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Abstract- 
Myoelectric controlled interfaces became common in 

several areas like advanced prostheses, exoskeletons, 

and robot teleopration. Myoelectric management has 

seen decades as a possible interface between human 

and machines. Myoelectric management is full of 

potential to considerably amendment human–robot 

interaction as a result of the power to non-invasively 

live human motion intent. Myoelectric management 

has stressed intuitive controls that mimic human 

intentions. Moreover, these controls have restricted 

accuracy and practicality, which ends in user-specific 

decoders with upper-bound constraints on 

performance. The mapping functions between 

myoelectric activity and management actions for a 

task, shows that human subjects area unit able to 

management a synthetic system with increasing 

potency by simply learning the way to management it. 

The tactic is tested exploitation two completely 

different management tasks and four different 

abstract mappings of higher limb myoelectric signals 

to manage actions for those tasks. However, current 

management schemes have struggled to attain the 

sturdy performance that's necessary to be used in 

industrial applications. As demands in myoelectric 

management trend toward synchronous 

multifunctional management, multi-muscle co 

ordinations, or synergies, play larger roles within the 

success of the management theme. The natural 

emergence of a replacement muscle natural action 

house as subjects determine the system dynamics of a 

myoelectric interface. These synergies correlate with 

long learning, increasing performance over 

consecutive days. this suggests that new muscle 

synergies area unit developed and refined relative to 

the mapping employed by the management task,  

 

 

suggesting that peak performance could also be 

achieved by learning a continuing, discretional 

mapping perform instead of dynamic subject- or task-

specific functions. The tactic could be the neural 

management of any device or robot, while not 

limitations for human-related counterparts. The 

power to boost, retain, and generalize management, 

while not having to recalibrate or retrain the system, 

supports management schemes promoting natural 

action development, not essentially user-specific 

decoders trained on a set of existing synergies, for 

economical myoelectric interfaces designed for long 

use. 
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1. INTRODUCTION 

Myoelectric controlled interfaces have become a 

major exploration in recent years due to their 

applications in advanced prostheses, exoskeletons, 

and robot teleoperation. Myoelectric control, with 

potential to manipulate multiple degrees-of-freedom 

(DoFs) simultaneously via muscle activity, offers a 

convenient interface between humans and machines. 

With control inputs noninvasively representing 

nearby motor unit action potentials (MUAPs) through 

surface electromyography (sEMG), myoelectric 

control research has been primarily driven by the 

potential to create prostheses and orthoses which 

intuitively respond to users’ intentions. However, 

despite a constant exploration focus and increasing 

desire for enhanced myoelectric control applications, 

exploration advances have struggled to translate to 

clinical and commercial applications. Although user’s 
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desire simultaneous, multifunctional control of 

prostheses, they often reject myoelectric prostheses in 

favor of more robust body powered ones. Advances 

in electroencephalographic (EEG) and 

electromyographic (EMG) signal detection and 

processing have given researchers reliable and 

noninvasive access to brain and muscle activity. This 

technology offers promise to help amputees regain 

independence, humans to perform tasks beyond their 

physical capabilities and robotic devices and 

machines to be teleoperated with precision. The 

control scheme is learned by subjects as they interact 

with a virtual reality (VR) interface over two days. 

Throughout the two sessions, subjects display motor 

learning trends controlling fewer DoFs with targeted 

muscles. The lack of reliable simultaneous control 

schemes is one of the major reasons for a gap 

between research and commercial applications.  

The main challenge in myoelectric controlled 

interfaces lies in decoding neural signals to 

commands capable of operating the desired 

application. Many decoding algorithms have been 

developed using machine learning techniques, but 

these currently suffer from subject specificity and 

require intense training phases before any real-time 

application is feasible. A few other approaches have 

implemented simple decoders meant to be intuitive 

for users to control simple commands, but these 

intuitive mappings suffer from task specificity and 

assume that intuitive commands translate to maximal 

performance for a given task. In both cases, the 

decoders are designed to maximize the initial 

performance of the user, which does not take 

advantage of a human’s natural ability to form inverse 

models of space, optimize control strategies and learn 

new muscle synergies while completing precise 

physical tasks. Thus, these approaches do not 

necessarily provide a foundation for maximal 

performance over time. The two concepts that will be 

frequently used are: 

1) Control task: Task to be executed by the subject 

using the myoelectric interface, implying both the 

device to be controlled (e.g., a robot hand) as well as 

its possible functions (e.g., open/close fingers etc.); 

2) Mapping function: Mathematical function that 

maps myoelectric activity to control actions for the 

task, e.g., a function that will translate myoelectric 

signals to opening the fingers of a robot hand. 

