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Abstract:  

In contemporary situation, circumstances in a 

computing system where received information needs to 

be compared with a piece of stored data to locate the 

identical entry, e.g., cache tag array lookup and 

translation look-aside buffer matching. Currently the 

consistency issues of memory are Event Upsets (EUs), 

which are able to invert the stored logical value in 

memory cells. This issue is more severe when the 

exaggerated memory cells are part of the 

configuration memory used for programming the 

circuit functionality. The consequences may be 

alterations of the circuit functionality causing errors 

which may only be corrected by reprogramming the 

device. A novel architecture for identical the data 

protected with an error-correcting code (ECC) is 

proposed in concise to decrease latency and 

complexity. The proposed architecture is based on the 

fact that the codeword of an ECC is usually 

represented in a systematic form consisting of the raw 

data and the parity information generated by 

encoding, and the proposed architecture parallelizes 

the comparison of the data and that of the parity 

information. To further reduce the latency and 

complexity, in addition, a new butterfly-formed weight 

accumulator (BWA) is proposed for the efficient 

computation of the Hamming distance. Grounded on 

the BWA, the proposed architecture examines whether 

the incoming data matches the stored data, and if not 

it aims to locate the erroneous bit and they are 

corrected. The empirical evaluation proves that the  

 

proposed methodology discovers the best examine for 

consistency issues of memory. 
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I.INTRODUCTION  

Data comparison circuit is a logic that has several 

applications in a computing system. For example, to 

confirm whether a piece of information is in a cache, 

the address of the information in the memory is 

compared to all cache tags in the same set that might 

include that address. Error correction codes (ECC) are 

the one, most commonly used to protect standard 

memories and circuits [6], while more sophisticated 

codes are used in critical applications such as space 

[6]. ECC are widely used to enhance the reliability and 

data integrity of memory structures in modern 

microprocessors. For example, caches on modern 

microprocessors are protected by ECC [3]. If a 

memory structure is protected with ECC, a piece of 

data is encoded first and the entire codeword including 

the ECC check bits are written into the memory array. 

When the input data is loaded into the system, it has to 

be encoded and compared with the data stored in the 

memory and corrected if errors are detected to obtain 

the original data. Data comparison circuit is usually in 

the critical path of a pipeline stage because the result 
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of the comparison determines the flow of the 

succeeding operations. When the memory array is 

protected by ECC, it exacerbates the criticality 

because of the added latency due to ECC logic. In the 

cache tag matching example, the cache tag directory 

must be accessed first. After the tag information is 

retrieved, it must go through ECC decoding and 

correction before the comparison operation can be 

performed. At the mean time, the corresponding data 

array is waiting for the comparison result to decide 

which way in the set to load the data from. The most 

recent solution for the matching problem is the direct 

compare method [5], which encodes the incoming data 

and then compares it with the retrieved data that has 

been encoded as well. Therefore, the method 

eliminates the complex decoding from the critical 

path. In performing the comparison, the method does 

not examine whether the retrieved data is exactly the 

same as the incoming data. Instead, it checks if the 

retrieved data resides in the error correctable range of 

the codeword corresponding to the incoming data. As 

the checking necessitates an additional circuit to 

compute the Hamming distance, i.e., the number of 

different bits between the two code words, the saturate 

adder (SA) was presented [5] as a basic building block 

for calculating the Hamming distance. However, it 

does not consider an important fact that a practical 

ECC codeword is usually represented in a systematic 

form in which the data and parity bits are completely 

separated from each other. 

In adding, SA contributes to the increase of the entire 

circuit complexity as it always forces its output not to 

be greater than the number of detectable errors by 

more. In brief, we renovate the SA-based direct 

compare architecture to reduce the latency and 

hardware complexity by resolving the drawbacks. 

More specifically, we consider the characteristics of 

systematic codes in designing the proposed 

architecture and propose a low-complexity processing 

element that computes the Hamming distance faster. 

