copied from memory 

into the cache, a cache entry is created. The 

cache entry will include the copied data as well 

as the requested memory location called a tag.  

When the processor needs to read or write a 

location in main memory, it first checks for a 

corresponding entry in the cache. If the 

processor finds that the memory location is in 

the cache, a cache hit has occurred. However, 

if the processor does not find the memory 

location in the cache, a cache miss has 

occurred.  In order to make room for the new 

entry on a cache miss, the cache may have to 

evict one of the existing entries.  In a simple 

cache scheme, when a miss occurs, the contents 

of the cache will be written out. It is possible 

for code and data to be in the same memory 

line in different blocks of memory. If this 

happens, especially in a multitasking 

architecture, it could cause constant misses if a 

loop were accessing a particular block of 

memory. It is common for code of each task 

loaded to be aligned at the beginning of a  

 

memory segment which often correlates to the 

block size of the cache.  As each task is 

activated, a miss occurs. The more tasks loaded 

the more often the miss.  Caches can be 

designed to avoid or limit pitfalls like this.  This 

thesis looks at ways to avoid pitfalls such as 

described.  It also looks at the heuristic that the 

cache uses to choose the entry to evict.  The 

bottleneck created by the system bus as the 

CPU processes data, will also be discussed.  

Furthermore, this thesis will look at the entire 

caching scheme, including the cache lines, the 

replacement policy, cache mapping, cache 

associativity, and when not to use the caching 

technology. 

Keywords:  

Cache-lines; Cache-mapping; Associativity; 

Spatial Locality; Temporal Locality; 

Sequentiality; LFU; MRU 

Introduction  

Memory (RAM) is often the bottleneck when 

executing code. This is an important fact to 

remember. You may have, say, 2 GHz 

machines, but typical RAM cannot retrieve 

instructions from memory at that speed.  

A solution is to use small, but fast memories. 

For example, accessing registers is very quick, 

while accessing RAM is comparatively slow. 

This suggests that if we want speed, we need 

more registers, and hope that most data stay in 

the registers, and that we rarely need to access 

RAM.  
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This is not a reasonable assumption because 

registers simply do not hold enough memory.  

However, if we can use small, fast memory, 

then it is going to be called cache, and cache 

memory is faster than RAM, but slower than 

registers, and we can keep the most commonly 

used data (or instructions) in the cache. Cache 

can hold more data (typically 512 K or so) than 

a register (typically 128 bytes).  

There is a basic principle about memory. If you 

want lots of memory, it will not cost you much 

but it is slow to access data. If you want very 

fast memory, it will be small (holding little 

data) and expensive per byte of memory. The 

goal of the cache is to put frequently accessed 

data in a place where it can be more quickly 

and efficiently accessed. If a web page can be 

read from local disk instead of going onto the 

Internet, the page can be displayed faster by the 

browser. 

In the simplest model of a computer, there is a 

CPU, and there is physical memory (RAM) and 

there is a bus to connect the two. Over the 

years, computers have become more 

sophisticated, and implementation of memory 

systems has also become more sophisticated.  

 

 

In particular, RISC (Reduced Instruction Set 

Computing) machines became popular. Even 

though Intel processors dominate the market, 

they use a lot of RISC ideas.  

Basically, in RISC, some complex instructions 

were eliminated in favor of running several 

simpler instructions that did the same task. 

Initially, RISC used as few instructions as they 

could get away with. Over time, people realized 

this was not a reasonable way to develop an 

Industry Standard Architecture (ISA). The 

decision about which instructions to keep and 

which instructions to get rid of was based on 

benchmark programs. If simulations showed 

that including an instruction in the ISA would 

improve performance (speed) in many typical 

programs, then the instruction was kept in the 

ISA. Otherwise, it was discarded.  As a result, a 

typical RISC program might contain many 

more instructions than its equivalent CISC 

(Complex Instruction Set Computing) program, 

since it may take more RISC instructions to run 

the equivalent CISC code. 

