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Abstract 

This article deals with a pristine method to estimate the noise introduced by optical imaging systems, 

such as CCD cameras. The puissance of the signal-dependent photon noise is decoupled from the 

puissance of the signal-independent electronic noise. The method relies on the multivariate 

regression of sample mean and variance. Statistically kindred image pixels, not obligatorily 

connected, engender scatter points that are clustered along a straight line, whose slope and intercept 

measure the signal-dependent and signal-independent components of the noise puissance, 

respectively. Experimental results carried out on a simulated strepitous image and on true data from 

a commercial CCD camera highlight the precision of the proposed method and its applicability to 

dissever R–G–B components that have been redressed for the nonlinear effects of the camera 

replication function, but not yet interpolated to the full size of the mosaiced R–G–B image. 
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1. Introduction 

Whenever the postulation of additive white 

Gaussian noise (AWGN) no longer holds, 

noise modeling, and estimation becomes a 

preliminary step of the most advanced image 

analysis and interpretation systems. 

Preprocessing of data acquired with certain 

modalities, like optoelectronic and coherent, 

either ultrasound or microwave, may benefit 

from felicitous parametric modeling of the 

dependence of the signal on the noise and 

from precise quantifications of the noise 

model parameters. The cognizance of the 

noise model parameters is crucial for the task 

of de noising. Maximum a posteriori 

probability estimators exhibit a scarce 

tolerance to mismatches in the parametric 

noise model [1]. Recent advances in the 

technology of optoelectronic imaging 

contrivances have lead to the availability of 

image data, in which the photon noise 

contribution may no longer be neglected with 

reverence to the electronic component, which 

is becoming less and less germane. As a 

consequence, preprocessing and analysis 

methods must be revised or even designed 
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anew to take into account that the noise is 

signal dependent. 

To date, the most puissant noise estimation 

models are predicated on the multivariate 

regressions of local statistics [2-5]. However, 

the solution is intricate by the presence of two 

parametric noise components, one signal 

dependent and another signal-independent. 

The pristine contribution of this article is 

twofold: on one side a robust multivariate 

procedure is proposed to estimate the 

parameters of the commixed photon + 

electronic noise from a single image. On the 

other side, the circumscriptions in the validity 

of the optoelectronic noise model are 

discussed, a topic that has never been 

elucidated by any of the most prominent 

articles, e.g., [5,6]. On raw data such a model 

does not stringently hold, or better it holds 

only for a inhibited range of values above 

zero.  

Genuinely, raw data are available after a 

nonlinear mapping performed through the 

camera replication function (CRF) of the 

contrivance in order to evade saturation 

effects. The optoelectronic noise model is 

correctly estimated on true raw data by other 

authors, e.g., [5], only if the range of 

nonlinearity is punctiliously eschewed by the 

estimation procedure. Conversely, on CRF-

rectified data, which are much more available 

and widespread (they might be in principle 

obtained by felicitously decimating the 

demosaiced R–G–B image) the optoelectronic 

noise model holds on the whole dynamic 

range and can be more facilely estimated. 

Other authors develop their analysis in a local 

mean versus standard deviation space, which 

makes hard to devise a concrete parametric 

noise model [6]. Instead, we develop our 

model in the local mean versus variance space, 

in which a proximately linear cognation can 

facilely be apperceived and exploited to obtain 

the noise parameters. 

1.1 Signal-dependent noise modeling: 

A generalized signal-dependent (GSD) noise 

model has been proposed to deal with several 

different acquisition systems. Many types of 

noise can be described by utilizing the 

following parametric model [7] 

g(m, n) = f (m, n) + f (m, n)
γ
· u(m, n) + w(m, 

n) 

= f (m, n) + v(m, n) + w(m, n) 

     (1) 

where (m, n) is the pixel location, g(m, n) the 

observed noisy image, f (m, n) the noise-free 

image, modeled as a non-stationary correlated 

random process, u(m, n) a stationary, zero-

mean uncorrelated random process 

independent of f (m, n) with variance σ
2

u, and 

w(m, n) is electronics noise (zero-mean white 

and Gaussian, with variance σ
2

w). For a great 

variety of images, this model has been proven 

to hold for values of the parameter γ such that 

|γ| ≤ 1. The additive termv = f 
γ
·u is the GSD 

noise. Since f is generally non-stationary, the 



 

 
International Journal of Research (IJR) 
e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 310 

noise v will be nonstationary as well. The term 

w is the signal-independentnoise component 

and is generally assumed to be 

Gaussiandistributed. 

A purely multiplicative noise (γ = 1) is typical 

of coherent imaging systems; the majority of 

despeckling filters rely on the multiplicative 

fully developed speckle model [8]. In SAR 

imagery, the thermal noise contribution w is 

negligible, compared to the speckle term, f · u 

[9]. A more complex scenario is related to 

ultrasound image generation. Due to the great 

variability of scatterers size in each tissue, the 

electronics noise w cannot be neglected. 