Therefore, the latency and the hardware complexity 

are decreased considerably compared with the SA 

based architecture. 

II. DATA COMPARISION 

METHODS  

2.1 Decode-And-Compare Architecture  

This illustrates the conventional decode-and-compare 

architecture. It reflect on a cache memory where a 

Kbit tag is stored in the form of an n-bit codeword 

after being encoded by a (n, k) code. In the decode-and 

compare architecture, the n-bit retrieved codeword 

should first be decoded to extract the original k-bit tag. 

The extracted k-bit tag is then compared with the k-bit 

tag field of an incoming address to determine whether 

the tags are matched or not. As the retrieved codeword 

should go through the decoder before being compared 

with the incoming tag, the critical path is too long to 

be employed in a practical cache system designed for 

high-speed access 

 

Fig 1. Decode-And-Compare Architecture 

 2.2 Direct Compare Method  

Direct compare method is one of the most recent 

solutions for the matching problem. The direct 

compare method encodes the incoming data and then 

compares it with the retrieved data that has been 

encoded as well .Therefore, the method eliminates the 

complex decoding from the critical path. 

 2.3 SA-Based Approach  

SA-based approach is the one where a special counter 

is constructed with an additional` building block called 

saturating adder (SA).The SA-based direct compare 

architecture reduces the latency and hardware 
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complexity by resolving the aforementioned 

drawbacks. 

III. ADVANCED DATA 

COMPARISION METHODS 

 3.1 DMC Encoding 

 Because of high-speed caches and main memories, 

which are prone to soft errors, error correcting codes 

are used in the design and, more recently, in the design 

of on chip memories. For the encoding Decimal matrix 

code (DMC) is proposed to assure reliability in the 

presence of MCUs with reduced performance 

overheads, and a 4- bit word is encoded based on the 

proposed technique.  First, during the encoding 

process, information bits i are fed to the DMC 

encoder, and then the horizontal redundant bits H and 

vertical redundant bits V are obtained from the DMC 

encoder. When the encoding process is completed, the 

obtained DMC codeword is stored in the memory. 

Second, the horizontal redundant bits H are produced 

by performing XOR operation of selected symbols per 

row. Third, the vertical redundant bits V are obtained 

by XOR operation among the bits per column. 

It should be noted that both divide-symbol and 

arrange-matrix are implemented in logical instead of in 

physical. Therefore, the proposed DMC does not 

require changing the physical structure of the memory. 

The proposed DMC scheme, for a 4-bit word is as 

shown in Figure. 

 

Fig 2.4-bit DMC logical organization 

In the above figure the cells from i0 to i3 are 

information bits. The 4-bit word has been divided into 

two symbols of 2-bit.k1 = 2 and k2 = 2 have been 

chosen simultaneously.H0 and H1 are horizontal check 

bits;V0 and V1 are vertical check bits. The horizontal 

bits H can be obtained as follows: 

 

For the vertical bits V, we have 

 

The obtained parity bit is appended with the 

information bits so as to obtain the encoded bit. 

3.2 XOR Bank  

XOR bank represents the array of bit-wise 

comparators (exclusive OR gates). It performs XOR 

operations for every pair of bits in X and Y so as to 

generate a vector representing the bitwise difference of 

the two codeword’s. The output from the XOR bank is 

then fed into BWA consisting of half adders (HAs). 

The numbers of 1’s are accumulated by passing the 

value through the BWA. 

 

Fig 3. XOR bank structure for (8,4) code 

3.3 Butterfly Formed Weight Accumulator 

 The proposed architecture grounded on the data path 

design is given below. It contains multiple butterfly 

formed weight accumulators (BWAs) proposed to 

improve the latency and complexity of the Hamming 

distance computation. The basic function of the BWA 

is to count the number of 1’s among its input bits. 
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Fig4.  Proposed data path design 

The proposed architecture consists of multiple stages 

of HAs as shown in figure where each output bit of a 

HA is associated with a weight. The HAs in a stage are 

connected in a butterfly form so as to accumulate the 

carry bits and the sum bits of the upper stage 

separately. In other words, both inputs of a HA in a 

stage, except the first stage, are either carry bits or sum 

bits computed in the upper stage. This connection 

method leads to a property that if an output bit of a HA 

is set, the number of 1’s among the bits in the paths 

reaching the HA is equal to the weight of the output 

bit. 

