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Abstract- 

Although redundant addition is widely used to design parallel multioper and adders for ASIC 

implementations, the use of redundant adders on Field Programmable Gate Arrays (FPGAs) has 

generally been avoided. The main reasons are the efficient implementation of carry propagate adders 

(CPAs) on these devices (due to their specialized carry-chain resources) as well as the area overhead 

of the redundant adders when they are implemented on FPGAs. This paper presents different 

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They 

present a fast critical path, independent of bit width, with practically no area overhead compared to 

CPA trees. Along with the classic carry-save compressor tree, we present a novel linear array 

structure, which efficiently uses the fast carry-chain resources. This approach is defined in a 

parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or 

vendor. A detailed study is provided for a wide range of bit widths and large number of operands. 

Compared to binary and ternary CPA trees, speedups of up to 2.29 and 2.14 are achieved for 16-bit 

width and up to 3.81 and 3.11 for 64-bit width. 

 

Index Terms—Computer arithmetic; reconfigurable hardware; multioperand addition; redundant 

representation; carry-save adders 

 

INTRODUCTION 
THE use of Field Programmable Gate Arrays 

(FPGAs) to implement digital circuits has been 

growing in recent years. In addition to their 

reconfiguration capabilities, modern FPGAs 

allow high parallel computing. FPGAs achieve 

speedups of two orders of magnitude over a 

general-purpose processor for arithmetic 

intensive algorithms[1]. Thus, these kinds of 

devices are increasingly selected as the target 

technology for many applications, especially in 

digital signal processing [2], [3], [4], 

[5],hardware accelerators [6], [7], [8], 

cryptography [9], [10]and much more. Therefore, 

the efficient implementation ofgeneralized 

operators on FPGAs is of great relevance.The 

typical structure of an FPGA device is a matrix 

of configurable logic elements (LEs), each one 

surrounded by interconnection resources. In 

general, each configurable element is basically 

composed of one or several n-input lookup tables 

(N- LUT) and flip-flops. However, in modern 

FPGA architectures, the array of LEs has been 

augmented by including specialized circuitry, 

such as dedicated multipliers, block RAM, and 

so on. In [11], the authors demonstrate that the 

intensive use of these new element reduces the 

performance GAP between FPGA and ASIC 

implementations. One of these resources is the 

carry-chain system, which is used to improve the 

implementation of carry propagate adders 
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(CPAs). It mainly consists of additional 

specialized logic to deal with the carry signals, 

and specific fast routing lines between 

consecutive LEs, as shown in Fig. 1. This 

esource is presented in most current FPGA 

devices from low-cost ones to high-end families, 

and it accelerates the carry propagation by more 

than one order of magnitude compared to its 

implementation using general resources. Apart 

from the CPA implementation, many studies 

have demonstrated the importance of using this 

resource to achieve designs with better 

performance and/or less area requirements, and 

even for implementing nonarithmetic circuits 

[12], [13].Multioperand addition appears in many 

algorithms, such as multiplication [14], [15], 

filters [16], [17], SAD [18], and others [1], [8], 

[19], [20], [21]. To achieve efficient 

implementations of this operation, redundant 

adders are extensively used [22], [23]. 

Redundant representation reduces the addition 

time by limiting the length of the carry-

propagation chains. The most usual 

representations are carry-save (CS) and signed-

digit (SD). A CS adder (CSA) 

adds three numbers using an array of Full-Adders 

(FAs), but without propagating the carries. In this 

case, the FA is usually known as a 3:2 counter. 

The result is a CS number, which is composed of 

a sum-word and a carry-word. Therefore, the CS 

result is obtained without any carry propagation 

in the time taken by only one FA. The addition of 

two CS numbers requires an array of 4:2 

compressors, which can be implemented by two 

3:2 counters. The conversion to non redundant 

representation is achieved by adding the sum and 

carry word in a conventional CPA [24]. 

However, due to the efficient implementation of 

CPAs, the use of redundant adders has usually 

been rejected when targeting FPGA technology. 

