

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 545

Building Rich Internet Applications using Google Web Toolkit

Shiv Kumar Goel
1

& Shikha Singh
2

Asst. Prof, Deputy HOD, Master of Computer Application, VESIT, Mumbai University, India

shivkumar.goel@ves.ac.in

Student, Master of Computer Application, VESIT, Mumbai University, India

shikha.singh@ves.ac.in

Abstract

Traditionally, Web applications have had great

limitations in the usability and interactivity of their

user interfaces. To overcome these limitations, a new

type of Web applications called Rich Internet

Applications (RIAs) has recently appeared providing

richer and more efficient graphical components

similar to desktop applications. Rich Internet

Applications (RIA) offer greatly enhanced usability,

and allow Internet programs to rival their desktop

counterparts for functionality. With the popularity of

Web developmentpatterns and diversification of

business requirements, development of Web

applications based on frameworks has showed

remarkable advantages such as simplifying

development processes and improving efficiency of

software development. This paper presents the

approach to rapid development of Web applications

using GWT-based framework, as well as Ajax

technologies using only Java as the programming

language, which is later on compiled into pure

JavaScript and deployed as regular web site. It also

gives the real case applied to the development of

Collateral Management System, which proves that

the approach could accelerate the development

process of Web-based applications.

Keywords-
Rich Internet Applications; Google Web Toolkit;

Rapid Application Development; AJAX; JAVA;

collateral management

1. INTRODUCTION
Traditional Web applications developers have

focused all their activity around a client-server

architecture where all processing is done on the

server side and a thin client which is only used to

display static contents. This approach has suffered

significant drawbacks and limitations, especially due

to the richness of the application interfaces and the

overall sophistication of the solutions that could be

built and delivered.

These old-fashioned Web applications are

being replaced by the so-called Rich Internet

Applications (RIAs) which provide richer and more

interactive user interfaces, similar to desktop

applications. Moreover, RIAs provide a new client-

server architecture that reduces significantly network

traffic using more intelligent asynchronous requests

that send only small blocks of data.

Web 2.0 is introduced as a response to growing

need of interactivity which is the core assumption of

contemporary user collaboration over the network. It

has become online service itself. The main problem

that had to be addressed with Asynchronous

JavaScript and XML (AJAX) technology concerned

the need for resource-wasteful whole page refreshing

after every user action regardless of whether the

contents have actually changed. Using this JavaScript

technology, each page update with new data from

server was accompanied by asynchronous request

which made complex applications behave more like

traditional desktop software with distributed

architecture. With the increasing complexity of

AJAX applications, new scalability problems arose.

The biggest complication is the origin of AJAX

technology. It is derived from web technologies, it

was never meant to be used exclusively in large scale

applications and therefore lacks tools (i.e. Integrated

Development Environment (IDE), debugging etc.)

that support development in the way desktop software

creation is.

Google came up with new approach: why

create something new instead of just taking the

advantages of already known, well-founded existing

technologies, methodologies and tools?

Fortunately, since the release of Google Web

Toolkit (GWT) and related RIA widget frameworks

such as Smart GWT, RIA development is now

becoming easier and more flexible.

Google Web Toolkit is an open source Java

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 546

development framework that lets developers escape

the matrix of technologies that make writing AJAX

applications so difficult and error prone. With GWT,

programmers can develop and debug AJAX

applications in the Java language using generic Java

development tools of their choice. When the

application is deployed to production, the GWT

compiler translates user written Java application to

browser-compliant JavaScript and HTML.

GWT-based framework that allows developers

to not only utilize its comprehensive widget library

for user interfaces, but also tie these widgets in with

server-side for data management. As a perfect

implementation of RIA, GWT introduces new

structural and behavioral models in order to help

developers construct Web applications that look and

function like traditional desktop applications.

GWT development cycle has the following steps:

1. Using developer‟s favorite Java IDE to write and

debug an application in the Java language, using as

many (or as few) GWT libraries as it is considered

useful.

2. Using GWT's Java-to-JavaScript compiler to distill

application into a set of JavaScript and HTML files

that can be served with any web server.

2. Confirming that application works in each

browser that it to be supported, this usually takes no

additional work.

As mentioned, GWT consists of libraries responsible

for specific functionalities that may or may not be

used (internationalization, communication, JavaScript

Native Interface, visual interface components -

widgets etc.) Most important elements are shown in

Fig. 1.

