

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 244

Design of Multioper and Adders Using Different Compressors
Based on FPGA

Mrs. B. Swetha
Assistant Professor, Department of VLSI(ECE), Sri Venkateshwara Engineering

College,Suryapet,Nalgonda,India

Ms. V. Pallavi
PG Student, Department of VLSI(ECE),Sri Venkateshwara Engineering

College,Suryapet,Nalgonda,India
Abstract-

Although redundant addition is widely used to design parallel multioper and adders for ASIC

implementations, the use of redundant adders on Field Programmable Gate Arrays (FPGAs) has

generally been avoided. The main reasons are the efficient implementation of carry propagate adders

(CPAs) on these devices (due to their specialized carry-chain resources) as well as the area overhead

of the redundant adders when they are implemented on FPGAs. This paper presents different

approaches to the efficient implementation of generic carry-save compressor trees on FPGAs. They

present a fast critical path, independent of bit width, with practically no area overhead compared to

CPA trees. Along with the classic carry-save compressor tree, we present a novel linear array

structure, which efficiently uses the fast carry-chain resources. This approach is defined in a

parameterizable HDL code based on CPAs, which makes it compatible with any FPGA family or

vendor. A detailed study is provided for a wide range of bit widths and large number of operands.

Compared to binary and ternary CPA trees, speedups of up to 2.29 and 2.14 are achieved for 16-bit

width and up to 3.81 and 3.11 for 64-bit width.

Index Terms—Computer arithmetic; reconfigurable hardware; multioperand addition; redundant

representation; carry-save adders

INTRODUCTION
THE use of Field Programmable Gate Arrays

(FPGAs) to implement digital circuits has been

growing in recent years. In addition to their

reconfiguration capabilities, modern FPGAs

allow high parallel computing. FPGAs achieve

speedups of two orders of magnitude over a

general-purpose processor for arithmetic

intensive algorithms[1]. Thus, these kinds of

devices are increasingly selected as the target

technology for many applications, especially in

digital signal processing [2], [3], [4],

[5],hardware accelerators [6], [7], [8],

cryptography [9], [10]and much more. Therefore,

the efficient implementation ofgeneralized

operators on FPGAs is of great relevance.The

typical structure of an FPGA device is a matrix

of configurable logic elements (LEs), each one

surrounded by interconnection resources. In

general, each configurable element is basically

composed of one or several n-input lookup tables

(N- LUT) and flip-flops. However, in modern

FPGA architectures, the array of LEs has been

augmented by including specialized circuitry,

such as dedicated multipliers, block RAM, and

so on. In [11], the authors demonstrate that the

intensive use of these new element reduces the

performance GAP between FPGA and ASIC

implementations. One of these resources is the

carry-chain system, which is used to improve the

implementation of carry propagate adders

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 245

(CPAs). It mainly consists of additional

specialized logic to deal with the carry signals,

and specific fast routing lines between

consecutive LEs, as shown in Fig. 1. This

esource is presented in most current FPGA

devices from low-cost ones to high-end families,

and it accelerates the carry propagation by more

than one order of magnitude compared to its

implementation using general resources. Apart

from the CPA implementation, many studies

have demonstrated the importance of using this

resource to achieve designs with better

performance and/or less area requirements, and

even for implementing nonarithmetic circuits

[12], [13].Multioperand addition appears in many

algorithms, such as multiplication [14], [15],

filters [16], [17], SAD [18], and others [1], [8],

[19], [20], [21]. To achieve efficient

implementations of this operation, redundant

adders are extensively used [22], [23].

Redundant representation reduces the addition

time by limiting the length of the carry-

propagation chains. The most usual

representations are carry-save (CS) and signed-

digit (SD). A CS adder (CSA)

adds three numbers using an array of Full-Adders

(FAs), but without propagating the carries. In this

case, the FA is usually known as a 3:2 counter.

The result is a CS number, which is composed of

a sum-word and a carry-word. Therefore, the CS

result is obtained without any carry propagation

in the time taken by only one FA. The addition of

two CS numbers requires an array of 4:2

compressors, which can be implemented by two

3:2 counters. The conversion to non redundant

representation is achieved by adding the sum and

carry word in a conventional CPA [24].

However, due to the efficient implementation of

CPAs, the use of redundant adders has usually

been rejected when targeting FPGA technology.