A direct implementation of a 3:2 counter usually 

doubles the area requirements of its equivalent 

CPA and improved speed is only noticeable for 

long bit widths. Nevertheless, several recent 

studies have demonstrated that redundant adders 

can be efficiently mapped on FPGA structures, 

reducing area overhead and improving speed, as 

described in Section 2. Despite the important 

advances represented by these previous studies, 

the solutions proposed  require either (or 

sometimes both) the use of a sophisticated 

heuristic to generate each compressor tree or a 

low-level design. The latter impedes portability, 

because it is highly dependent on the inner 

structure.  

 
 

Fig. 1. General scheme of dedicated carry-chain 

resources included in modern FPGA devices. 

 

In addition, their area and speed could be 

improved, because the use of a specialized fast 

carry-chain is very limited. In this paper, we 

study the efficient implementation of 

multioperand redundant compressor trees in 

modern FPGAs by using their fast carry 

resources. Our approaches strongly reduce delay 

and they generally present no area overhead 

compared to a CPA tree. Moreover, they could 

be defined at a high level based on an array of 

standard CPAs. As a consequence, they are 

compatible with any FPGA family or brand, and 

any improvement in the CPA system of future 

FPGA families would also benefit from them. 

Furthermore, due to its simple structure, it is easy 

to design a parametric HDL core, which allows 

synthesizing a compressor tree for any number of 

operands of any bit width. Compared to previous 

approaches, our design presents better 

performance, is easier to implement, and offers 

direct portability. 

The rest of the paper focuses on CS 

representation, because the extension to SD 
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representation could be simply achieved by 

inverting certain input and output signals from 

and to the compressor tree, as was demonstrated 

in [25]. Since it is unnecessary to make any 

internal changes to the array structure, these 

small modifications do not significantly 

modify compressor tree performance. The 

remainder of this paper is organized as follows: 

Section 2 reviews previous work on redundant 

addition on FPGAs. In Section 3, we present our 

proposals for implementing multioperand 

redundant compressor trees on FPGAs and a 

theoretical analysis of their performance. In 

Section 4, we compare the results of 

implementation using different approaches. 

Finally, the conclusions are presented in Section 

5.  

 

3.1 Regular CS Compressor Tree Design 

The classic design of a multioperand CS 

compressor tree attempts to reduce the number of 

levels in its structure. The 3:2 counter or the 4:2 

compressor are the most widely known building 

blocks to implement it [43]. We select a 4:2 

compressor as the basic building block, because 

it could be efficiently implemented on Xilinx 

FPGAs [28]. The implementation of a generic 

CS compressor tree requires [Nop/2]-1  4:2 

compressors (because each one eliminates two 

signals), whereas a carry-propagate        tree uses 

 
Fig. 2. N-bit width CS 9:2 compressor tree based 

on a linear array of csa’s designed using the 

proposed linear structure,  where all lines are N 

bit width buses, and carry signal are correctly 

shifted. For the CSA, we have to distinguish 

between the regular inputs (A and B) and the 

carry input (Ci in the figure), whereas the dashed 

line between the carry input and output 

represents the fast carry resources. With the 

exception of the first CSA, where Ci is used to 

introduce an input operand, on each CSA Ci is 

connected to the carry output (Co) of the 

previous CSA, as shown in Fig. 2. 

Thus, the whole carry-chain is preserved from 

the input to the output of the compressor tree 

(from I0 to Cf). First, the two regular inputs on 

each CSA are used to add all the input operands 

(Ii). When all the input operands have 

been introduced in the array, the partial sum-

words (Si) previously generated are then added 

in order (i.e., the first generated partial sums are 

added first) as shown in Fig. 2. In this way, we 

maximize the overlap between propagation 

through regular signals and carry-chains. 

Regarding the area, the implementation of a 

generic compressor tree based on N bit width 

CSAs requires Nop -2 of these elements (because 

each CSA eliminates one input signal) [24]. 

Therefore, considering that a CSA could be 

implemented using the same number of resources 

as a binary CPA (as shown below), the proposed 

linear array, the 4:2 compressor tree, and the 

binary CPA tree have approximately the same 

hardware cost. 