 

Simultaneous myoelectric control, in which 

multiple DOFs can be controlled at the same time via 

sEMG inputs, requires identification of complex 

interactions between multiple muscles, commonly 

referred to as muscle synergies. Specific to 

myoelectric control and as used, muscle synergies are 

defined by these complex muscle activation patterns, 

which are executed by users as high-level control 

inputs, regardless of any neurological origin. 

Myoelectric control has focused on accurately 

decoding user muscle activity into intuitive and 

desired limb motions. This approach trains decoders 

to adapt to a specific, supposed constant, motor 

system to produce desired output. Intuitive control is 

often translated as a requirement for high system 

accuracy (i.e. realistic predictions of user kinematics). 

However, despite a decade of trained decoders 

consistently reporting accuracies and correlations 

above 90% in offline analysis, they have not 

necessarily translated to enhancements in commercial 

applications. Linear combinations of synergies are 

capable of describing complex force and motion 

patterns in reduced dimensions. Control schemes 

associating synergies with control outputs can 

generally be grouped into two approaches: pattern 

recognition and motor learning. 

Pattern recognition-based controls decode muscle 

activity into intuitive control outputs by training a 

model on a dataset associating sEMG-related inputs 

with desired outputs, shown in Fig.1. The models are 

trained via pattern recognition techniques to mimic 

intent based on existing synergies. 
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Fig.1 General Model of myoelectric interface with trained decoders 
 
Motor learning-based controls train a motor system 

to develop and refine synergies associated with 

system dynamics of a specific mapping function 

relating sEMG inputs with control outputs, shown in 

Fig.2. The user learns the system dynamics via 

feedback while interacting with the control interface. 

     

 
 
Fig.2 General Model of myoelectric interface using 

motor learning 
 

2. MUSCLE SYNERGIES VIA SEMG 

Muscle synergies are thought of the underlying 

coordination principles utilized in myoelectric 

management, and are represented via multiple 

metrics. Muscle synergies are studied extensively in 

neuroscience as a possible basis for neural 

management. The hypothesis that the human motor 

system directly initiates movement through versatile 

combos of muscle synergies. Direct action metrics 

specifically valuate electromyogram activation 

patterns. Different strategies interpret these patterns 

as task and biomechanical constraints instead of 

direct synergies. In spite of medical specialty origin, 

muscle synergies ar authoritative in myoelectric 

management schemes thanks to sEMG inputs 

directly coding muscle activation temporal order, 

form and intensity. The imperfect ability to 

systematically live muscle activations with sEMG 

has been well determined. Factors like muscle depth 

and thickness, innervations zones, quality of skin 

contact, skin electrical resistance, temporal order and 

intensity of muscle contractions, and cross-talk from 

close muscles all add variability to sEMG recordings. 

Once recording from multiple muscles to extract 

synergies, several of those complications ar 

exaggerated. Additionally to ancient considerations 

for hardiness thanks to transient changes in sEMG 

signals management schemes implementing 

coinciding multifunctional management need further 

thought with reference to conductor placement, 

potential cross-talk, amplitude cancellation, and 

therefore the range and choice of muscles. 
 

2.1 CONDUCTOR PLACEMENT 
Electrode placement influences signal-to-noise 

(SNR) and amplitude thanks to the abstraction 



 

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 08, August 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 505 

variability of muscle activity. Once targeting specific 

muscles, ideal placement is near the muscle belly 

removed from innervations zones. However, external 

forces and dynamic postures shift electrodes relative 

to underlying muscles throughout use. Consistent 

placement between sessions, each completely at 

intervals and comparatively between subjects, makes 

these effects decreased. giant electrodes and/or 

multiple recording sites per muscle may scale back 

the consequences and extract sturdy signals while not 

requiring ideal placement. 

 

2.2 AMPLITUDE CANCELLATION 
Amplitude cancellation will increase at higher 

activation levels, underestimating the sEMG activity 

up to five hundredth at peak contraction. 

Normalizing signals via most voluntary contraction 

(MVC) reduces this result, however usually causes 

overestimation at intermediate activations. However, 

amplitude cancellation has very little result on onset 

detection, usually conserving muscle activation 

temporal order and form of sEMG patterns to cause 

lowest impact on detected synergies. 

  

2.3 CROSS-TALK 
Cross-talk contributes to exaggerated muscle 

synergies and excess variability once acting tasks. 

Though the consequences will be reduced, 

characteristic cross-talk could add helpful data from 

tiny or deep muscles that can't be recorded directly. 

Freelance part analysis (ICA) and spatio-temporal 

filters ar capable of extracting individual muscle 

activities from sEMG signals to separate cross-talk 

similarly as any interference from different 

electrophysiological signals. 
 