Since about 1990, cache has become 

increasingly important. It lies between registers 

and physical memory in terms of size and 

speed. From slowest to fastest: disk, RAM, 

cache, registers.  Normally, one thinks of 

memory in three levels: registers, RAM 

(physical memory) and disk. This forms part of 

the memory hierarchy.  

 

 
On the left are registers. They give you the fastest access 

time. 
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Cache Replacement Policies 

 

Consider that you are planning to write a very 

long paper on the history of Democracy in 

many different countries. You start with United 

Kingdom, and work your way to America, 

Australia, Russia, Asia, Nigeria, etc. You 

divided your paper so that each chapter covers 

one democracy.  

You have a computer on your desk, and get 

your books online. You can download only so 

many books because your computer is limited 

in memory. The advantage of downloading the 

books onto your own computer is so that you 

can access the materials quickly. Downloading 

the books is quite slow, so you hope not to do it 

very often.  If it were not for the fact that you 

collect related books and write from those 

books on each chapter, you might be forever 

downloading books. Even though the majority 

of books remain at the central library site, the 

books you need are on your computer, which is 

quick to access.  

What happens if you have already downloaded 

10 books (assuming maximum available space), 

and you want the 11th book? You will need to 

delete one of your books off your computer, to 

make room for the next book. Which one 

should you pick? You could pick the one that 

you have not read in the longest time. That 

policy is called "least recently used". Or you 

could see which book you have had on your 

computer the longest time. That policy is called 

"first in first out". Or perhaps the one you have 

looked at the least number of times. That is 

called "least frequently used".  In any case, you 

use some policy to decide which book to get rid 

of to make space for the new book.  

Extending this illustration 

Let us assume your computer can still store 10 

books. There are two sites you can access 

books. There is the Virtual Central Library 

(VCL), which has any book that you might 

want, and there is also a Local Library (LL).  

Whenever you want to access a book, you will 

look in the Local Library (LL) first. If it is 

there, you will copy the book to your own 

computer. If it is not there, the LL will contact 

the Virtual Central Library (VCL). The LL will 

copy the book to its own library (possibly 

removing a book from the LL to make space), 

and then you will copy the book from the LL to 

your own computer. The LL is much smaller 

than the VCL, but can store more books than 

you can on your computer.  Thus, the LL serves 

as a middle man. If the book you want is in the 

LL, you access it much faster than if you have 

to download it from the Virtual Central Library 

(VCL).  

If it takes 1 second to access the LL, and 100 

seconds to access the VCL when you are unable 

to find the book in the LL, you spend 100 

seconds getting a copy from the VCL to the LL, 

and one more second to get it from the LL to 

your local computer. Thus, it is actually slower 

to use the LL if the book you are looking for is 

not there. 

Cache works very similarly. Basically, you 

want some data (or an instruction) at some 

address. This data either appears in the cache 

(which is like the LL) or it is not. If it is not 

there, you need to access the data from RAM 

(which is like the VCL). This data is then 

copied to the cache, and then from the cache to 

the registers. Thus, the registers act like your 

local computer.  

Cache Replacement Algorithms (Policy)  

 

A cache algorithm is a detailed list of 

instructions that decides which items should be 

discarded in a computer's cache of information.  

In order to make room for the new entry on a 

cache miss, the cache may have to evict one of 

the existing entries. The heuristic that it uses to 
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choose the entry to evict is called the 

replacement algorithm or policy. The 

fundamental problem with any replacement 

policy is that it must predict which existing 

cache entry is least likely to be used in the 

future. 

 

Suppose you have a cache miss, and all the 

slots in the cache are being used. You will now 

have to pick a slot to get rid of. You are 

evicting a cache line. Which slot should you 

pick? 

There are many replacement policies, 

including; LRU, LFU, FIFO.  

LRU (Least Recently Used): 

One popular replacement policy is the least-

recently used (LRU), which replaces the least 

recently accessed entry.  Marking some 

memory ranges as non-cacheable can improve 

performance, by avoiding caching of memory 

regions that are rarely re-accessed. This avoids 

the overhead of loading something into the 

cache without having any reuse.  A good 

approximation to this algorithm is based on the 

observation those slots that have been heavily 

used in the last few instructions will probably 

be heavily used again in the next few. 

