

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 522

Low-Complexity Low-Latency Architecture for Identical of
Data Encoded With Hard Systematic Error-Correcting Codes

1 Piduguralla N S Prapulla & 2 N.Veeraih , 3S.Neelima
1
M.Tech (VLSI & Embedded System),

2
Asst.Professor,

3
HOD, Assoc.Proffesor,

Gandhiji Institute of Science & Technology (Gist) – JNTU Kakinada Affiliated,

Gattubhimavaram (Village),Jaggayyapet (Mandal),Krishna (District),Andhra Pradesh, India.

Abstract:

In contemporary situation, circumstances in a

computing system where received information needs to

be compared with a piece of stored data to locate the

identical entry, e.g., cache tag array lookup and

translation look-aside buffer matching. Currently the

consistency issues of memory are Event Upsets (EUs),

which are able to invert the stored logical value in

memory cells. This issue is more severe when the

exaggerated memory cells are part of the

configuration memory used for programming the

circuit functionality. The consequences may be

alterations of the circuit functionality causing errors

which may only be corrected by reprogramming the

device. A novel architecture for identical the data

protected with an error-correcting code (ECC) is

proposed in concise to decrease latency and

complexity. The proposed architecture is based on the

fact that the codeword of an ECC is usually

represented in a systematic form consisting of the raw

data and the parity information generated by

encoding, and the proposed architecture parallelizes

the comparison of the data and that of the parity

information. To further reduce the latency and

complexity, in addition, a new butterfly-formed weight

accumulator (BWA) is proposed for the efficient

computation of the Hamming distance. Grounded on

the BWA, the proposed architecture examines whether

the incoming data matches the stored data, and if not

it aims to locate the erroneous bit and they are

corrected. The empirical evaluation proves that the

proposed methodology discovers the best examine for

consistency issues of memory.

Keywords - Butterfly-Formed Weight

Accumulator; Translation Look-Aside Buffer; ECC;

EDC; Decimal Matrix Code

I.INTRODUCTION

Data comparison circuit is a logic that has several

applications in a computing system. For example, to

confirm whether a piece of information is in a cache,

the address of the information in the memory is

compared to all cache tags in the same set that might

include that address. Error correction codes (ECC) are

the one, most commonly used to protect standard

memories and circuits [6], while more sophisticated

codes are used in critical applications such as space

[6]. ECC are widely used to enhance the reliability and

data integrity of memory structures in modern

microprocessors. For example, caches on modern

microprocessors are protected by ECC [3]. If a

memory structure is protected with ECC, a piece of

data is encoded first and the entire codeword including

the ECC check bits are written into the memory array.

When the input data is loaded into the system, it has to

be encoded and compared with the data stored in the

memory and corrected if errors are detected to obtain

the original data. Data comparison circuit is usually in

the critical path of a pipeline stage because the result

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 523

of the comparison determines the flow of the

succeeding operations. When the memory array is

protected by ECC, it exacerbates the criticality

because of the added latency due to ECC logic. In the

cache tag matching example, the cache tag directory

must be accessed first. After the tag information is

retrieved, it must go through ECC decoding and

correction before the comparison operation can be

performed. At the mean time, the corresponding data

array is waiting for the comparison result to decide

which way in the set to load the data from. The most

recent solution for the matching problem is the direct

compare method [5], which encodes the incoming data

and then compares it with the retrieved data that has

been encoded as well. Therefore, the method

eliminates the complex decoding from the critical

path. In performing the comparison, the method does

not examine whether the retrieved data is exactly the

same as the incoming data. Instead, it checks if the

retrieved data resides in the error correctable range of

the codeword corresponding to the incoming data. As

the checking necessitates an additional circuit to

compute the Hamming distance, i.e., the number of

different bits between the two code words, the saturate

adder (SA) was presented [5] as a basic building block

for calculating the Hamming distance. However, it

does not consider an important fact that a practical

ECC codeword is usually represented in a systematic

form in which the data and parity bits are completely

separated from each other.