2.4 MUSCLE CHOICE OF SELECTION 
Muscle selection additionally directly impacts 

management via muscle Synergies. Smaller sets of 

muscles usually overestimate explained variance, 

forming incomplete action sets and threatening 

preciseness controls. Increasing the quantity of 

muscles, choosing dominant muscles from a master 

set of synergies, or approximating dominant muscles 

with major muscles will every facilitate maximize 

preciseness. 

Extracting additional data through multiple sEMG 

sites assists with every of the on top of challenges to 

effectively characterize natural synergistic muscle 

behavior. This data will usually be represented by 

linear combos of muscle synergies that kind 

advanced mappings between the action and its result 

on a limb. Thus, feature extraction from incoming 

signals is important to supply descriptive synergistic 

inputs to an impact theme portraying these mappings. 
 

3. METHODS 

3.1 Experimental Setup 

Wireless surface EMG electrodes were placed on 

four upper limb muscles of a human subject. A 

multifunction data acquisition card (DAQ) (USB-

6343X, National Instruments) acquires and digitizes 

the signals for input to a custom application running 

on a personal computer (PC). The EMG signals are 

processed in real time and converted to control 

variables for a given task via a mapping function, 

and the effect is displayed to the subject for online 

closed-loop visual feedback. The program is written 

in C++ using OpenGL API for the graphical display. 
 

3.2 Control Tasks 

Two distinct tasks provide different visual feedback 

for the Subject as shown in Fig. 3 

 

 
 

Fig.3 an EMG system, DAQ, and visual interface 

(top). The two tasks the subjects control using EMG 

signals (bottom). 

 

The goal of each task is to transition a virtual 

object from its initial state to one of eight target 

states as quickly as possible. Task 1 is a standard 

center to reach out task, where the subject needs to 

control the center (red) circle and move it on top of 

one of eight possible target (green) circles as fast as 

possible. The eight target locations (blue circles) are 

symmetrically distributed around the four quadrants 
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of the circle with respect to an origin at the center of 

the screen, and each quadrant represents a target area. 

Task 2 consists of two rectangular objects, with a 

straight line bisecting one edge of each object to 

provide orientation, as shown inFig.3.Thegoalof the 

task is to control the red object by resizing and 

orienting it to match the stationary green one. 

Similarly to Task 1, there are eight possible 

combinations of size-orientation for the green object. 

Each combination maps along the control axe 

equivalently to the target locations in Task 1. Those 

eight targets are similarly grouped to four target areas 

equivalent to the four quadrants of a circle. 

 
3.3 Mapping Functions 

EMG signals are acquired at 1 kHz from four right 

arm muscles: Biceps Brachii (BB), Triceps Brachii 

(TB), Flexor Carpi Radialis (FCR) and Extensor 

Carpi Ulnaris (ECU). The raw EMG signals are pre-

processed with full-wave rectification and a low pass 

filter (2nd order Butterworth, cut-off 8Hz) to remove 

high frequency noise and obtain a linear envelope of 

the signal. The processed signal is then transformed 

through the mapping function to produce the output 

command. 

The muscle synergies were quickly developed 

between both antagonistic and biomechanically 

independent muscles, and that habitual synergies 

between biomechanically dependent muscles are 

difficult to alter, these four muscles were specifically 

chosen as two pairs of antagonistic muscles (BB/TB 

and FCR/ECU) which are biomechanically 

independent in order to enhance the potential for new 

synergies. The signals are sampled at 1 kHz 

frequency by the DAQ. The raw EMG signals 

undergo a preprocessing stage that is commonly used 

in the field of electromyography in order to compute 

the linear envelope of the signal. The linear envelope 

performs full-wave rectification of the raw signals 

and then passes them through a low pass filter 

(second-order Butterworth, cutoff frequency of 8 

Hz). The smoothed signal provides a reliable input 

signal to the mapping function for each trial. 

A mapping function is a 2 X 4 matrix Wi, relating 

a 4 X 1 vector e of filtered EMG to a 2 X 1 vector U 

of control outputs: 

 
U ═ Wie, iЄ{1,2,3,4} 

 

Each of the mapping functions transforms the 

EMG amplitude to control variables in a unique way 

that can be represented visually as vectors in the 2-D 

control space. The control axes correspond to the 

velocity of the moving circle along the (horizontal) 

and (vertical) direction in the case of Task 1. For 

Task 2, the two control axes correspond to the 

angular velocity and change in size of the rectangle. 

An activation threshold of 0.02 mV was set for each 

of the muscles, so as to make sure that there is no 

control output when the subject is resting. The 

control outputs are represented visually in 2D control 

space, with control axes corresponding to the x 

(horizontal) and y (vertical) velocities of the moving 

circle in the case of Task 1. For Task 2, the two 

control axes correspond to the angular velocity and 

change in size of the rectangle. An activation 

threshold of 0.02mV is set for each muscle to nullify 

any control output at rest. 