Conversely, slots that have not been used for 

ages will probably remain unused for a long 

time. This idea suggests a realizable algorithm: 

when a miss occurs, throw out the slot that has 

been unused for the longest time. This strategy 

is called LRU (Least Recently Used) caching. 

 

LFU (Least Frequently Used) 

This algorithm discards the least recently used 

items first.  In other words, it discards the slot 

that been used the least often.  This algorithm 

requires keeping track of what was used and 

when.  It is expensive if one wants to make sure 

the algorithm always discards the least recently 

used item. General implementations of this 

technique require keeping age bits for cache-

lines and tracking the Least Recently Used 

cache-line based on age-bits. In such an 

implementation, every time a cache-line is 

used, the age of all other cache-lines changes. 

 

FIFO (First In First Out) 

First In First Out algorithm picks the slot that 

has been in the cache the longest (which is 

NOT the same as LRU).  

These policies often require additional 

hardware to indicate time of use or frequency of 

use.  

When you are programming in assembly, you 

are not even aware of the cache. Much of the 

actual interactions with cache are handled by 

the hardware and the operating system.  

Cache Line 

A cache line is the unit of data you transfer to a 

cache. The size of this unit (or chunk of 

memory) is called the cache-line size.  

Common cache-line sizes are 32, 64, 128 bytes. 

Data is transferred between memory and cache 

in blocks of fixed sizes, called cache lines. 

When a cache line is copied from memory into 

the cache, a cache entry is created. The cache 

entry will include the copied data as well as the 

requested memory location called a tag. 

When the processor needs to read or write a 

location in main memory, it first checks for a 

corresponding entry in the cache. The cache 

checks for the contents of the requested 

memory location in any cache lines that might 

contain that address. If the processor finds that 

the memory location is in the cache, a cache hit 

has occurred. However, if the processor does 

not find the memory location in the cache, a 

cache miss has occurred. In the case of a cache 

hit, the processor immediately reads or writes 

the data in the cache line.  In the case of a cache 

miss, the cache allocates a new entry and copies 

in data from main memory, then the request is 
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fulfilled from the contents of the cache.  The 

concept of caching occurs everywhere in the 

computer world. Anytime you have to access 

data from a location that is slow, you may want 

to cache a copy at a location which allows you 

to access the data faster.  

For example, suppose you visit a particular 

webpage at a website. Initially, that webpage 

may be slow to download. Once downloaded, a 

local copy of it is kept on your hard drive.  

Thus, your computer's hard drive (or possibly 

memory) is being used as a cache for that 

webpage. This can sometimes create problem, 

especially if the content of the webpage is 

always being updated.  

These days, hard disks also have memory that 

serves as cache. Recall that hard disks are used 

to store files. Recall that hard disks are also 

slow. So, one idea is to use RAM as a cache for 

the disk. As files are accessed, they are placed 

in a special area in the RAM just for files. 

When you want to edit a file, you check in the 

RAM first, and if it is not there, then you check 

on the disk. The operating system does that 

automatically for you.  So, as you can see, the 

principle of caching is to use faster memory to 

store frequently accessed data.  

Cache efficiency pitfalls 

In a simple cache scheme, when a miss occurs, 

the contents of the cache will be written out. It 

is possible for code and data to be in the same 

memory line in different blocks of memory. If 

this happens, especially in a multitasking 

architecture, it could cause constant misses if a 

loop were accessing a particular block of 

memory. It is common for code of each task 

loaded to be aligned at the beginning of a 

memory segment which often correlates to the 

block size of the cache.  As each task is 

activated, a miss occurs. The more tasks loaded 

the more often the miss. 

Caches can be designed to avoid or limit pitfalls 

like this. 