A direct implementation of a 3:2 counter usually

doubles the area requirements of its equivalent

CPA and improved speed is only noticeable for

long bit widths. Nevertheless, several recent

studies have demonstrated that redundant adders

can be efficiently mapped on FPGA structures,

reducing area overhead and improving speed, as

described in Section 2. Despite the important

advances represented by these previous studies,

the solutions proposed require either (or

sometimes both) the use of a sophisticated

heuristic to generate each compressor tree or a

low-level design. The latter impedes portability,

because it is highly dependent on the inner

structure.

Fig. 1. General scheme of dedicated carry-chain

resources included in modern FPGA devices.

In addition, their area and speed could be

improved, because the use of a specialized fast

carry-chain is very limited. In this paper, we

study the efficient implementation of

multioperand redundant compressor trees in

modern FPGAs by using their fast carry

resources. Our approaches strongly reduce delay

and they generally present no area overhead

compared to a CPA tree. Moreover, they could

be defined at a high level based on an array of

standard CPAs. As a consequence, they are

compatible with any FPGA family or brand, and

any improvement in the CPA system of future

FPGA families would also benefit from them.

Furthermore, due to its simple structure, it is easy

to design a parametric HDL core, which allows

synthesizing a compressor tree for any number of

operands of any bit width. Compared to previous

approaches, our design presents better

performance, is easier to implement, and offers

direct portability.

The rest of the paper focuses on CS

representation, because the extension to SD

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 246

representation could be simply achieved by

inverting certain input and output signals from

and to the compressor tree, as was demonstrated

in [25]. Since it is unnecessary to make any

internal changes to the array structure, these

small modifications do not significantly

modify compressor tree performance. The

remainder of this paper is organized as follows:

Section 2 reviews previous work on redundant

addition on FPGAs. In Section 3, we present our

proposals for implementing multioperand

redundant compressor trees on FPGAs and a

theoretical analysis of their performance. In

Section 4, we compare the results of

implementation using different approaches.

Finally, the conclusions are presented in Section

5.

3.1 Regular CS Compressor Tree Design

The classic design of a multioperand CS

compressor tree attempts to reduce the number of

levels in its structure. The 3:2 counter or the 4:2

compressor are the most widely known building

blocks to implement it [43]. We select a 4:2

compressor as the basic building block, because

it could be efficiently implemented on Xilinx

FPGAs [28]. The implementation of a generic

CS compressor tree requires [Nop/2]-1 4:2

compressors (because each one eliminates two

signals), whereas a carry-propagate tree uses

Fig. 2. N-bit width CS 9:2 compressor tree based

on a linear array of csa’s designed using the

proposed linear structure, where all lines are N

bit width buses, and carry signal are correctly

shifted. For the CSA, we have to distinguish

between the regular inputs (A and B) and the

carry input (Ci in the figure), whereas the dashed

line between the carry input and output

represents the fast carry resources. With the

exception of the first CSA, where Ci is used to

introduce an input operand, on each CSA Ci is

connected to the carry output (Co) of the

previous CSA, as shown in Fig. 2.

Thus, the whole carry-chain is preserved from

the input to the output of the compressor tree

(from I0 to Cf). First, the two regular inputs on

each CSA are used to add all the input operands

(Ii). When all the input operands have

been introduced in the array, the partial sum-

words (Si) previously generated are then added

in order (i.e., the first generated partial sums are

added first) as shown in Fig. 2. In this way, we

maximize the overlap between propagation

through regular signals and carry-chains.

Regarding the area, the implementation of a

generic compressor tree based on N bit width

CSAs requires Nop -2 of these elements (because

each CSA eliminates one input signal) [24].

Therefore, considering that a CSA could be

implemented using the same number of resources

as a binary CPA (as shown below), the proposed

linear array, the 4:2 compressor tree, and the

binary CPA tree have approximately the same

hardware cost.

In relation to the delay analysis, from a classic

point of view our compressor tree has Nop -2

levels. This is much

more than a classic Wallace tree structure and,

thus, a longer critical path. Nevertheless, because

we are targeting an FPGA implementation, we

temporarily assume that there is no delay for the

carry-chain path. Under this assumption, the

carry signal connections could be eliminated

from the critical path analysis and our linear

array could be represented as a hypothetical tree,

as shown in Fig. 3 (where the carry-chain is

represented in gray). To compute the number of

effective time levels (ETL) of this hypothetical

tree, each CSA is considered a 2:1 adder, except

for the first, which is considered a 3:1 adder.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 247