In adding, SA contributes to the increase of the entire

circuit complexity as it always forces its output not to

be greater than the number of detectable errors by

more. In brief, we renovate the SA-based direct

compare architecture to reduce the latency and

hardware complexity by resolving the drawbacks.

More specifically, we consider the characteristics of

systematic codes in designing the proposed

architecture and propose a low-complexity processing

element that computes the Hamming distance faster.

Therefore, the latency and the hardware complexity

are decreased considerably compared with the SA

based architecture.

II. DATA COMPARISION

METHODS

2.1 Decode-And-Compare Architecture

This illustrates the conventional decode-and-compare

architecture. It reflect on a cache memory where a

Kbit tag is stored in the form of an n-bit codeword

after being encoded by a (n, k) code. In the decode-and

compare architecture, the n-bit retrieved codeword

should first be decoded to extract the original k-bit tag.

The extracted k-bit tag is then compared with the k-bit

tag field of an incoming address to determine whether

the tags are matched or not. As the retrieved codeword

should go through the decoder before being compared

with the incoming tag, the critical path is too long to

be employed in a practical cache system designed for

high-speed access

Fig 1. Decode-And-Compare Architecture

 2.2 Direct Compare Method

Direct compare method is one of the most recent

solutions for the matching problem. The direct

compare method encodes the incoming data and then

compares it with the retrieved data that has been

encoded as well .Therefore, the method eliminates the

complex decoding from the critical path.

 2.3 SA-Based Approach

SA-based approach is the one where a special counter

is constructed with an additional` building block called

saturating adder (SA).The SA-based direct compare

architecture reduces the latency and hardware

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 524

complexity by resolving the aforementioned

drawbacks.

III. ADVANCED DATA

COMPARISION METHODS

 3.1 DMC Encoding

 Because of high-speed caches and main memories,

which are prone to soft errors, error correcting codes

are used in the design and, more recently, in the design

of on chip memories. For the encoding Decimal matrix

code (DMC) is proposed to assure reliability in the

presence of MCUs with reduced performance

overheads, and a 4- bit word is encoded based on the

proposed technique. First, during the encoding

process, information bits i are fed to the DMC

encoder, and then the horizontal redundant bits H and

vertical redundant bits V are obtained from the DMC

encoder. When the encoding process is completed, the

obtained DMC codeword is stored in the memory.

Second, the horizontal redundant bits H are produced

by performing XOR operation of selected symbols per

row. Third, the vertical redundant bits V are obtained

by XOR operation among the bits per column.

It should be noted that both divide-symbol and

arrange-matrix are implemented in logical instead of in

physical. Therefore, the proposed DMC does not

require changing the physical structure of the memory.

The proposed DMC scheme, for a 4-bit word is as

shown in Figure.

Fig 2.4-bit DMC logical organization

In the above figure the cells from i0 to i3 are

information bits. The 4-bit word has been divided into

two symbols of 2-bit.k1 = 2 and k2 = 2 have been

chosen simultaneously.H0 and H1 are horizontal check

bits;V0 and V1 are vertical check bits. The horizontal

bits H can be obtained as follows:

For the vertical bits V, we have

The obtained parity bit is appended with the

information bits so as to obtain the encoded bit.

3.2 XOR Bank

XOR bank represents the array of bit-wise

comparators (exclusive OR gates). It performs XOR

operations for every pair of bits in X and Y so as to

generate a vector representing the bitwise difference of

the two codeword’s. The output from the XOR bank is

then fed into BWA consisting of half adders (HAs).

The numbers of 1’s are accumulated by passing the

value through the BWA.