The cache can be split such that you have 

separate caches for data and code. This allows 

the same line from the code segment and the 

data segment to be loaded at the same time. It 

also allows the system to skip the write back on 

miss for the code portion of the cache.  In 

splitting the cache, the designer must decide 

whether to double the cache size or half the 

number of data and cache lines that can be 

cached at any time. 

The idea of splitting the cache can be taken one 

step further and create additional complete sets 

of „N‟cache lines. Now there is a set of „N‟ 

cache lines available for each line in memory. 

A cache of this type is called an N-way set 

associative cache, where „N‟ is the number of 

duplicate cache lines.  This cache requires 

additional circuits to search the complete set for 

a particular line. Additionally, the size of the 

expensive cache memory has increased by „N‟. 

In practice, a 2-way or 4-way cache is the best 

trade off for improved efficiency vs. cost.  With 

additional lines in a line set, any memory 

reference has to check each copy of the line for 

a hit. This takes a little longer but the chances 

of a hit have gone up by „N‟.  In most modern 

computer architectures, the code and data are 

kept in separate places in memory. 

The hierarchy of Cache 

Cache has become so useful, most modern 

CPUs often have two levels of cache. They are 

called L1 and L2 caches for level 1 and level 2 

cache.  

Here's how to visualize an L2 cache. Imagine a 

State Library (SL), which is bigger than the LL, 

but smaller than the VCL.  Every book in the 

LL is in the State Library SL. However, the SL 

has more books than the LL. Every book the SL 
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is also in the VCL. Thus, LL is a subset of SL, 

which is a subset of VCL.  

To access a book, you go to the LL. If it is not 

there, you check the SL. If it is not there, you 

go to the VCL. That data gets copied to the SL, 

then back to the LL, and finally to your 

computer.  

In principle, you can carry this idea of caching 

many, many levels. Each level is a subset of the 

next level. The higher the level, the more 

memory, and the slower it gets. For example, 

we could label the levels of memory as L1, L2, 

L3, etc. where all the data in level L1 is a subset 

of that in level L2 and so on.  When you look 

for data at a particular address, you search for it 

at the smallest level, and if you could not find it 

there, you look at the next level. Once you find 

the data you are looking for, you copy it down 

to the lower levels, possibly getting rid of a 

cache line in the process.  

The memory hierarchy would not be very 

effective if two facts about programs were not 

true. Programs exhibit spatial locality and 

temporal locality.  

 Spatial locality: Spatial locality says 

that if you access memory address x, 

you are likely to access memory address 

x plus or minus Delta where Delta is a 

small number. That is, you are likely to 

access addresses very near x in the near 

future.   Programs exhibit spatial 

locality.  For example, when you 

accessing data from arrays, you are 

accessing memory locations that are 

contiguous. Also, instructions usually 

run sequentially (with the occasional 

branch or jump). Since instructions are 

contiguous in memory, they exhibit 

spatial locality. When you run one 

instruction, you are likely to run the 

next one too.  

 Temporal locality: Temporal locality 

says that if you access memory address 

x at time t, you are like to access 

memory address x at time t +/- Delta. 

That is, you are likely to access the 

same address sometime soon. This 

happens when you run code in a loop. 

You access the same instructions over 

and over. If you process an array in a 

loop, then you access array elements 

over and over again too.  

How Locality impacts caching  

We can go back to our library example. 

Suppose you wish to access random books from 

the VCL.  Each time you download a book, you 

would look in the local library. Assuming it is 

random, the probability that the book is in the 

LL would be low (since it stores only a small 

subset of the VCL). So you would have to go to 

the Virtual Central Library to find the book. 

Since accessing the VCL is very slow, you pay 

a fairly large cost (in time) for accessing books.  

Furthermore, you have to copy that book from 

the VCL to the LL too. We copy the book to the 

LL, so it can be cached, and accessed again in 

the near future. However, since you are 

accessing books randomly, the books in the LL 

would not be used in the near future, and you 

will always have to access the VCL.  In effect, 

the LL is useless to you immediately. You get 

benefit from using the Local Library if you are 

accessing the books found in the LL all the 

time. When you search for the same books over 

and over, they appear in the LL, and access 

time is much smaller to access the LL than the 

VCL.  

