

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 Available at http://internationaljournalofresearch.org

DESIGNEVALUATIONOFTWOWHEELERPISTONUSINGALUMINUMPOWDERMETALLURGY

B.VASANTHA¹,

B.PHANI SHANKAR²

ABSTRACT

The main aim of the paper is to design a piston for a two wheeler for materials Brass, Cast Iron and Aluminum Powder Metallurgy. The designs of the piston are modeled using 3D modeling software SolidWorks. Design Evaluation is a technique used for validating the Design. In Mechanical Engineering Design Evaluation plays major role in Design. Design Evaluation can be done mainly in three steeps

- a. Constraints
- b. Variables
- c. Goals

In this project Design evaluation is conducted by specifying constraints as stresses, variables as thickness of piston head and goal, minimizing mass of the material. From design Evaluation we will take best design result. Analysis is done in COSMOS.

INTRODUCTION

The piston is the single, most active and very critical component of the automotive engine. The Piston is one of the most crucial, but very much behindthe-stage parts of the engine which does the critical work of passing on the energy derived from the combustion within the combustion chamber to the crankshaft. Simply said, it carries the force of explosion of the combustion process to the crankshaft.

FUNCTIONS OF THE PISTON

To receive the impulse from the expanding gas & transmit the energy to the crank shaft through the connecting rod,It transmits the force of combustion gases to the crank shaft.It controls the opening & closing of parts in a 2-stroke engine.It acts as a seal to escape of high pressure gases into the crank case.

powder metallurgy with at least two Α constituent parts, one being a metal. The other material may be a different metal or another material, such as a ceramic or organic compound. When at least three materials are present, it is called a hybrid composite. The metallurgy is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means that there is a path through the matrix to any point in the material, unlike two materials sandwiched together. In structural applications, the matrix is usually a lighter metal such as aluminum, magnesium, or titanium, and provides a compliant support for the reinforcement. In high temperature applications, cobalt and cobalt-nickel alloy matrices are common.

PRESSURE

Indicated power IP =
$$\frac{P_m \times l \times A \times n}{60}$$
 = $\frac{P_m \times l \times A \times n}{60}$ = $\frac{P_m \times l \times \pi \times D^2 \times n}{60}$ = $\frac{1.12 \times 58.6 \times 3.14 \times 57^2 \times 4}{4 \times 60}$ = 11217.05 kw

Brake power BP $= \frac{2\pi NT}{60} = \frac{2\pi \times 6000 \times 13.4}{60} = 8415.2$

Mechanical efficiency $\eta_{mech} = \frac{BP}{IP} = \frac{8415.2}{11217.05} = 0.75 = 75\%$

Thickness of piston head

$$\mathbf{t}_{\mathbf{h}} = \sqrt{\frac{3pD^2}{16\sigma_t}} \mathbf{t}_{\mathbf{h}} = \mathbf{1.57mm}$$

 $t_h = 12.03481081 mm$

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 Available at http://internationaljournalofresearch.org

2.Piston rings

Radial thickness

$$= D \sqrt{\frac{3p_W}{\sigma_t}}$$

the gap between the free ends of the ring = 3.5t to 4t = 7.72mm

 t_1

PISTON DESIGN

3. Piston barrel

 $t_3 = 0.03D + b + 4.5$

$t_3 = 8.54$ mm

The piston wall thickness towards the open end

 $t_4 = 0.35t_3$

t₄= 2.989mm

4. Piston skirt

Total length of the piston

L =length of the skirt length of ring section + top land

L = 69.54177297mm

MODEL OF PISTON BY USING SOLID WORKS

SKETCHER:

2D DRAWINGS

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 Available at http://internationaljournalofresearch.org

ANALYSIS OF PISTON BY USING COSMOWORKS CAST IRON

MODEL INFORMATION:

STUDY RESULTS

Name	Туре	Min	Max	
Strain1	ESTRN:	6.72647e-	0.000995247	
	Equivalent	006	Element:	
	Strain	Element:	7946	
		4604		
P	PISTON-PISTON CI-Strain-Strain1			

Name	Туре	Min	Max
Displacement1	URES:	0 mm	0.0339394
	Resultant	Node:	mm
	Displacement	74	Node:
			9702
PISTON-PIST	DN CI-Displacer	nent-Disr	placement1
PISTON-PISTO	ON CI-Displacer	nent-Disp	placementl

International Journal of Research (IJR) e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

ALLUMINIUM POWDER METALLURGY:MODEL INFORMATION

Mode	el name: PIS	TON MMC DES	SIGN			
	EVAL	LUATION				
0	Current Confi	iguration: Defau	lt			
Solid Bodi	es					
Document Name and Reference	Document Name and ReferenceTreated AsVolumetric PropertiesDocument Path/Date Modified					
Fillet3	Solid Body	Mass:0.2492 61 kg Volume:8.65 488e-005 m^3 Density:2880 kg/m^3 Weight:2.44 275 N	C:\Users\V ASANTH A\Docume nts\DESIG N\SW\pist on\PISTO N MMC DESIGN EVALUA TION.SLD PRT Feb 09 18:29:35 2015			

STUDY RESULTS

Туре	Min	Max		
VON: von	1.06347	180.598		
Mises	N/mm^2	N/mm^2		
Stress	(MPa)	(MPa)		
	Node:	Node:		
	13915	16663		
PISTON MMC DESIGN EVALUATION-				
PISTON MMC-Stress-Stress1				
	VON: von Mises Stress	Type Min VON: von 1.06347 Mises N/mm^2 Stress (MPa) Node: 13915		

