

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 394

NC-Cloud on Fault Tolerant Multiple clouds Storage using Data

Redundancy Networking Coding

A.Kalpana
M.Tech (CSE), kalpana2914@gmail.com

Department of Computer Science & Engineering. Nagole Institute of Technology & Science.

Internal guide details

M. NareshChoudary
Assistant Professor, Department of Computer Science & Engineering.Nagole Institute of

Technology & Science.

E-mail id: naresh.makkena@hotmail.com

HOD details

Dr. P. Venkateswarlu
Professor & HOD, Department of Computer Science & Engineering, Nagole Institute of

Technology & Science.

E-mail id: venkat123.pedakolmi@gmail.com

Abstract

This Paper, present a proxy predicated storage

system for fault tolerance multiple-cloud

storage called NC (network coding), which

overcome quandaries such as sempiternal

failure and loss of data, lost data is

rehabilitated with the avail of data redundancy.

NC achieves cost-efficacious rehabilitation for

a sempiternal single-cloud failure, it is built on

top of networking coding predicated storage

scheme called the storage regenerating

code(SR) unlike traditional RAID-6 utilized for

fault tolerance and data redundancy SR use less

repair traffic and hence incur less monetary

cost, and more preponderant replication time

performance in mundane cloud operation such

as, upload/download. Implementation of a

proof-of-concept prototype of NC and deploy it

atop both local and commercial cloud. Proof-

of-concept is designed to determine feasibility ,

but does not represent deliverables is withal

kenned as proof of principle. It is utilized to

check system requisites, such as how system can

be integrated or throughput can be achieved

through a given configuration. Key feature of

SR code is that we relinquish the encoding

requisite of storage nodes during repair, to

make regenerating code portable to any cloud

storage it is desirable to postulate only a thin-

cloud interface, where storage node only need

to fortify the standard read/indite

functionalities.

Keywords: Fault Tolerents; Multiple clouds

Storage; Data Redundancy; Networking Coding

Introduction

Cloud computing denotes a family of

increasingly popular on-line accommodations

for archiving, backup, and even primary storage

of files, and transforming business by offering

incipient options for businesses to increment

efficiencies while reducing costs [2]. It lets

utilizer can access all applications and

documents from anywhere in the world,

liberating from the confines of the desktop and

making it more facile for group members in

different locations to collaborate. It is a model

for enabling convenient, on-demand network

access to a shared pool of configurable and

reliable computing resources (e.g., networks,

servers, storage, applications, accommodations)

that can be rapidly provisioned and relinquished

mailto:venkat123.pedakolmi@gmail.com

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 395

with minimal consumer management effort or

accommodation provider interaction. Cloud

computing provides computation, software, data

access, and storage resources without requiring

cloud users to ken the location and other details

of the computing infrastructure.

Cloud storage provides data on-demand and

solution. A plausible solution is to stripe data

across different cloud providers, by exploiting

the diversity of multiple clouds, the fault

tolerance of cloud storage [3]. While striping

data with conventional erasure, codes performs

well when some clouds experience short-term

transient failures or prognosticable perpetual

failures, there is authentic-life case exhibiting

that sempiternal failures do occur and are not

always prognosticable. a distributed

cryptographic system that sanctions a set of

servers to prove to a client that a stored file is

intact and retrievable. Storage providers charge

users for outbound data, so moving a cyclopean

amount of data across clouds can introduce

paramount monetary costs. It is paramount to

reduce the rehabilitation traffic .To minimize

repair traffic, storage regenerating codes have

been proposed for storing data redundantly in a

distributed storage system. A proxy-predicated

storage system is designed for providing fault-

tolerant storage over multiple cloud storage

providers. NC can interconnect different clouds

and transparently stripe data across the clouds.

On top of NC, we propose the first

implementable design for the storage

regenerating (SR) code [1].

1. Related Work

2.1 Existing System:

When a cloud fails sempiternally, it is

obligatory to activate repair to maintain data

redundancy and fault tolerance. A rehabilitation

operation retrieves data from subsisting

surviving clouds over the network and

reconstructs the lost data in an incipient cloud.

Today’s cloud storage providers charge users

for outbound data (optically discern the pricing

models in Section 6.1), so moving a cyclopean

amount of data across clouds can introduce

paramount monetary costs. One key challenge

for deploying regenerating codes in practice is

that most subsisting regenerating codes require

storage nodes to be equipped with computation

capabilities for performing encoding operations

during repair.