Fig 3. XOR bank structure for (8,4) code

3.3 Butterfly Formed Weight Accumulator

 The proposed architecture grounded on the data path

design is given below. It contains multiple butterfly

formed weight accumulators (BWAs) proposed to

improve the latency and complexity of the Hamming

distance computation. The basic function of the BWA

is to count the number of 1’s among its input bits.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 525

Fig4. Proposed data path design

The proposed architecture consists of multiple stages

of HAs as shown in figure where each output bit of a

HA is associated with a weight. The HAs in a stage are

connected in a butterfly form so as to accumulate the

carry bits and the sum bits of the upper stage

separately. In other words, both inputs of a HA in a

stage, except the first stage, are either carry bits or sum

bits computed in the upper stage. This connection

method leads to a property that if an output bit of a HA

is set, the number of 1’s among the bits in the paths

reaching the HA is equal to the weight of the output

bit.

Fig 5. Common structure of BWA

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 526

In above figure for example, if the carry bit of the

gray-colored HA is set, the number of 1’s among the

associated input bits, i.e., A, B, C, and D, is 2. At the

last stage of above figure the number of 1’s among the

input bits, d, can be calculated as Since what we need

is not the precise Hamming distance but the range it

belongs to, it is possible to simplify the circuit. When

rmax = 1, for example, two or more than two 1’s

among the input bits can be regarded as the same case

that falls in the fourth range. In that case, we can

replace several HAs with a simple OR-gate tree as

shown below. This is an advantage over the SA that

resorts to the compulsory saturation.

Fig 6. Revised structure with OR-gate tree

Each XOR stage generates the bitwise difference

vector for either data bits or parity bits, and the

following processing elements count the number of 1’s

in the vector, i.e., the Hamming distance. Each BWA

at the first level is in the revised form shown in figure

above, and generates an output from the OR-gate tree

and several weight bits from the HA trees. In the

interconnection, such outputs are fed into their

associated processing elements at the second level.

The output of the OR-gate tree is connected to the

subsequent OR-gate tree at the second level, and the

remaining weight bits are connected to the second

level BWAs according to their weights. More

precisely, the bits of weight w are connected to the

BWA responsible for w-weight inputs. Each BWA at

the second level is associated with a weight of a power

of two that is less than or equal to Pmax, where Pmax

is the largest power. As the weight bits associated with

the fourth range are all ORed in the revised BWAs,

there is no need to deal with the powers of two that are

larger than Pmax.

3.4 Error Deduction and Correction

 Decimal error deduction technique is proposed and it

has several advantages over the simple binary error

deduction technique. The Limits of Simple Binary

Error Detection can be given as follows It requires low

redundant bits; its error detection capability is limited.

The main reason for this is that its error detection

mechanism is based on binary. The number of even

bit errors cannot be detected. Can detect only a finite

number of errors finite numbers of errors However,

when the decimal algorithm is used to detect errors,

these errors can be detected so that the decoding error

can be avoided. The reason is that the operation

mechanism of decimal algorithm is different from that

of binary. First of all, the horizontal redundant bits H1

H0 are obtained from the original information bits.

When MCUs occur in symbols, i.e., the bits in

symbols are upset to “1” from “0” or vice versa. The

proposed DMC can easily correct upsets of the

following types

Type 1 is a single error

 Type 2 is an inconsecutive error in two consecutive

symbols

 Type 3 is a consecutive error in two consecutive

symbols

Type 4 is an inconsecutive error in two inconsecutive

symbols

 Type 5 is a consecutive error in four consecutive

symbols

IV. CONCLUSION

In this process, we formulate the DMC technique to

assure the consistency in memory. The proposed

protection code utilizes decimal algorithm to detect

errors, so that more errors were detected and corrected.

To reduce the hardware complexity and latency, a new

architecture has been presented for matching the data

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 527

protected with an ECC.To reduces the latency; the

comparison of the data is parallelized with the

encoding process that generates the parity information.

The parallel operations are enabled based on the fact

that the systematic codeword has separate fields for

the data and parity. In addition, an efficient processing

architecture has been presented to further minimize the

latency and complexity. Consequently a sensible

reduction in power is accomplished with the proposed

devise.