In relation to the delay analysis, from a classic 

point of view our compressor tree has Nop -2 

levels. This is much 

more than a classic Wallace tree structure and, 

thus, a longer critical path. Nevertheless, because 

we are targeting an FPGA implementation, we 

temporarily assume that there is no delay for the 

carry-chain path. Under this assumption, the 

carry signal connections could be eliminated 

from the critical path analysis and our linear 

array could be represented as a hypothetical tree, 

as shown in Fig. 3 (where the carry-chain is 

represented in gray). To compute the number of 

effective time levels (ETL) of this hypothetical 

tree, each CSA is considered a 2:1 adder, except 

for the first, which is considered a 3:1 adder. 



 

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 08, August 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 247 

Thus, the first level of adders is formed by the 

first [(Nop _ 1)/2] CSAs (which correspond to 

partial addition of the input operands). This first 

ETL produces [(Nop _ 1)/2]partial sum-words 

that are added to a second level of CSAs together 

with the last input operand if Nop is even) and so 

on, in such a way that each ETL of CSAs halves 

the number of inputs to the next level. Therefore, 

the total ETLs in this 

hypothetical tree are [log2(Nop _ 1)]  and the 

delay of this tree is approximately L times the 

delay of a single ETL. 

 

 

fg. 3. Time model of the proposed CS 9:2 

compressor tree 

 

CS 5:2 compressor tree based on a linear 

array 

 

CS 5 a linear array  carry save adder 

 

CS 11:2 compressor tree 

 

IMPLEMENTATION RESULTS AND 

COMPARISON 

To measure the effectiveness of the designs 

presented in this paper, we have developed two 

generic VHDL modules implementing the 

proposed compressor tree structures: First, the 

linear array implemented by using CPAs (binary 

and ternary) and, second, the 4:2 compressor tree 

using the design of the compressor presented in 

[28]. Both modules provide the output result in 

CS format and allow the selection of different 

parameters such as: The number of operands 

(Nop), the number of bits per operand (N), and 

the basic building blocks (i.e., binary or ternary 

adder) for the linear array. For the purposes of 

comparison, similar modules, which implement 

classic adder tree structures based on binary 

CPAs and ternary CPAs, have also been 

developed. All these modules were simulated 

using Modelsim SE 6.3f and they were 
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synthesized using Xilinx ISE 9.2, targeting 

Spartan-3A, Virtex-4, and Virtex-5 devices. 

A generic ternary adder module was designed 

following the recommendations of Xilinx [46], 

because this adder is not automatically supported 

by ISE 9.2. Furthermore, to investigate their 

portability, compressor trees based on ternary 

CPAs were also synthesized to target the Altera 

Stratix-II family. In this case, the ternary adders 

are directly instantiated at a high level. We now 

summarize the main results obtained in this 

project. 

 

 
 

 
11-2 compressor result 

9-2 compressor result 

 
5-2 compressor result 

 
5-3 compressor result 

APPLICATIONS AND ADAVANTAGES 

ADVANTAGES: 

• Reduces delay 

• Reduces area 

• Increases speed  

• Direct portability 

• Easy to implement 

APPLICATIONS: 

• Microchip manufacturing 

• Power management 

• Arithmetic units 

CONCLUSION 

Efficiently implementing CS compressor 

trees on FPGA, in terms of area and speed, is 

made possible by using the specialized carry-

chains of these devices in a novel way. Similar to 

what happens when using ASIC technology, the 
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proposed CS linear array compressor trees lead 

to marked improvements in speed compared to 

CPA approaches and, in general, with no 

additional hardware cost. 

FUTURESCOPE 

 Furthermore, the proposed high-level definition 

of CSA arrays based on CPAs facilitates eas 

ofuse and portability, even in relation to future 

FPGA architectures, because CPAs 

will probablremain a key element in the next 

generations of FPGA. We have compared our 

architectures, implemented on different FPGA 

families, to several designs and have provided a 

qualitative and quantitative study of the benefits 

of our proposals.  
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