2.2 Proposed System:

To provide fault tolerance for cloud storage,

recent studies propose to stripe data across

multiple cloud vendors. However, if a cloud

suffers from a perpetual failure and loses all its

data, we require to rehabilitate the lost data with

the avail of the other surviving clouds to

preserve data redundancy. To minimize repair

traffic, regenerating codes [16] have been

proposed for storing data redundantly in a

distributed storage system (an amassment of

interconnected storage nodes). Each node could

refer to a simple storage contrivance, a storage

site, or a cloud storage provider. In particular,

we propose a two-phase checking scheme,

which ascertains that double-fault tolerance is

maintained in the current and next round of

rehabilitation. By performing two-phase

checking, we ascertain that double-fault

tolerance is maintained after iterative rounds of

rehabilitation of node failures.

2.3 Proposed System Model:

We currently show however F-MSR preserves

the rehabilitation traffic via associate example.

Suppose that we incline to store a file of size M

on four clouds, every viewed as a logical

storage node. Sanction us to initial contemplate

RAID-6 that is double-fault tolerant. Here, we

incline to cogitate the RAID-6 implementation

fortified Reed-Solomon codes [26], as shown in

Figure 2(a). We incline to divide the file into 2

native chunks (i.e., A and B) of size M/2 every.

We incline to integrate 2 code chunks fashioned

by the linear coalescences of the native chunks.

Suppose currently that Node one is down. Then

the proxy should transfer an equipollent range

of chunks because the pristine file from 2

different nodes (e.g., B and A + B from Nodes

two and three, respectively). It then reconstructs

and stores the lost chunk A on the incipient

node. The entire storage size is 2M, whereas the

rehabilitation traffic is M. we incline to

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 396

currently contemplate the double-fault tolerant

implementation of F-MSR in an exceedingly

proxy-predicated setting, F-MSR divides the file

into four native chunks, and constructs eight

distinct code chunks P1, • • •, P8 fashioned by

plenarily different linear coalescences of the

native chunks. Every code chunk has an

equipollent size M/4 as a native chunk. Any 2

nodes may be habituated recuperate the first

four native chunks. Suppose Node one is down.

The proxy accumulates one code chunk from

every living node, thus it downloads 3 code

chunks of size M/4 every. Then the proxy

regenerates 2 code chunks P'1 and P'2 fashioned

by thoroughly different linear coalescences of

the 3 code chunks. Note that P'1 and P'2 square

measure still linear coalescences of the native

chunks. The proxy then indites P'1 and P'2 to

the incipient node. In F-MSR, the storage size is

2M (as in RAID-6), however the rehabilitation

traffic is zero.75M that is twenty fifth of

preserving.Note that F-MSR keeps solely code

chunks in lieu of native chunks. To access one

chunk of a file, we'd relish to transfer and re-

indite the whole file for the genuine chunk. All

equipollent, F-MSR is opportune for long

deposit applications, whose scan frequency is

often low [6]. Additionally, to revive backups,

it\'s natural to retrieve the whole file in lieu of a

culled chunk. This paper considers the baseline

RAID-6 implementation victimization Reed-

Solomon codes. Its repair methodology is to

reconstruct the total file, and is applicable for all

erasure codes mundanely. Recent studies show

that cognizance reads are often decremented

concretely for XOR predicated erasure codes.

For instance, in RAID-6, cognizance reads

Associate in Nursing be reduced by twenty fifth

compared to reconstructing the total file [28,

29]. Though such approaches area unit

suboptimal (recall that F-MSR will lay aside to

five hundredth of rehabilitation traffic in RAID-

6), their utilization of economical XOR

operations are often of sensible interest.

Fig 1: Normal Operation

Fig 2: Repair Operation When Cloud 1 fail.

2.4 FMSR code description:

FMSR codes preserve the benefits of network

coding as they minimize the rehabilitation

bandwidth (e.g., the rehabilitation and width

preserving compared to RAID-6 codes is up to

Proxy

Cloud1

Cloud2

Cloud3

Cloud4

Cloud5

Cloud 1

Cloud 2

Cloud 3

Cloud 4

Proxy

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 397

50% [22][21]). FMSR codes use uncoded repair

without requiring encoding of surviving nodes

during repair,and this can minimize disk reads

as the amount of data read from disk is

identically tantamount to that being transferred.