Thus, the first level of adders is formed by the

first [(Nop _ 1)/2] CSAs (which correspond to

partial addition of the input operands). This first

ETL produces [(Nop _ 1)/2]partial sum-words

that are added to a second level of CSAs together

with the last input operand if Nop is even) and so

on, in such a way that each ETL of CSAs halves

the number of inputs to the next level. Therefore,

the total ETLs in this

hypothetical tree are [log2(Nop _ 1)] and the

delay of this tree is approximately L times the

delay of a single ETL.

fg. 3. Time model of the proposed CS 9:2

compressor tree

CS 5:2 compressor tree based on a linear

array

CS 5 a linear array carry save adder

CS 11:2 compressor tree

IMPLEMENTATION RESULTS AND

COMPARISON

To measure the effectiveness of the designs

presented in this paper, we have developed two

generic VHDL modules implementing the

proposed compressor tree structures: First, the

linear array implemented by using CPAs (binary

and ternary) and, second, the 4:2 compressor tree

using the design of the compressor presented in

[28]. Both modules provide the output result in

CS format and allow the selection of different

parameters such as: The number of operands

(Nop), the number of bits per operand (N), and

the basic building blocks (i.e., binary or ternary

adder) for the linear array. For the purposes of

comparison, similar modules, which implement

classic adder tree structures based on binary

CPAs and ternary CPAs, have also been

developed. All these modules were simulated

using Modelsim SE 6.3f and they were

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 248

synthesized using Xilinx ISE 9.2, targeting

Spartan-3A, Virtex-4, and Virtex-5 devices.

A generic ternary adder module was designed

following the recommendations of Xilinx [46],

because this adder is not automatically supported

by ISE 9.2. Furthermore, to investigate their

portability, compressor trees based on ternary

CPAs were also synthesized to target the Altera

Stratix-II family. In this case, the ternary adders

are directly instantiated at a high level. We now

summarize the main results obtained in this

project.

11-2 compressor result

9-2 compressor result

5-2 compressor result

5-3 compressor result

APPLICATIONS AND ADAVANTAGES

ADVANTAGES:

• Reduces delay

• Reduces area

• Increases speed

• Direct portability

• Easy to implement

APPLICATIONS:

• Microchip manufacturing

• Power management

• Arithmetic units

CONCLUSION

Efficiently implementing CS compressor

trees on FPGA, in terms of area and speed, is

made possible by using the specialized carry-

chains of these devices in a novel way. Similar to

what happens when using ASIC technology, the

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 249

proposed CS linear array compressor trees lead

to marked improvements in speed compared to

CPA approaches and, in general, with no

additional hardware cost.

FUTURESCOPE

 Furthermore, the proposed high-level definition

of CSA arrays based on CPAs facilitates eas

ofuse and portability, even in relation to future

FPGA architectures, because CPAs

will probablremain a key element in the next

generations of FPGA. We have compared our

architectures, implemented on different FPGA

families, to several designs and have provided a

qualitative and quantitative study of the benefits

of our proposals.

REFERENCES

[1.] B. Cope, P. Cheung, W. Luk, and L. Howes,

“Performance Comparison

of Graphics Processors to

Reconfigurable Logic: A Case Study,” IEEE

Trans. Computers, vol. 59, no. 4, pp.

433-448, Apr. 2010.

[2.] S. Dikmese, A. Kavak, K. Kucuk, S. Sahin,

A. Tangel, and H. Dincer,

“Digital Signal Processor against Field

Programmable Gate Array

Implementations of Space-

Code Correlator Beamformer for Smart

Antennas,” IET Microwaves,

Antennas Propagation, vol. 4, no. 5, pp.

593-599, May 2010.

[3.] S. Roy and P. Banerjee, “An Algorithm for

Trading off Quantization Error

with Hardware Resources for MATLAB-

based FPGA Design,” IEEE

Trans. Computers, vol. 54, no. 7, pp.

886-896, July 2005.

[4.] F.Schneider, A.Agarwal, Y.M. Yoo, T.

Fukuoka, and Y. Kim, “A

Fully Programmable Computing

Architecture for Medical Ultrasound

Machines,” IEEE Trans.

Information Technology in Biomedicine.

[5.] J. Hill, “The Soft-Core Discrete-Time Signal

Processor Peripheral

[Applications Corner],” IEEE Signal

Processing Magazine.

[6.] L. Zhuo and V. Prasanna, “High-Performance

Designs for Linear

Algebra Operations on Reconfigurable

Hardware,” IEEE Trans. Computers, vol.

57, no. 8, pp. 1057-1071, Aug. 2008.

Mrs.B.SWETHA

ASSISTANT PROFESSOR

DEPARTMENT OF VLSI (ECE)

Ms.V.PALLAVI

 M.TECH

