

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 478

Design and Verification of 192 Bit Advanced Encryption
Standard for High Security Applications

K. Balakrishna*1 & T. Ratan Babu*2
1
M.Tech VLSI System Design, Dept. Of Electronics and communications,Chaitanya Institute Of

Technology & Science, Hnk,Warangal ,TS
2
Asst.Prof, Dept.of Electronics And Communications, CITS ,Hnk,Warangal,TS

Abstract—

Advanced Encryption Standard (AES), has

received significant interest over the past

decade due to its performance and security

level. In most of the previous works subbytes

and inverse subbytes are implemented in

Separate Modules using lookup table method.

In this paper we used combinational logic

which helps for making inner round pipelining

in an efficient manner. Furthermore,

composite field arithmetic helped in obtaining

lesser area. Using proposed architecture, a

fully sub pipelined encryptor/ decryptor with 3

substage pipelining in each round can achieve

a throughput of 25.89Gbps on Xilinx

xc5vlx110t-1 device which is faster.

This AES design was implemented

using Verilog HDL and synthesized with

Xilinx ISE using Spartran3 Xilinx Family ,

Simulation and Verification was done using

Mentor-Graphics ModelSim-6.5e and

achieved the maximum through put.

I. INTRODUCTION

In today‟s digital world, encryption is

emerging as a disintegrable part of all

communication networks and information

processing systems, for protecting both stored

and in transit data. Encryption is the

transformation of plain data (known as

plaintext) into unintelligible data (known as

ciphertext) through an algorithm referred to as

cipher.

There are numerous encryption

algorithms that are now commonly used in

computation, but the U.S. government has

adopted the Advanced Encryption Standard

(AES) to be used by Federal departments and

agencies for protecting sensitive information.

The National Institute of Standards and

Technology (NIST) has published the

specifications of this encryption standard in

the Federal Information Processing Standards

(FIPS) Publication 197. [1]

Any conventional symmetric cipher,

such as AES, requires a single key for both

encryption and decryption, which is

independent of the plaintext and the cipher

itself. It should be impractical to retrieve the

plaintext solely based on the ciphertext and

the encryption algorithm, without knowing the

encryption key. Thus, the secrecy of the

encryption key is of high importance in

symmetric ciphers such as AES. Software

implementation of encryption algorithms does

not provide ultimate secrecy of the key since

the operating system, on which the encryption

software runs, is always vulnerable to attacks.

There are other important drawbacks

in software implementation of any encryption

algorithm, including lack of CPU instructions

operating on very large operands, word size

mismatch on different operating systems and

less parallelism in software. In addition,

software implementation does not fulfill the

required speed for time critical encryption

applications. Thus,
hardware

 implementation of

encryption algorithms is an important

alternative, since it provides ultimate secrecy

of the encryption key, faster speed and more

efficiency through higher levels of parallelism.

Different versions of AES algorithm

exist today (AES128, AES196) depending on

the size of the e1ncryption key. In this project,

a hardware model for implementing the

AES128 algorithm was developed using the

SystemVerilog hardware description language.

A unique feature of the design proposed in this

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 479

project is that the round keys, which are

consumed during different iterations of

encryption, are generated in parallel with the

encryption process.

AES algorithm provide more physical

security as well as higher speed. Three

architectural optimization approaches can be

employed to speed up the hardware

implementations: pipelining, subpipelining,

and loop-unrolling. Among these approaches,

the subpipelined architecture can achieve

maximum speedup and optimum speed–area

ratio in non-feedback modes. In order to

explore the advantage of subpipelining further,

each round unit needs to be divided into more

substages with equal delay. However, the

SubBytes and the InvSubBytes in the AES

algorithm are traditionally implemented by

look-up tables (LUT)The Large and growing

number of internet and wireless

communication users has led to an increasing

demand of security measures and devices for

protecting the user data transmitted over the

open channels. Two types of cryptographic

systems are mainly used for security purpose,

one is symmetric-key crypto system and other

is asymmetric-key crypto system. Symmetric-

key cryptography (DES, 3DES and AES) uses

same key for both encryption and decryption.

The asymmetric-key cryptography (RSA and

Elliptic curve cryptography) uses different

keys for encryption and decryption. The major

disadvantage of DES is its key length is small.

In November 2001, the National Institute of

Standards and Technology (NIST) of the

United States chose the Rijndael algorithm as

the suitable Advanced Encryption Standard

(AES) to replace previous algorithms like

DES algorithm.

The rest of the paper is organized as

follows. Section II describes basic AES

algorithm. Section III describes novel on-the-

fly key expansion module. Section IV

describes pipeline design. Section V describes

comparison work. Finally we concluded the

paper in section VI

II.AES ALOGORITHAM

 The AES algorithm is a symmetric

block cipher that processes data blocks of 128

bits using a cipher key of length 128, 192 bits.