Fig. 1 - GWT component overview

2. APPLICATION GOALS
Existing System is an exposure & collateral

management system that is used within the Stock

Loan & Prime Brokerage Operations and business in

Visual Studio. Collateral Management System is a

client-server application, deployed on Citrix. It is not

available as a standalone application on user‟s

desktop.

The Citrix product set is part of a family of

technologies termed „server-based computing‟.

Server-based computing (SBC) is a technology

whereby applications are deployed, managed,

supported and executed on the server and not on the

client. Instead only the screen information is

transmitted between the server and client.

Overview of Collateral System:

 At a high level, collateral management is the

function responsible for reducing credit risk

in unsecured financial transactions.

 Credit risk exists in any transaction which is

not executed on a strictly cash basis.

 An example of credit-risk free transaction

would be the outright purchase of a stock or

bond on an exchange with a clearing house.

 Examples of transactions involving credit

risk include over the counter (OTC)

derivative deals (swaps, swaptions, credit

default swaps, CDOs) and business-to-

business loans (repos, total return swaps,

money market transactions, term loans,

notes, etc.).

 Collateral of some sort is usually required by

the counterparties in these transactions

because it mitigates the risk of payment

default.

 Collateral can be in the form of cash,

securities (non-cash).

The proposed system aims at developing and

enhancing an existing Collateral system in GWT

Technology which will be a web Based application.

All the users of system will be able to access the

application via web.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 547

Fig. 2 – GWT architecture

Advantages of GWT.

 GWT is a java AND JavaScript. We can use

jsps to create the page that our GWT module

resides in. we can use spring to manage our

beans and secure the client and server side of

the application.

 Google web tool kit is the perfect solution for

integration with old systems and re-

engineering them. Application interface

development (with GWT) contains a capable

way to define usability for each system and

subsystem, development of new GUI and re-

arrangement of important components with

maximum comfort for user.

 It gives users a unique opportunity to enjoy

rich interface applications with a clear picture

of web application interface performance and

the ability to track statistics, failure elements

and internal transactions of profiles.

 Because almost everything runs on the

browser side we use less server processing

and we can scale to more users.

 Because almost everything runs on the

browser you need less server-side session

information.

 No JavaScript Programming which is hard to

test, and check that it works on multiple

browsers.

3. ARCHITECTURE

Application was intended to be designed

according to good practice Model-View-Controller

pattern to create portable application consisting of

independent elements. However, this pattern cannot

be easily adapted in case of distributed AJAX

application such as Collateral system as

communication is asynchronous. Fig. 3 shows

correlation between elements.

Fig. 3 Application pattern

Each request for data cannot be limited to directly

operate only on nearest layer as it is only expected to

receive response in some nearest future or not at all

due to errors that can happen on the way in particular

element (interface, network connection, business

logic etc.). This creates more complex, distributed,

abstract model that sits in the middle between actual

components of client and server. Additionally,

request must be followed by response in the form of

server‟s callback request which then needs to be

processed back in the calling method on the client

side.

4. IMPLEMENTATION

As Fig. 4 shown, a kind of hierarchical and extensible

framework is proposed in this paper. In this Fig 4, the

rich client is deployed and run in the user's browser,

and the layers of server-side is deployed and run in

the Web application server, and the communication

mode is Ajax between the two. The rich client is

provided with widget by GWT based on Ajax. The

framework proposed by this paper makes full use of

the characteristic of GWT technology and obtains

further depuration and encapsulation, which enable

the framework more suitable for the design and

development.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 548

Fig. 4 System architecture

A. client presentation layer

The client presentation layer is in charge of

downstage interface display of System, the

implementation of which includes two parts: one is

XML and second is java file using UI binder;

The basic idea is to refresh as the unit of UI Widget

in the design of interface, namely the whole page is

divided into some Widgets, which are separated from

each other. When the data is obtained by calling

background service, the web pages need to be

refreshed. The smaller particle size of refreshing

Widget is better, such as only refreshing a textbox. In

doing so it will be useful to reduce the traffic and

response time. In order to implement the above

design, a global access point of UI Widget that

needsto be refreshed is provided. Because GWT

adopts asynchronous invoking to access service, an

object whose type is Callback has been constructed in

every invoking, and this object is in charge of update

interface after returning the result of invoking.

B. client logic layer

In order to embody the technical features of rich

client side, the functions of data cache and logic

calculation should be provided in the client logic

layer of client-side. Making full use of the computing

capability of client-side can improve the response

time of system and reduce the load of server-side.