Although a simplified noise model without 

electronic term with value of γ in (0, 1), e.g., γ 

= 1/2, is accepted as characteristic of this kind 

of images, the presence of the additional term 

w alleviates for the need of exactly knowing 

the γ . In fact, if γ is taken to be unity, as for 

coherent noise, an equivalent signal-

dependent γ may be defined, such that. 

f (m, n)·u(m, n)+w(m, n) ≈ f (m, n)
γeq (f 

(m,n))
·ueq

(m, n)
. (2) 

The signal-dependent noise in Equation (2) is 

the combination of a purely multiplicative 

term and of a signal independent term. The 

outcome exhibits a dependence on the signal 

that vanishes as f → 0+. Whenever f · u _ w, as 

it happens for SAR speckle, it stems that γeq(f ) 

→ 1−. In practice, the left-hand side of (2), i.e., 

(1) with γ = 1, is taken as a noise model 

suitable for ultrasonic images [10]. 

The model (1) is also suitable for film-grain 

noise [11], typical of images obtained by 

scanning a film (transparent support) or a 

photographic halftone print (reflecting 

support). In the former case, γ >0 and values 

1/3 ≤ γ ≤ 1/2 are typically encountered; in the 

latter case, negative values of γ are found [11]. 

For images obtained from monochrome or 

color scanners, the electronics noise w may 

not be neglected. Its variance is easily 

measured on a dark acquisition, i.e., when f = 

0. The unknown exponent γ may be found by 

drawing the scatterplot of the logarithm of 

measured local variance diminished by the 

dark signal variance (estimate of σ
2

w) against 

the logarithm of local mean [12]. 

Homogeneous pixels are clustered along a 

straight line in the log-scatterplot plane. The 

unknown γ is estimated as the slope of the 

regression line, σ
2

uas the intercept. 

Eventually, the model (1) applies also to 

images produced by optoelectronic devices, 

such as CCD cameras, multispectral scanners, 

and imaging spectrometers. In that case, the 

exponent γ is equal to 0.5. The term √f u stems 

from the Poisson-distributed number of 

photons captured by each pixel and is 

therefore denoted as photon noise [13]. This 

case will be investigated in the remainder of 

this article. 
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2. Related Work& Implementation 

2.1 Optoelectronic noise: 

In this section, the optoelectronic noise model 

will be reviewed in a deeper detail. The main 

contributions of photon noise and electronic 

noise will be derived and physically related to 

the instrument. Signal-to-noise ratio (SNR) 

will be defined and its relationships to the 

noise model parameters will be addressed. Let 

us rewrite the model (1) with γ = 0.5: 

g(m, n) = f (m, n) + √f (m, n) · u(m, n) + w(m, 

n). (3) 

 

Equation (3) represents the electrical signal 

resulting from the photon conversion and from 

the dark current. The mean dark current has 

preliminarily been subtracted to yield g(m, n). 

However, its statistical fluctuations around the 

mean constitute most of the zero-mean 

electronic noise w(m, n). The term √ f (m, 

n)·u(m, n) is the photon noise, whose mean is 

zero and whose variance is proportional to E[ f 

(m, n)]. It represents a statistical fluctuation of 

the photon signal around its noise-free, f (m, 

n), due to the granularity of photons 

originating electric charge. 

2.2 SNR 

If the variance of (3) is calculated on 

homogeneous pixels, in which σ
2

f (m, n) = 0, 

by definition, thanks to the independence of f , 

u and w and the fact that both u and whave 

null mean and are stationary, we can write 

σ
2

g (m, n) = σ
2u

· μf (m, n) + σ
2

w (4) 

in which μf (m, n) _ E[ f (m, n)] is the non-

stationary mean of f . The term μf (m, n) equals 

μg (m, n), from (3). Let us define the local 

SNR at pixel position (m, n) as 

SNRdB(m, n) = 10 log10(
𝐸[ 𝑓2(𝑚 ,𝑛)]

𝜇𝑓  (𝑚 ,𝑛)𝜎2𝑢+ 𝜎2𝑤
)(5) 

Which on homogeneous pixels (i.e., σ
2
f (m, n) 

= 0) becomes 

SNRdB(m, n) = 10 log10(
𝜇𝑓  (𝑚 ,𝑛)2

𝜇𝑓  (𝑚 ,𝑛)𝜎2𝑢+ 𝜎2𝑤
). (6) 

In (6), if μf (m, n)σ 
2

u≫σ
2

w, then 

SNRdB(m, n) ≈ 10 log10(
𝜇𝑓  (𝑚 ,𝑛)

𝜎2𝑢
). (7) 

That is SNR depends on the mean photon 

signal. 

Instead, if μf (m, n)σ 
2

u ≪σ
2

w, then 

SNRdB(m, n) ≈ 10 log10(
𝜇𝑓  (𝑚 ,𝑛)2

𝜎2𝑤
) (8) 

Which states that the SNR depends on the 

square of the Mean photon signal? 