To apply the analogy to hardware, if you want 

to access data and it is found in cache, you get 

savings in access time, since accessing data (or 

instructions) found in the cache is much quicker 

than accessing main memory, all the time. On 

the other hand, if you do not access data in the 
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cache very often, then the cache is not useful, 

and may in fact, cause a small delay than not 

having the cache at all.  

The principles of spatial and temporal locality 

are applied to cache design. Temporal locality 

is simple. You simply place data in the cache, 

because it is likely to be accessed in the near 

future. Since cache access is quicker than 

physical memory (RAM) access, placing data 

you just used into the cache should make it 

much quicker to access in the near future.  

What about spatial locality? This says that if 

you access address X, you are likely to access 

memory address x plus or minus Delta where 

Delta is a small number addresses near X too.  

Spatial locality suggests the following strategy 

when accessing data. Load the data from many 

contiguous addresses near X from RAM into 

the cache. That is, copy a block of data from 

memory to cache. This idea would not be so 

great if it were not quicker to access the entire 

block at once, as opposed to accessing the bytes 

one at a time. This makes some sense if you 

think about it. Suppose you were ordering 

books. If ordering 10 books at once took just as 

much time as ordering each book individually, 

then there is no need to order 10 books at a 

time. Just order them whenever you want them. 

How Cache is organized (Cache mapping) 

Cache is organized in three basic manners, 

namely: Fully Associative, Direct-mapped, Set 

Associative. 

In fully associative mapping, instead of hard-

allocating cache lines to particular memory 

locations, it is possible to design the cache so 

that any line can store the content of any 

memory location.  When a request is made to 

the cache, the requested address is compared in 

a directory against all entries in the directory. If 

the requested address is found (a directory hit), 

the corresponding location in the cache is 

fetched and returned to the processor; 

otherwise, a miss occurs. 

In a direct mapped cache, lower order line 

address bits are used to access the directory. 

Since multiple line addresses map into the same 

location in the cache directory, the upper line 

address bits (tag bits) must be compared with 

the directory address to ensure a hit. If a 

comparison is not valid, the result is a cache 

miss, or simply a miss. The simplest way to 

allocate the cache to the system memory is to 

determine how many cache lines there are 

(16,384 for example) and just chop the system 

memory into the same number of chunks. Then 

each chunk gets the use of one cache line. This 

is called direct mapping. So if we have 64 MB 

of main memory addresses, each cache line 

would be shared by 4,096 memory addresses 

(64 M divided by 16 K). 

The set associative cache operates in a fashion 

somewhat similar to the direct-mapped cache. 

This is a compromise between the direct 

mapped and fully associative designs. In this 

case the cache is broken into sets where each 

set contains "N" cache lines, let's say 4. Then, 

each memory address is assigned a set, and can 

be cached in any one of those 4 locations within 

the set that it is assigned to. In other words, 

within each set the cache is associative, and 

thus the name. 

This design means that there are "N" possible 

places that a given memory location may be in 

the cache. The tradeoff is that there are "N" 

times as many memory locations competing for 

the same "N" lines in the set. Let's suppose in 

our example that we are using a 4-way set 

associative cache. So instead of a single block 

of 16,384 lines, we have 4,096 sets with 4 lines 

in each. Each of these sets is shared by 16,384 

memory addresses (64 M divided by 4 K) 

instead of 4,096 addresses as in the case of the 

direct mapped cache. So there is more to share 
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(4 lines instead of 1) but more addresses 

sharing it (16,384 instead of 4,096). 

Indeed, the direct-mapped and fully associative 

caches are just special cases of the set 

associative cache. This is because, if you set 

your “N” to 1, then you have 1-way set 

associative cache.  That means there is only one 

line per set, which is the same as a direct-

mapped cache because each memory address is 

back to pointing to only one possible cache 

location.  On the other hand, suppose you set your 

"N" really large; say, you set "N" to be equal to the 

number of lines in the cache (16,384 in our 

example). If you do this, then you only have one set, 

containing all of the cache lines, and every memory 

location points to that huge set. This means that any 

memory address can be in any line, and you are 

back to a fully associative cache. 