It should be noted that the subject’s arm is not 

constrained, and muscular volume contraction 

(MVC) is not used to normalize the EMG signals, 

which differs from most other relevant studies. 

Instead of using position control with respect to 

MVC, subjects are free to move their arm into any 

configuration to fully explore each mapping and 

minimize the effect of potential biomechanical 

constraints in a given configuration. It is 

hypothesized that with this freedom in forming the 

inverse model, subjects can learn to respond and 

adjust appropriately to an unnormalized output when 

performing velocity control. Also by ignoring MVC, 

trends in performance over multiple days are 

inclusive of the performance-diminishing impact of 

intrasubject variability caused by sensor. 

 
3.4 Trials 

A single subject consists of a semi-random 

arrangement of trials performed over a period. The 

trials are arranged so that the tasks alternate and 

mapping functions are not repeated until every other 

mapping has been seen in between, with an 

additional constraint that no mapping is seen twice 

on the same day as an attempt to minimize the 

feeling of familiarity for each trial. Each trial consists 

of a combination of task and mapping that are 

unknown to the subject before the trial begins. The 

subject is assigned to repeatedly transition a virtual 

object (red in Fig. 3) from a beginning state to one of 

eight target states (green in Fig. 3) as quickly as 
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possible. Targets appear in a quasi-random order 

across trials, such that each cycle of eight targets is 

randomly arranged. 

 

4. DATA ANALYSIS 

Learning and retention phases collected trial data 

from the EMG inputs, helicopter path, and 

completion time. These components are analyzed to 

see the effects of learning the system dynamics with 

regards to efficient control, synergy development, 

and performance retention and generalization after 

the learning phase is completed. All subjects 

considered Task 1 to be easier than Task 2 and found 

some mapping functions easier than others. However, 

none were aware that both tasks required the same 

input responses, though some noticed that a few of 

the trials required similar muscle activity to move the 

virtual objects. Quantitative evaluation of learning 

and performance is done in three steps. 

1. Confirm that learning occurred in the trials 

for each target area. 

2. Quantify the effectiveness of prior learning 

transfer to subsequent trials. 
3. Evaluate the overall performance of subjects when 

presented with each mapping function. 

4.1 LEARNING 

The foremost step is to identify how well subjects 

learn to perform the given task successfully. The 

general trend of learning is expected to follow an 

exponential decay, where initially the time required 

to successfully perform any task is high and it 

decreases exponentially towards a final steady-state 

value. For that reason, the data from each trial is fit 

to an exponential curve and the time constant of the 

curve gives the learning rate.The higher the time 

constant, the more the learning rate. 

4.2 LEARNING TRANSFER 

The next main aspect is to compare how well 

learning is transferred across mapping functions for 

each control task and across control tasks for each 

mapping function. This is to identify whether the 

subject is learning to interact with each individual 

control task better irrespective of the different 

mapping functions, or whether the subject is learning 

to understand the controls of each individual 

mapping function irrespective of the control tasks. 

4.3 OVERALL PERFORMANCE 

Due to the significance of consistent mapping 

functions on learning transfer, overall performance 

evaluation is quantified with a performance score 

incorporating learning transfer, learning rate, and end 

performance specifically for each mapping function. 

Each of these three quantities are deemed important 

components for evaluating how well users can 

interact with a given mapping function. Then, this 

score can be compared with initial performance, or 

intuitiveness of a mapping function. 

5. CONCLUSION 

Robust simultaneous multifunctional myoelectric 

interface control is a necessary achievement for 

commercial applications in prostheses, orthoses, and 

robotic control. Muscle synergies play a crucial role 

in these control schemes due to the inherent necessity 

to extract temporal activation patterns between 

multiple muscles. These controls have struggled in 

real-time control due to the high variability of sEMG 

signals. When designing a new control scheme, the 

selection of muscles and placement of sEMG 

electrodes is an essential component determining the 

potential success of the scheme. Synergy features can 

produce robust activation signals used for input to a 

linear decoder to output complex but intuitive control 

variables. The decoder can be designed using pattern 

recognition or motor learning-based control schemes 

depending on the desired control outputs and 

interactions from the user. Performance is determined 

to be more dependent on familiarity with a given 

mapping function than familiarity with a given 

control task, indicating that subjects can learn new 

control tasks so long as they know how to explore 

the task space. Motor learning schemes have so far 

proven more robust to degradation, but require a 

potentially no intuitive learning phase. Although a lot 

of advances are needed for robust commercial 

applications, myoelectric controls remain a technique 

with potential to significantly change human–robot 

interaction. 
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