In addition, the AES algorithm is an iterative

algorithm. Each iteration can be called a

round, and the total number of rounds, Nr, is

10, 12, or 14, when the key length is 128, 192,

or 256 bits, respectively. Table 1 shows the

number of rounds as a function of key length.

AES

Version

Key

Length

Block

Size

No of

Rounds

AES 128 4 4 10

AES 192 6 4 12

Table 1 – AES Variations

The basic processing unit for the AES

algorithm is a byte. As a result, the plaintext,

ciphertext and the cipher key are arranged and

processed as arrays of bytes. For an input, an

output or a cipher key denoted by a, the bytes

in the resulting array are referenced as an ,

where n is in one of the following ranges:

Block length = 128 bits, 0 <= n < 16

Key length = 128 bits, 0 <= n < 16

Key length = 192 bits, 0 <= n < 24

The 128-bit data block is divided into

16 bytes. These bytes are mapped to a 4x4

array called the State and the state undergoes

all the internal operations of AES algorithm.

The transformations performed on the state are

similar among all AES versions but the

number of transformation rounds depends on

the cipher key length

Figure 1 – AES128 Block Diagram

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 480

The final round in all AES versions

differs slightly from the first Nr −1 rounds as

it has one less transformation performed on

the State. Each round of AES cipher (except

the last one) consists of all the following

transformation:

- SubBytes()

- ShiftRows()

- MixColumns()

- AddRoundKey ()

Fig 2: The AES cipher

The AES cipher is described as a pseudo code

in Figure 2. [1] As shown in the pseudo code,

all the Nr rounds are identical with the

exception of the final round which does not

include the MixColumns transformation. The

array with represents the round keys that are

generated by the key expansion routine.

Cipher(byte PlainText[4*Nb], byte

CipherText[4*Nb], word w[Nb*(Nr+1)])

begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr–1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb,

(round+1)*Nb-1])

end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb,

(Nr+1)*Nb-1])

out = state

end

Figure 3 – AES128 Cipher Pseudo Code

After an initial round key addition, a round

function consisting of four different

transformations sub-bytes, shift-rows, mix-

columns, and add-round-key are applied to the

data block in the encryption procedure and in

reverse order with inverse transformations in

Decryption procedure. But last round in

encryption contains only sub bytes, shift rows

and add round key. Last round in decryption

contains only inverse sub bytes, inverse shift

rows and add round key. Four transformations

in a round function are examined and

optimally designed to achieve efficient

implementation.

A. SubByte/Inv SubByte transformations

Subbyte transformation is a non linear

byte substitution. This can be done by using

two methods.

Fig 4: SubByte/Inv Subbyte Transformation

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 481

In LUT based approach, the unbreakable delay

of lookup tables is greater than the other logic.

By using LUT method it is difficult to use sub

pipeline structure with two pipeline stages,

which prevents the further speedup. An

alternative method is to use combinational

logic, which is faster than the LUT and can

also be divided into two pipeline stages,

allowing further speedup. In non LUT method

sub bytes can be implemented by finding

multiplicative inverse followed by affine

transform. Similarly inverse sub bytes

implemented by using inverse affine transform

followed by multiplicative inverse. Here

multiplicative inverse is common; by taking

this advantage we can implement a single

structure for both subbytes and inverse

B Shift Rows

ShiftRows is a simple shifting transformation.

First row of the state is kept as it is, while the

second, third and fourth rows cyclically

shifted by one byte, two bytes and three bytes

to the left, respectively. In the InvShiftRows,

the first row of the State does not change,

while the rest of the rows are cyclically shifted

to the right by the same offset as that in the

ShiftRows.

Fig 5: ShiftRows

C. MixColumn/InvMixColumn

transformation

The MixColumns() transformation

operates on the State column-by-column,

treating each column as a four-term

polynomial. The columns are considered as

polynomials over GF(28) and multiplied

modulo x4 + 1 with a fixed polynomial a(x),

given by a(x) = {03}x3 + {01}x2 + {01}x +

{02} .

The function xtime is used to represent

the multiplication with ‗02„, modulo the

irreducible polynomial m(x)= x8 + x4 + x3 +

x + 1. Implementation of function xtime()

includes shifting and conditional xor with

‗1B„. Fig. 4 shows the mixed column module.

This transformation together with

ShiftRows, provide substantial diffusion in the

cipher meaning that the result of the cipher

depends on the cipher inputs in a very

complex way. In other words, in a cipher with

a good diffusion, a single bit change in the

plaintext will completely change the

ciphertext in an unpredictable manner.

D. Add Roundkey

Add RoundKey involves only bit-wise

XOR operation. After every round output of

the mixcolumn is added with round key.