The reusability and maintainability of client-side

application can be improved significantly by

designing the tool class of collateral system to

implement the above functions. Such as, Client Value

is a class to implement data cache in client-side,

whose lifecycle is a page lifecycle. Because Ajax rich

client side seldom carries on page-level update, the

cached data can be used for a long time. The cached

data includes: login information and authority

information for authority verification of client-side;

the data of the previous and latter page can be saved

for keeping the consistency of page switching while

pagination displaying.

C. service calling layer

Service calling layer is responsible for calling service

offered by the service layer of server-side and

returning the result to client logic layer and client

presentation layer. In other words, the service calling

layer decouple between foreground logic and

background logic. According to each MyService in

this layer, a MyServiceCaller class is designed. Both

the construction of the service object and the access

of operating the service object are encapsulating,

which enable client-side to call the service by

MyServiceCaller class. In doing so, it is implemented

to centralized control of background service access in

order to maintain the code.

Taking FxRates widget as example, we explain the

implementation principle of the service calling layer.

The widget of client-side includes UI controls, and

every control may indicate the screen event to use

GWT RemoteService such as “OnClick”. Before

calling RemoteService, the widget must create a DTO

(a common Java EE design pattern) by its widget

fields. The screen event “On Click” will use

AsyncCallBack module to deal with the object

returned from the class methodsgetFxRate() of

server-side of the application. ForeignExchangeDTO

is a POJO which is used to transmit the data from

server-side to client-side. JavaScript only uses the

basic data types; it must be transmitted to user's

browser and remote application servers through

serialization, which is a limitation that all the GWT

DTO requires. All the entity class of collateral system

need not implement GWT interface. They are

completely isolated from the client application. To

achieve this separation, a Java EE DTO design

pattern is used. These DTOs contain only basic data

types and are used by both packages (Services and

GWT Remote Services). DTOs must implement the

GWT IsSerializable interface and a GWT

configuration XML file must also be created. Another

important reason for using DTOs is that GWT client

classes must be transformed into JavaScript code. An

example is the code fragment as follows.

Public class ForeingExchangeDTO implements

Serializable {

 final long

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 549

serialVersionUID=240695217824736L;

 Date fxRateDate;

 String fxRateCurrency;

 BigDecimal fxRateValue;

 String lastUpdateUSer;

 String lastUpdateTime;

 String dataStatus;

@Override

Public String toString (){

……………………………}

Public ForeingExchangeDTO () { }

//getter setters of variables

……………………………. }

Calling service from client layer:

Private RPCFxRatesMaintenanceAsync

pricing=(RPCFxRatesMaintenanceAsync)

GWT.create(RPCFxRatesMaintenance.class);

pricing.getFxRates(new callback.PriceCurrCallback);

public class callback{

 AsyncCallback<List< ForeignExchangeDTO

>> PriceCurrCallback=new AsyncCallback<List<

ForeignExchangeDTO >>() {

@Override

Public void onSuccess (List<Foreign ExchangeDTO

> result){ }

Public void onFailure(Throwable caught){

}

}

}

D. Service layer, business logic layer.

 At this point the conceptual entities have been

created. The basic services methods will manage the

transaction states of those entities. The next step is to

create GWT Remote Services. They will invoke

stored procedures to insert, update and delete data in

the database. Remote Services are the standard way

to communicate with the Web application server from

the user's browser. This is done using a standard

Ajax, essentially a HTTP POST, call generated and

managed by the GWT. The server side code for that

Ajax call is found within the "server" package of the

GWT application. This is code that executes within a

servlet container or a Web application server and this

is where we tie user actions at the browser into

business logic and then the database calls to update

data in the tables. The service class on the service

layer must inherit from the RemoteServiceServlet

class offered by GWT which is a HttpServlet.