Cache Slots    

When you choose a slot to be evicted, you look 

at the dirty bit.  A slot consists of the following:  

 V, the valid bit, indicating whether 

the slot holds valid data. If V = 1, 

then the data is valid. If V = 0, the 

data is not valid. Initially, it is 

invalid until data is placed into it. 

 D, the dirty bit. This bit only has 

meaning if V = 1. This indicates that 

the data in the slot has been 

modified (written to) or not. If D = 

1, the data has been modified since 

being in the cache. If D = 0, then the 

data is the same as it was when it 

first entered the cache.  

 Tag: The tag represents the upper 

bits of the address, which includes 

the copied data as well as the 

requested memory location.  The tag 

contains (part of) the address of the 

actual data fetched from the main 

memory. 

 Cache Line This is the actual data 

itself. There are N bytes, where N is 

a power of 2. We will also call this 

the data block.  

Cache Hits and Cache Misses  

 

When you look for data at a given address, and 

find it stored in cache, then you have a cache 

hit. If you do not find the data, then it is a cache 

miss. You want to maximize cache hits, because 

then you have much improved performance 

(speed). But what happens in a cache miss? 

As you run your program, it needs data at an 

address. This can either be the address of actual 

data being loaded or stored, or it can be the 

address of an instruction.  

You look for the address to see if it is one of the 

addresses in cache. If the address (and its 

contents) is NOT in the cache, then you must 

access it from main memory. This means that 

you must copy the data from memory to the 

cache.  Since the cache is a small subset of 

main memory, there may be data that you need 

to remove from the cache (just as you had to 

remove books from your computer, if you 

needed other books to replace it).  

Categories of Cache Misses  

We can subdivide cache misses into one of 

three categories: compulsory miss, conflict miss, 

and capacity miss. 

Compulsory miss (or cold miss) occurs when 

there is little or no data in the cache. Initially, 

you are going to have a cache miss, no matter 

how big the cache is, and no matter how many 

bytes the cache line contains. Once a program 

has been running, the cache becomes more fully 

utilized, and such misses don't occur.  

Conflict miss usually occurs in direct-mapped 

caches. Two cache lines may map to the same 

cache slot, even as there may be empty slots 
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that could store both cache lines. Such a 

conflict would force an unnecessary eviction of 

a cache line, but this is the price you pay for 

direct-mapped cache. Set-associative caches 

have this problem too, to a lesser degree. Fully 

associative caches avoid this kind of problem.  

Capacity miss can be one of two sorts. One is a 

miss that would not have occurred if the cache 

size were larger (more slots). The other occurs 

with the number of bytes in a cache line. 

Suppose you are processing a large int array. If 

the cache line has 16 bytes, you will get a cache 

miss after processing 4 elements of the array. 

Had the cache line been larger, you would not 

have had this miss. These misses also occur in 

virtual memory. 

Types of Caches 

Caches are differentiated by the way they 

handle updates to the cache. Caching systems 

typically come in one of three forms: Write-

through, Write-around, Write-back. 

Write-through: Updates (writes) to the data 

being cached are written both to the cache and 

to the primary copy. A write is not considered 

complete until the write to the primary is 

completed.  This says that you update main 

memory at the same time you update cache. 

Write-through caches tend to be the most 

common because they provide a good balance 

of performance and reliability. A block of data 

can get into the cache by an application either 

reading or writing data. Once data is read or 

written, any subsequent read of the block is 

quickly returned to the application from the 

cache instead of slower primary storage.  

Write-around: The cache contains only copies 

of data that have been READ. Updates to data 

are not written to the cache. They go only to 

primary storage.  A write-around cache behaves 

just like a write-through cache, except that the 

cache cannot receive blocks of data from a 

write operation. A write cannot cause a block to 

initially be placed into the cache, but if a write 

causes an update to a block already residing in 

the cache, then the cached block is updated. 