FMSR codes are designed as non-systematic

codes as they do not keep the pristine uncoded

data as their systematic counterparts, but instead

store only linear cumulations of pristine data

called parity chunks. Each round of

rehabilitation regenerates incipient parity

chunks for the incipient node and ascertains that

the fault tolerance level is maintained. A trade-

off of FMSR codes is that the whole encoded

file must be decoded first if components of a

file are accessed. Nevertheless, FMSR codes are

suited to long-term archival applications, since

data backups are infrequently read and it is

mundane to instaurate the whole file rather than

file components.

Because of above advantages of FMSR code we

consider a distributed, multiple-cloud storage

setting from a client’s perspective, where data is

striped over multiple cloud providers. We

propose a proxy-predicated design [1], [30] that

interconnects multiple cloud repositories, as

shown in Fig 1. The proxy accommodates as an

interface between client applications and the

clouds. If a cloud experiences a perpetual

failure, the proxy activates the rehabilitation

operation, as shown in Fig 2. From the above

diagram, proxy reads the essential data pieces

from other surviving clouds, reconstructs

incipient data pieces, and indites these incipient

pieces to an incipient cloud. Note that this

rehabilitation operation does not involve direct

interactions among the clouds.

Now consider fault-tolerant storage predicated

on a type of maximum distance separable

(MDS) codes. Given a file object of size M , we

divide it into equal-size native chunks, which

are linearly amalgamated to compose code

chunks. When an (n, k)-MDS code is utilized,

the native/code chunks are then distributed over

n (more sizably voluminous than k) nodes,each

storing chunks of a total size M/k, such that the

pristine file object may be reconstructed from

the chunks contained in any k of the n nodes.

Thus, it abides the failures of any n − k nodes.

We call this fault tolerance feature the MDS

property. The extra feature of FMSR codes is

that reconstructing the chunks stored in a failed

node can be achieved by downloading less data

from the surviving nodes than reconstructing the

whole file. his paper considers a multiple-cloud

setting with two levels of reliability: fault

tolerance and recuperation. First, we postulate

that the multiple-cloud storage is double-fault

tolerant (e.g., as in conventional RAID-6 codes)

and provides data availability under the

transient unavailability of at most two clouds.

That is, we set k = n − 2. Thus, clients can

always access their data as long as no more than

two clouds experience transient failures

(optically discern examples in Table 1) or any

possible connectivity quandaries. We expect

that such a fault tolerance level suffices in

practice.

2. Implementation

FMSR codes:

We propose a proxy predicated design that

interconnects multiple cloud repositories. The

proxy accommodates as an interface between

client applications and the clouds. The extra

feature of FMSR codes is that reconstructing the

chunks stored in a failed node can be achieved

by downloading less data from the surviving

nodes than reconstructing the whole file.

File Upload:

To upload a file F , we first divide it into k(n

−k) equalsize native chunks, denoted by

(Fi)i=1,2,•••,k(n−k).We then encode these k(n −

k) native chunks into n(n − k) code chunks,

denoted by (Pi)i=1,2,•••,n(n−k). Each Pi is

composed by a linear amalgamation of the k(n −

k) native chunks.

File Download:

To download a file, we first download the

corresponding metadata object that contains the

ECVs. Then we cull any k of the n storage

nodes, and download the k(n−k) code chunks

from the k nodes.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 398

Repair:

We now consider the double-fault tolerant

implementation of FMSR codes.We divide the

file into four native chunks, and construct eight

distinct code chunks P1, • • • , P8 composed by

different linear amalgamations of the native

chunks. Each codechunk has the same size M/4

as a native chunk. Any two nodes can be

habituated to recuperate the pristine four native

chunks. Suppose Node1 is down. The proxy

accumulates one code chunk from each

surviving node, so it downloads three code

chunks of size M/4 each. Then theproxy

regenerates two code chunks P1ꞌ and P2ꞌ

composed by different linear coalescences of

the three code chunks. Note that P1 ꞌ and P2 ꞌ

are still linear amalgamations of the native

chunks. The proxy then indites P1 ꞌ and P2 ꞌ to

the incipient node. In FMSR codes, the storage

size is 2M (as in RAID-6 codes), yet the

rehabilitation traffic is 0.75M, which is

identically tantamount to in EMSR codes. A key

property of our FMSR codes is that nodes do

not perform encoding duringrepair.

3. Experimental Results

Fig 3: Home Page.

Fig 4: File Upload.

Fig 5: User Uploaded File Details.