In practical applications, the average SNR is 

used: 

SNRdB= 10 log10(
¯𝑓2

𝑓𝜎2 𝑢+ 𝜎2𝑤
ˉ). (9) 

Where ˉf is obtained by averaging the 

observed noisy image, the noise being zero-

mean and the average local variance of f is 

assumed to be negligible, i.e., (ˉf 2) ≈ (ˉf )2. 

3. Experimental Results 

The proposed method has preliminarily been 

validated on simulated strepitous images. 

Results on the synthetic noise free test image 

utilized in [5] are presented here. The pristine 

test image is shown in Figure 2a. A strepitous 

versions with average SNR (9) equipollent to 

17 dB and 77% signal-dependent photon noise 
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(γ = 0.5) and 23% signal-independent 

electronic noise has been engendered and is 

shown in Figure 2b. The variance-to-mean 

scatter plots, shown in Figure 2c,d, highlight 

the noise model. In Figure 2c no noise has 

been superimposed and nine points can be 

 

Fig 1: Calculation of slope and intercept of 

mixedphoton/electronic noise from centroids 

of scatterplotscalculated from blocks/ROIs of 

test image: scatterplot ofhomogeneous areas 

with regression line superimposed (dotssize 

proportional to mass of clusters). 

Detected, approximately lying aligned over 

the x-axis. The slope of the joining line is 

identically tantamount to zero and the 

intercept is identically tantamount to the 

variance of integer roundoff error, i.e., to 1/12. 

Conversely, Figure 2d evidences the presence 

of nine clusters that are aligned along a 

straight line having slope and intercept 

equipollent to the parameters of the 

superimposed noise.  

Strepitous versions of the test image with 50% 

photon and 50% electronic noise have been 

engendered with SNR ranging between 15 and 

30 dB. The proposed method and the method 

described in [5],b which conversely exploits a 

wavelet decomposition in order to find 

homogeneous regions, have been used to 

estimate the noise model parameters. In the 

latter case, the strepitous image is clipped 

below zero, as it transpires with an authentic 

CCD camera. For the proposed method, the 

results without clipping are virtually identical 

to those with clipping, provided that the 

gravity centers of clusters originated by dark 

image blocks are preliminarily discarded by 

thresholding their mean. Figure 3a,c,e shows 

estimated slope and intercept of the noise 

model in the (μ, σ2) plane, as well as 

estimated SNR, varying with the true SNR, for 

the proposed method; Figure 3b,d,f for the 

method in [5].  

The precision of both is very high, especially 

on SNR. The proposed method, however, 

exhibits a remotely better ability in splitting 

the noise contribution into its two signal-

dependent and signal-independent 

components. 
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Fig 2: Original piecewise-smooth test image taken from [5]: (a) noise-free original; (b) corrupted 

with simulated optoelectronic noise (77% photon, 23% electronic, SNR=17 dB); (c) variance-to-

mean scatterplot of original; (d) variance-to-mean scatterplot of noisy version. 

 

 

Fig 3: Tests with simulated signal-dependent noise on a piecewise-smooth test image.Estimated 

(solid) and true (dashed) parameters of the photon (slope of regression line) and electronic (intercept) 

noise model as a function of true SNR. (a) Slope of the proposed method; (b) slope of the method in 
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[5]; (c) intercept of the proposed method; (d) intercept of the method in [5]; (e) SNR of the proposed 

method; (f) SNR of the method in [5]. 

4. Conclusion 

Modern CCD color cameras engender rectified 

R–G–B images dominated by opto-electronic 

noise, an amalgamation of signal-dependent 

photon noise and signal-independent 

electronic noise. The parameters of the noise 

model can be quantified on a single image by 

denotes of a pristine unsupervised procedure 

relying on a bivariate linear regression of local 

mean and variance. It is eminent that such a 

noise model does not rigorously hold for raw 

data, but only once the CRF has been 

redressed and the pristine LS has been 

recuperated from nonlinearities introduced by 

the electronic chain. 

The full cognizance of the parametric noise 

model can be subsidiary not only in 

applications requiring preliminary denoising, 

but withal in application of surveillance, in 

which no denoising is performed, but 

automatic detection is ruled by thresholds that 

are presumably cognate with the noise model. 

Withal recuperation will benefit from the 

cognizance of a parametric noise model, 

including its autocorrelation function. Its 

estimation, however, whenever performed on 

R–G–B data, is perplexed by the demosaicing 

and interpolation steps, especially because 

interpolation algorithms, aimed at reducing 

impairments originated by Bayer’s mosaicing 

pattern, are generally adaptive, may be 

nonlinear and especially they are not disclosed 

by manufacturers. Therefore, the most 

congruous domain for this kind of processing 

is indubitably the one where color components 

have been split, but have not yet been 

interpolated. 
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