Name	Type	Min	Max	
Displacement1	LIRES.	0 mm	0.0397868	
Displacement	Resultant	Node [.]	mm	
	Displacement	74	Node [.]	
	Displacement	<i>,</i> .	4923	
PISTON MMC DESIGN EVALUATION-PISTON MMC-Displacement-Displacement1 ALUMINUM ALLOY 7075 MODEL INFORMATION				
Model nam	e: PISTON A	LLOY	S D S	
Current	Configuration	n: Defa	ult	
olid Bodies				

Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
Fillet3	Solid Body	Mass:0.257 393 kg Volume:9.1 5989e-005 m^3 Density:281 0 kg/m^3 Weight:2.5 2245 N	C:\Users\ VASANT HA\Docu ments\DE SIGN\SW \piston\PI STON ALLOY S D S.SLDPR T Feb 09 19:10:38 2015

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 Available at http://internationaljournalofresearch.org

STUDY RESULTS

Name	Туре	Min	Max	
Strain1	ESTRN: Equivalent Strain	1.02872e- 005 Element: 3671	0.00126389 Element: 10894	
Noot have PETCA-ALCY 50 5 Days and PETCA-ALCY Petcanon PETCA-ALCY Determine science 105.075			EXTRU 1984-003 1985-003 1985-003 1985-003 1985-004 1986-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-004 2078-005	
PISTON ALLOY S D S-PISTON ALLOY-Strain- Strain1				

DESIGN OPTIMIZATION OF PISTON

ALUMINUM ALLOY 7075:

MODEL INFORMATION

Docu	Confi	Document Path	Date
ment	gurati		Modifi
Name	on		ed
PIST ON 7075	Defaul t	C:\Users\VASANTH A\Doc uments\DESIGN\SW\ piston sw\COSMOS STATIC PISTO N\PISTON 7075.SLDPRT	Feb 10 10:17:0 3 2015

STUDY PROPERTIES:

Study	Design Study 1
name	
Analysi	Design Study(Optimization)
s type	
Design	High quality (slower)
Study	
Quality	
Result	SolidWorks
folder	document(C:\Users\VASANTHA\D
	0
	cuments\DESIGN\SW\piston
	sw\COSMOS STATIC PISTON)

International Journal of Research (IJR) e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

UNITS:

Senso r name	Conditio n	Bounds	Units	Stud y name
Stress1	is less than	Max:52 0	N/mm^ 2 (MPa)	PIST ON CI

Design Study Setup

Design Variables

Name	Туре	Values	Units
ALLOY	Range	Min:8 Max:12	Mm

Constraints

Senso r name	Conditio n	Bounds	Units	Stud y name
Stress1	is less than	Max:50 5	N/mm^ 2 (MPa)	CI

Goals

Name	Goal	Properties	Weight	Study name
Mass1	Minimize	Mass	10	-

STUDY RESULTS

Com p onent name	U N I T S	C U R E N T	I N I T I A L	Opt i mal	Itera tion 1	Ite ra tio n2
ALL OY	Mm	8	12.03 481	8	8	12
Stress 1	N/ mm ^2 (M Pa)	178.0 9	126.4 3	178. 09	178.0 9	125 .01
Mass1		86.54 88	91.59 89	86.5 488	86.54 88	91. 555 3

Compognent name	Units	Iterati on3
ALLOY	mm	10
Stress1	N/mm^ 2 (MPa)	153.78
Mass1	g	89.0521

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015 Available at http://internationaljournalofresearch.org

Name	Туре	Min	Max	
Stress1 VON: von Mises Stress		0.913657 N/mm^2 (MPa) Node: 6637	178.089 N/mm^2 (MPa) Node: 16663	
Barine 20000 Danie New Social des Ber Newtonie 1	STON 7075-CI-S	vites (M)		

RESULTS TABLE

As per the analysis images

	DISPL	STRES	STRA	WEIG
	Α	S	IN	НТ
		(N/mm		(Kg)
	CEME	²)		
	NT			
	(mm)			
CAST	0.0030	139.00	0.0009	0.645
IRON	0.0039	6	95247	0.045
ALUM				
INUM				
POWD				
ER	0.03978	180.5	0.0009	0.249
META	68	180.5	6114	0.249
LLUR				
GY				
ALUM		126 /3	0.0012	
INUM	0.042	120.43	0.0012	0.257
7075		I	6	

CONCLUSION

In this paper,By comparing the three materials, we can conclude that using Aluminum powder metallurgy is better than other two materials since its strength is more and also by using this material its weight is also less.We have also done design optimization by reducing the piston head thickness, the values are 12mm (Original), 10mm and 8mm. By observing the optimization results for all materials, by reducing thickness of piston head from 12mm to 8mm, the results are optimal. So by taking piston head thickness as 8mm, it is the optimal value.

REFERANCES

- [1.] Machine Design by R.S. Khurmi
- [2.] Machine Design by R.K.Jain
- [3.]Heywood, J.B.: "Internal Combustion Engine Fundamentals,' McGraw-Hill, Inc., New York, 1987.
- [4.] Rohatgi, P.: "Cast Aluminum Matrix Composites for Automol ive Applications." Journal of Metals, pp. 10-15, April 1991

1) V.Vasantha,

M.Tech Student, Department of Mechanical Engineering Aurora's Scientific, Technological and Research Academy Bandlaguda,Hyderabad-500005. 2)B.Phani Shankar Head of The Department Department of Mechanical Engineering Aurora's scientific, Technological and Research Academy Bandlaguda,Hyderabad-500005.