Fig 6: File Download Details.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 399

Fig 7: Cloud Details Page.

4. Conclusion

The quandary verbalization of the project is to

provide fault tolerance for cloud storage and to

study propose to stripe data across multiple

cloud vendors. However, if a cloud suffers from

a sempiternal failure and loses all its data, we

require to rehabilitate the lost data with the avail

of the other surviving clouds to preserve data

redundancy. Hence we make us of NC (network

code), a proxy-predicated server, multiple-cloud

storage system that technically addresses the

reliability of cloud backup storage. NC not only

provides fault tolerance in storage, but withal

sanctions cost-efficacious repair when a cloud

sempiternally fails. It implements a practical

version of SR codes, which regenerates

incipient parity chunks during repair.

Ascertaining that the incipient set of stored

chunks after each round of rehabilitation

preserves the required fault tolerance.

5. References

[1] H. Abu-Libdeh, L. Princehouse, and H.

Weatherspoon. RACS: ACase for Cloud

Storage Diversity. In Proc. of ACM SoCC,

2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.

Yeung. NetworkInformation Flow. IEEE Trans.

on Information Theory, 46(4):1204–1216, Jul

2000.

[3] Amazon. AWS Case Study: Backupify.

http://aws.amazon.com/solutions/case-

studies/backupify/.

[4] Amazon. Case Studies.

https://aws.amazon.com/solutions/casestudies/#

backup.

[5] Amazon Glacier.

http://aws.amazon.com/glacier/.

[6] Amazon S3. http://aws.amazon.com/s3.

[7] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph, R. Katz, A. Konwinski,G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M.

Zaharia.A View of Cloud Computing.

Communications of the ACM,53(4):50–58,

2010.

[8] Asigra. Case Studies.

http://www.asigra.com/product/casestudies/.

[9] AWS Service Health Dashboard. Amazon s3

availability event:July 20, 2008.

http://status.aws.amazon.com/s3-

20080720.html.

[10] A. Bessani, M. Correia, B. Quaresma, F.

Andr´e, and P. Sousa.DEPSKY: Dependable

and Secure Storage in a Cloud-of-Clouds.In

Proc. of ACM EuroSys, 2011.

[11] K. D. Bowers, A. Juels, and A. Oprea.

HAIL: A High-Availabilityand Integrity Layer

for Cloud Storage. In Proc. of ACM CCS, 2009.

[12] Business Insider. Amazon’s Cloud Crash

Disaster PermanentlyDestroyed Many

Customers’ Data.

http://www.businessinsider.com/amazon-lost-

data-2011-4/, Apr 2011.

[13] B. Calder et al. Windows Azure Storage: A

Highly AvailableCloud Storage Service with

Strong Consistency. In Proc. of ACMSOSP,

2011.

[14] B. Chen, R. Curtmola, G. Ateniese, and R.

Burns. RemoteData Checking for Network

Coding-Based Distributed StorageSystems. In

Proc. of ACM CCSW, 2010.

[15] H. C. H. Chen and P. P. C. Lee. Enabling

Data Integrity Protectionin Regenerating-

Coding-Based Cloud Storage. In Proc. of

IEEESRDS, 2012.

http://aws.amazon.com/
https://aws.amazon.com/solutions/casestudies/
https://aws.amazon.com/solutions/casestudies/
http://www.asigra.com/product/casestudies/
http://www.businessinsider/

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 400

[16] A. G. Dimakis, P. B. Godfrey, Y. Wu, M.

Wainwright, and K. Ramchandran.Network

Coding for Distributed Storage Systems.

IEEETrans. on Information Theory,

56(9):4539–4551, Sep 2010.

[17] A. G. Dimakis, K. Ramchandran, Y. Wu,

and C. Suh. A Surveyon Network Codes for

Distributed Storage. Proc. of the

IEEE,99(3):476–489, Mar 2011.

[18] A. Duminuco and E. Biersack. A Practical

Study of RegeneratingCodes for Peer-to-Peer

Backup Systems. In Proc. of IEEE

ICDCS,2009.

[19] B. Escoto and K. Loafman. Duplicity.

http://duplicity.nongnu.org/.

[20] D. Ford, F. Labelle, F. I. Popovici, M.

Stokely, V.-A. Truong,L. Barroso, C. Grimes,

and S. Quinlan. Availability in

GloballyDistributed Storage Systems. In Proc.

of USENIX OSDI, 2010.

http://duplicity.nongnu/