 

 

 

Fig 5. Common structure of BWA 



 

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 08, August 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 526 

In above figure for example, if the carry bit of the 

gray-colored HA is set, the number of 1’s among the 

associated input bits, i.e., A, B, C, and D, is 2. At the 

last stage of above figure the number of 1’s among the 

input bits, d, can be calculated as Since what we need 

is not the precise Hamming distance but the range it 

belongs to, it is possible to simplify the circuit. When 

rmax = 1, for example, two or more than two 1’s 

among the input bits can be regarded as the same case 

that falls in the fourth range. In that case, we can 

replace several HAs with a simple OR-gate tree as 

shown below. This is an advantage over the SA that 

resorts to the compulsory saturation. 

 

Fig 6. Revised structure with OR-gate tree 

Each XOR stage generates the bitwise difference 

vector for either data bits or parity bits, and the 

following processing elements count the number of 1’s 

in the vector, i.e., the Hamming distance. Each BWA 

at the first level is in the revised form shown in figure 

above, and generates an output from the OR-gate tree 

and several weight bits from the HA trees. In the 

interconnection, such outputs are fed into their 

associated processing elements at the second level. 

The output of the OR-gate tree is connected to the 

subsequent OR-gate tree at the second level, and the 

remaining weight bits are connected to the second 

level BWAs according to their weights. More 

precisely, the bits of weight w are connected to the 

BWA responsible for w-weight inputs. Each BWA at 

the second level is associated with a weight of a power 

of two that is less than or equal to Pmax, where Pmax 

is the largest power. As the weight bits associated with 

the fourth range are all ORed in the revised BWAs, 

there is no need to deal with the powers of two that are 

larger than Pmax. 

3.4 Error Deduction and Correction 

 Decimal error deduction technique is proposed and it 

has several advantages over the simple binary error 

deduction technique. The Limits of Simple Binary 

Error Detection can be given as follows It requires low 

redundant bits; its error detection capability is limited. 

The main reason for this is that its error detection 

mechanism is based on binary.  The number of even 

bit errors cannot be detected.  Can detect only a finite 

number of errors finite numbers of errors However, 

when the decimal algorithm is used to detect errors, 

these errors can be detected so that the decoding error 

can be avoided. The reason is that the operation 

mechanism of decimal algorithm is different from that 

of binary. First of all, the horizontal redundant bits H1 

H0 are obtained from the original information bits. 

When MCUs occur in symbols, i.e., the bits in 

symbols are upset to “1” from “0” or vice versa. The 

proposed DMC can easily correct upsets of the 

following types 

Type 1 is a single error 

 Type 2 is an inconsecutive error in two consecutive 

symbols 

 Type 3 is a consecutive error in two consecutive 

symbols   

Type 4 is an inconsecutive error in two inconsecutive 

symbols 

  Type 5 is a consecutive error in four consecutive 

symbols 

IV. CONCLUSION  

In this process, we formulate the DMC technique to 

assure the consistency in memory. The proposed 

protection code utilizes decimal algorithm to detect 

errors, so that more errors were detected and corrected. 

To reduce the hardware complexity and latency, a new 

architecture has been presented for matching the data 
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protected with an ECC.To reduces the latency; the 

comparison of the data is parallelized with the 

encoding process that generates the parity information. 

The parallel operations are enabled based on the fact 

that the systematic codeword has separate fields for 

the data and parity. In addition, an efficient processing 

architecture has been presented to further minimize the 

latency and complexity. Consequently a sensible 

reduction in power is accomplished with the proposed 

devise. 
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