The round key values are added to the

columns of the state in the following way

Figure 6 – AES128 Add Round Key

During the AddRoundKey

transformation, the round key values are

added to the State by means of a simple

Exclusive Or (XOR) operation. Each round

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 482

key consists of Nb words that are generated

from the KeyExpansion routine.

By inverting the encryption structure

one can easily derive the decryption structure.

However, the sequence of the transformations

will be different from that in encryption. This

feature prohibits resource sharing between

encryptors and decryptors.

III. KEY EXPANSION

In the AES algorithm, the key

expansion module is used for generating round

keys for every round. There are two

approaches to provide round keys. One is to

pre-compute and store all the round keys, and

the other one is to produce them on-the-fly.

First approach consumes more area. In second

approach, the initial key is divided into Nk

words (key0, key1,…, keyNk-1) which are

used as initial words. With the help of these

initial words rest the words are generated

iteratively. It can be computed that is 4, 6, or

8, when the key length is 128, 192 or 256-bit,

respectively. Each round key has 128 bits, and

is formed by concatenating four words.

The AES algorithm requires four

words of round keys for each encryption

round. That is total of 4*(Nr + 1) round keys

considering the initial set of keys required for

the first AddRoundKey transformation. All the

round keys are derived from the cipher key

itself.

According to the Federal Information

Processing Standards (FIPS) Publication 197

[1], there is no restriction on the cipher key

selection, as no week cipher key has been

identified for the AES algorithm. The

expansion of the cipher key into the round

keys is performed by the KeyExpansion

algorithm as shown in the pseudo code in

Figure 7. [1]

The key expansion procedure can be

described by the pseudo code listed below

KeyExpansion(byte CipherKey[4*Nk],

word w[Nb*(Nr+1)], Nk)

begin

word temp

i = 0

while (i < Nk)

w[i] = word(key[4*i], key[4*i+1],

key[4*i+2], key[4*i+3])

i = i+1

end while

i = Nk

while (i < Nb * (Nr+1)]

temp = w[i-1]

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) xor

Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)

end if

w[i] = w[i-Nk] xor temp

i = i + 1

end while

end

Figure 7 – AES Key Expansion Pseudo Code

In the above pseudo code, the array

represents the round keys that are generated

by the KeyExpansion routine and Nk

represents the size of the cipher key.

Depending on the version of the AES

algorithm, Nk=4, 6 or 8. The first Nk words of

the expanded key are filled with the cipher key

AES 192_bit Encryption & Decryption

In this paper, we presented a efficient pipeline

AES architecture of 192bit with key length of

6and block size of 4,no.of rounds 12,which

includes both encryption and decryption. Also

sub pipelining architecture helped us to get

higher throughput than earlier

implementations. The design is modelled

using with the help of Model sim. Synthesis is

done by using Xilinx ISE 9.10.

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 483

Fig 8:Block Diagram for AES192_Bit

IV.RESULTS

Fig 9: AES Architecture

The AES architecture was implemented using

Verilog HDL, and simulated using Mentor

Graphics Modelsim. Here we implemented

two types of designs. AES is pipelined

implementations.

Fig10:Simulation waveform of AES128_Bit

Fig 11:Simulation waveform of AES 192_ Bit.

V. CONCLUSION

In this paper, we presented a efficient pipeline

AES architecture of 192Bit with key length of

6 And Block size of 4, no. Of rounds 12,

which includes both encryption and

decryption. Also sub pipelining architecture

helped us to get higher throughput than earlier

implementations. The design is modelled

using Verilog HDL and simulated with the

help of Model sim. Synthesis is done by using

Xilinx ISE 9.10

REFERENCES

[1] J.Daemen and V.Rijmen, AES Proposal:

Rijndael, AES algorithm submission,‖

September 3, 1999, available:

ttp://www.nist.gov/CryptoToolkit.

[2]Draft FIPS for the AES,‖ available from:

http://csrc.nist.gov/encryption.aes , February

2001

[3] Advanced Encryption Standard (AES),

Nov. 26, 2001.

[4] A. J. Elbirt, W. Yip, B. Chetwynd, and C.

Paar. An FPGA implementation and

performance evaluation of the AES block

cipher candidate algorithm finalist. presented

at Proc. 3rd AES Conf. (AES3). [Online].

Available:

International Journal of Research (IJR)
e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 07, July 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 484

http://csrc.nist.gov/encryption/aes/round2/conf

3/aes3papers.html

[5] V. Fischer and M. Drutarovsky, “Two

methods of Rijndael implementation in

reconfigurable hardware,” in Proc. CHES

2001, Paris, France,May 2001, pp. 77–92.

[6] A.M.Deshpande, M.S.Deshpande and

.N.Kayatanavar,“FPGA Implementation of

AES Encryption and Decryption”IEEE

Inter.Conf.Cont,Auto,Com,and Ener.,

vol.01,issue04, pp.1-6,Jun.2009..