However, if the service class directly inherits

RemoteServiceServlet, the global control of all the

service classes will be lost. So, we must design a

MyRemoteServiceServlet class which may inherit

RemoteServiceServlet class, and then all the other

service classes inherit from MyRemoteServiceServlet

class in order to enhance the system scalability. The

business logic layer focus on the system design

relating to business requirement, such as the business

rules setting, the implementation of the business

process and etc. The business logic layer is related to

the domain logic and provides support to construct

service for the service layer. Taking Foreign

Exchange domain logic as an example, next the

interaction process between the business logic layer

and database. The RPCFxRatesMaintenance interface

itself does not deal with any business logic, and it is

mainly used to dispose the transaction state of the

special task on one or more objects of the database. If

you want to add business process logic to service, the

RPCFxRatesMaintImpl class must extend the

RemoteServiceServlet class and implements

RPCFxRatesMaintenance, and handle with all the

access of the Foreign Exchange entity by providing

the implementation of addFx(), updateFx(),

getFxRates() and other methods. The implementation

that may call the business service known as

RPCFxRatesMaintImpl is in the server-side package

of Collateral System, and it is just Service to

implement the business logic for the specific instance

of Foreign Exchange. The implementation need

transform the object of ForeingExchangeDTO to the

object of ForeignExchange. The database is only a set

of files in the Server file system, which can be

accessed by the servlet container of Web application.

In the business logic layer, the application should

separate the DTO object and business object through

delamination and abstract. The business service need

not understand the DTO class and only disposes the

conceptual model object which is always in the

database. The business service class is in charge of

managing the conceptual model object in the data

storage.

Public interface RPCFxRatesMaintenance extends

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 06, June 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 550

RemoteServlet {

Public List<ForeignExchangeDTO> getFxRates()

throws Exception;

 public boolean addFx() throws Exception;

 ……………………}

Public interface RPCFxRatesMaintenanceAsync {

 public void getFxRates() throws Exception;

 public void addFx() throws Exception;

 ……………………….}

Public class RPCFxRatesMaintImpl extends

RemoteServiceServlet implements

RPCFxRatesMaintenance {

@Override

Public List< ForeignExchangeDTO >getFxRates ()

throws Exception {

………………………………………………

//Business Logic and call to database stored

procedure}

@Override

public boolean addFx() throws Exception {

……………………………………}}

5. CONCLUSION

GWT delivers all the power of true AJAX, which

greatly accelerates the integration with existing Java

business logic and custom data tiers. We have

focused our study in the Collateral System model-

driven development process that introduces models

and transformations to obtain a complete RIA for the

GWT framework. The presentation and user interface

models are one of the most important contributions of

this work. They represent the structural and the

behavioral aspects of the RIA user interface, allowing

to define both simple and multi-page applications.

GWT developed application increases the flexibility

of the system, enhances platform scalability, making

local data changes not affect the entire platform.

Since the update of GWT framework is fast and new

widgets emerge continually, Collateral System on

GWT should keep updated to keep up with GWT and

improving the look and feel of the application.

6. REFERENCES

[1]Driver M, Valdes R, and Phifer G., “Rich Internet

Applications are the next evolution of the Web”,

Technical Report, Gartner, 2005.

[2]Meliá S., Gomez J., “The WebSA Approach:

Applying Model Driven Engineering to Web

Applications”, Journal of Web Engineering, Vol. 5,

No. 2, pp. 121-149, 2006.

[3]Santiago Meliá, and Jaime Gómez, “A Model-

Driven Development for GWT-Based Rich Internet

Applications with OOH4RIA”, Eighth International

Conference on Web Engineering, pp. 13-23, 2008.

[4]Philippe Kruchten, Henk Obbink, and Judith

Stafford, “The Past, Present, and Future of Software

Architecture”, IEEE Software, pp. 22-30,

March/April (2006).

[5]http://www.bobsguide.com/guide/collateral-

management-systems.html

[6] www.gwtproject.org/

[7] http://java.sun.com/developer/technicalArticles/

WebServices/restful/

[8]Bo Song, Jie Liu, and Chuan-Sheng Zhou,

“Implementation of J2EEData Persistence Tier with

TopLink”, Microelectronics & Computer,

Vol.23, No.8, pp.132-135, August, 2006(in Chinese).

[9]Bo Song, Jing Zhao, “Research on Network

Teaching System Basedon Open Source Framework”,

IEEE Ninth International Conferenceon Hybrid

Intelligent Systems, Vol.1, pp.28-32, August, 2009.

[10] Wei Fang, Yong Sun, and Zhi-Ming Cui

“Research and Applicationof J2EE's Data Persistence

Layer”, Computer Technology andDevelopment,

Vol.17, No2, PP.68-91, February, 2007(in Chinese).

[11] P. Chaganti. “Google Web Toolkit: GWT Java

Ajax Programming”,

American: Packt Publishing, pp.21-24, 2007(in

Chinese).