REFERENCES

 [1] J.D. Warnock, Y.H. Chan, S. M.Carey, H.Wen, P.

J. Meaney, G.Gerwig, H.H.Smith, Y.H.Chan, J. Davis,

P. Bunce, A.Pelella, D.Rodko, P.Patel, T.Strach,

D.Malone, F. Malgioglio, J. Neves, D. L. Rude, and

W. V. Huott “Circuit and physical design

implementation of the microprocessor chip for the

zEnterprise system,” IEEE J. Solid-State Circuits, vol.

47, no. 1, pp. 151– 163, Jan. 2012.

 [2] B.Y Kong, Jihyuck Jo, Hyewon Jeong, Mina

Hwang, Soyoung Cha, Bongjin Kim, and In-Cheol

Park, “LowComplexity Low-Latency Architecture for

Matching of Data Encoded With Hard Systematic

Error-Correcting Codes,” IEEE Trans. Very Large

Scale Integr.(VLSI) Syst., vol. 22, no. 7, pp. 1648 -

1652, July. 2014.

[3] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T.

Asakawa, T. Muta, K.Morita, T. Motokurumada, S.

Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R.

Yamashita, and H. Sugiyama, “A 1.3 GHz fifth

generation SPARC64 microprocessor,” in ISSCC. Dig.

Tech. Papers, 2003, pp. 246–247.

 [4] AMD Inc., Sunnyvale, CA, “Family 10h AMD

Opteron™ Processor Product Data Sheet,” PID: 40036

Rev: 3.04, 2010.

Available:http://support.amd.com/us/Processor_TechD

o cs/40036.pdf [Online]

 [5] W.Wu, D. Somasekhar, and S.-L. Lu, “Direct

compare of information coded with error-correcting

codes,” IEEE Trans. Very Large Scale Integr.(VLSI)

Syst., vol. 20, no. 11, pp. 2147–2151, Nov. 2012.

 [6] D. Radaelli, H. Puchner, S. Wong, and S. Daniel,

“Investigation of multi-bit upsets in a 150 nm

technology SRAM device,” IEEE Trans. Nucl. Sci.,

vol. 52, no. 6, pp. 2433–2437, Dec. 2005.

 [7] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and

T. Toba, “Impact of scaling on induced soft error in

SRAMs from an 250 nm to a 22 nm design rule,”

IEEE Trans. Electron Devices, vol. 57, no. 7, pp.

1527– 1538, Jul. 2010.

[8] S. Liu, P. Reviriego, and J. A. Maestro, “Efficient

majority logic fault detection with difference-set codes

for memory applications,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp. 148–156,

Jan. 2012.

[9] P. Reviriego, M. Flanagan, and J. A. Maestro, “A

(64,45) triple error correction code for memory

applications,” IEEE Trans. Device Mater. Rel., vol.

12, no. 1, pp. 101–106, Mar. 2012.

 [10]S. Baeg, S. Wen, and R. Wong, “Interleaving

distance selection with a soft error failure model,”

IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp. 2111–2118,

Aug. 2009.

[11]G. Li, I. J. Fair, and W. A. Krzymien, “Low-

density parity-check codes for space-time wireless

transmission,” IEEE Trans. Wirel. Commun., vol.5,

no. 2, pp. 312–322, Feb. 2006.

 [12]M. Y. Hsiao “A class of optimal minimum odd-

weight column SECDED codes,” IBM J. Res.

Develop., vol. 14, pp. 395–301, Jul. 1970.

[13]R. W. Hamming, “Error detecting and error

correcting codes,” Bell Syst. Tech. J., vol. 29, pp. 147–

160, Apr. 1950.

[14]V. Gherman, S. Evain, N. Seymour, and Y.

Bonhomme, “Generalized parity-check matrices for

SEC-DED codes with fixed parity,” in Proc. IEEE On-

Line Testing Symp., Jul. 2011, pp. 198–20.