Write-around caches are used when the 

application is writing a lot of data that is seldom 

accessed shortly after the write occurs. This 

approach avoids populating the cache with data 

that might not be frequently accessed. There are 

few, select systems that benefit significantly 

from write-around caches. 

Write-back: Updates are written only to the 

cache. Afterwards, and in the background, the 

cached data is used to update the primary 

storage.  This says that you update main 

memory only when the cache line is evicted. 

Otherwise, only update the cache 

All caches have one additional similarity; they 

all are of finite size and therefore need to 

manage their limited ability to store active data. 

All caches have replacement algorithms that 

determine when more recently accessed data 

should be retained and therefore manage when 

older data can be safely released from the cache 

and the space reclaimed.  A write-back cache 

stores both read and write requests directly in 

the cache, so it can significantly speed up both 

reading and writing operations. However, write-

back caches have the added complexity of 

ensuring that the cached write block eventually 

reaches primary storage. This approach requires 

handling a number of error conditions to protect 

against data corruption if the cache and the 

primary storage get out of synch. This added 

complexity and risk reduces the popularity of 

write-back caches, so they are deployed much 

less frequently than write-through or write-

around caches.  

Summary  

One major advantage of cache is that it holds or 

stores data that are frequently used by the 

processor. It is a mechanism used to store 
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frequently accessed data in fast memory. Cache 

is a subset of the data found in RAM, which 

means any data you find in cache, you can also 

find in RAM. When data at an address is 

needed, the CPU first searches in the cache. If it 

finds it there, then a load or store is performed 

to or from a register. If a cache miss occurs, 

then a cache line needs to be copied from main 

memory to a slot in a cache, which may require 

the eviction of a slot.  In an inclusive scheme, 

L1 data would have to be stored into the L2 

cache. If the L2 is write back (as is the case 

with pretty much any CPU), then it frees the 

CPU core up since the write back logic is part 

of the L2 cache, not the core. 

Ideally, you want the percentage of cache hits 

to be high, to give the illusion that all the useful 

data is in the cache, and being accessed at the 

speed of the cache, as opposed to the speed of 

main memory. How effective this is depends on 

how much spatial and temporal locality, the 

mapping and replacement policy, of the 

scheme.  

Conclusion 

One problem caches have to address is keeping 

the data copies consistent.  Cache is always 

stored for later use. If you are using something 

stored, the chance is that you are not getting the 

newest version of it.  When a web page is 

cached, for example, what happens if that 

original page gets modified? Subsequent reads 

of that data require checking that the cached 

copy is current. Caches can also be used to 

speed writes. In this case, the caching 

technology must ensure that when the cached 

copy is updated, the primary copy of data is 

always protected and up-to-date. Caching must 

also take into account the possibility that the 

primary copy of the data has been modified 

from another source, rendering the copy in the 

cache now obsolete. 

Caching only benefits situations where data is 

accessed repeatedly. In situations where data is 

accessed only once and not again for a very 

long time (such as a single person playing 

music or watching a movie), caching provides 

very little benefit. But in the case of a web 

server that is responding to requests for the 

same web pages over and over, caching can 

dramatically improve performance. 

Ideally, an exclusive cache scheme will give 

you the most available room to store 

information. However, the scheme requires 

more logic and, similar to increasing 

associativity, there comes a point when the 

logic required to perform the task is not 

justified by the benefits. This is especially true 

when the lower level cache is much smaller in 

size compared to the higher levels of cache. The 

case of the original Pentium4 is instructive.  It 

has a separate high speed trace cache and a 

small L1 data cache with a large unified L2 

cache.  So, Intel would have needed to put in 

logic to save some space. P4 is optimized by 

design for streaming data. In that case, an 

exclusive cache hierarchy would be useless 

since you would be filling the L2 cache with 

new information on every bus cycle. The 8kB is 

probably sufficient to store basic data for 

simple, non-streaming threads. 
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