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Abstract 

The proposed system resembles a new family of 

dyadic wavelet tight frames based on two 

scaling purposes and four distinct wavelets. One 

pair of the four wavelets are designed to be 

offset from the other pair of wavelets so that the 

integer transforms of one wavelet pair fall 

midway between the integer translates of the 

other pair. Simultaneously, one pair of wavelets 

are designed to be approximate Hilbert 

transforms of the other pair of wavelets so that 

two complex (approximately analytic) wavelets 

can be formed. Therefore, they can be used to 

implement complex and directional wavelet 

transforms. It develops a design procedure to 

obtain finite impulse response (FIR) filters that 

satisfy the numerous constraints imposed. This 

design procedure employs a fractional-delay all 

pass filter, spectral factorization, and filter bank 

completion. The simulation results show 

considerable performance enhancements with 

high degree of smoothness. 

1. Introduction 

ECG of a patient is observed visually in time 

dominion. But examining the ECG curve 

visually is typically inadequate. Signal 

processing approaches are performed to 

observe the ECG curve correctly. Frequency 

domain approaches, spectrum approximation 

and filtering are necessary to examine the 

ECG curve. 

Circumstances such as movement of the 

patient, breathing and interaction between the 

electrodes and the skin cause baseline 

wandering of the ECG signal. Baseline 

wandering can mask some important features 

of the ECG signal hence it is desirable to  

 

remove this noise for proper analysis and 

display of the ECG signal. Exploratory the 

ECG signal only in time domain is inadequate. 

Frequency domain ECG signal processing 

approaches are essential to observe the ECG 

spectra. Suppression of unwanted frequencies 

is necessary and it is mandatory to examine the 

ECG correctly. There are various filters to 

remove the baseline wandering noise. These 

are finite impulse response (FIR), infinite 

impulse response (IIR), adaptive and spline 

interpolation filters. This study contains an 

investigation of these methods, 

implementation and confirmation of each 

technique for offline applications. The offline 

filters with best performances are then 

designated and used in online applications [1].  

2. Digital Filter Order, Step-Size and 

Coefficients 

The design of digital filter involves decisive 

the order of filter and the values of coefficients 

in the representation of dissimilar equation.[2] 

The order, step-size and coefficient are 

essential to define performance of a digital 

filter, which are described below[3]: 

a. Order of a Digital Filter 

The filter order defines the maximum 

exponents in the numerator or denominator 

ofz-transform equation of digital filter and also 

articulated as the number of previous inputs 

which are used to calculate the current 

output.The order of the digital filter is 

significant for its performance. If the filter 

order is larger, then better frequency magnitude 

response performance of the filter can be 

attained. 



  

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 08, August 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 787 

In FIR filters there is no denominator in its 

transfer function so it is often equal to the taps. 

In IIR filters it is equal to number of delay 

elements in filter structure. Different filter’s 

orders are describes as [4] 

b. Zero-Order Filter 

The zero-order filter is labelled as the current 

output 𝑦𝑛depends only on its current input 𝑥𝑛  

and not on any previous input.[5] 

𝑦𝑛 = 𝑥𝑛  

c. First-Order Filter 

The first-order filter only use the previous 

input and the current input is not used, so the 

previous input (𝑥𝑛 − 1) is obligatory to 

calculate𝑦𝑛 . [6] 

𝑦𝑛  =  𝑥𝑛 − 1 

d. Second-Order Filter 

The second-order filter calculate the current 

output 𝑦𝑛 , two previous inputs (𝑥𝑛 − 1 

and𝑥𝑛 − 2) are required; this is therefore called 

a second-order filter. [7] 

𝑦𝑛 = (𝑥𝑛 + 𝑥𝑛 − 1 + 𝑥𝑛 − 2)/3 

e. Step-Size of a Digital Filter 

Step-Size is necessary for the use of LMS 

algorithm, which can be determine by the 

cross-correlation among the reference and 

primary signals. The step-size depend of the 

Eigen value, if the Eigen value is maximum 

then the step size for convergence will also be 

maximum. The rate of convergence is 

proportional to the step-size and the minimum 

Eigen value, which is shown in the following 

equation:[8] 

1/𝜏 ≈  2𝜇𝜆𝑚𝑖𝑛  

In the equation above, μ is the step-size, 𝜆𝑚𝑖𝑛  

is the minimum Eigen value, and τ is the 

overall time-constant.[7] 

3. Discrete Wavelet Transform 

Resolution has been normally referred as an 

important feature of an image. Images are 

being managed in order to obtain more 

improved resolution. One of the generally used 

methods for image resolution improvement is 

Interpolation. Interpolation has been broadly 

used in many image processing applications 

such as facial rebuilding, various description 

coding [6], and fabulous resolution. There are 

three well identified interpolation methods, 

namely adjacent neighbor interpolation, 

bilinear interpolation, and bi-cubic 

interpolation. Image resolution improvement in 

the wavelet domain is a relatively new research 

topic and in recent times many new algorithms 

have been planned [4]. Discrete wavelet 

transform (DWT) is one of the recent wavelet 

transforms used in image processing. 

The CWT (Continuous Wavelet Transform) 

performs multi resolution exploration by 

reduction and dilatation of the wavelet 

functions. The discrete wavelet transform uses 

filter banks for the building of the multi 

resolution time-frequency plane.[9] The DWT 

uses multi resolution filter banks and 

distinctive wavelet filters for the examination 

and reconstruction of signals. 

4. ECG Denoising Using Wavelet Transform  

In this proposed method, the corrupted ECG 

signal 𝑥(𝑛) is denoised by taking the DWT of 

raw and noisy ECG signal. A family of the 

mother wavelet is available having the energy 

spectrum concentrated around the low 

frequencies like the ECG signal as well as 

better resembling the QRS complex of the 

ECG signal. We have used symlet wavelet, 

which resembles the ECG wave. 

5. The Window Based FIR Filter Design 

In this method, we start with the desired 

frequency response specification 𝐻𝑑(𝜔) and 

the corresponding unit sample response 𝑕𝑑(𝑛) 

is determined using inverse Fourier transform. 

The relation between 𝐻𝑑(𝜔) and 𝑕𝑑(𝑛) is as 

follows: 
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𝐻𝑑 𝜔 =  𝑕𝑑 𝑛 𝑒
−𝑗𝜔𝑛

∞

𝑖=0
 

Where, the impulse response is given by, 

𝑕𝑑 𝑛 =  𝐻𝑑 𝜔 𝑒𝑗𝜔𝑛 𝑑𝜔

𝜋

−𝜋

 

The impulse response 𝑕𝑑(𝑛)is of infinite 

duration. So, it is truncated at some point, say 

𝑛 =  𝑀 −  1 to yield an FIR filter of length 

𝑀(i.e. 0to 𝑀 − 1). This truncation of 𝑕𝑑(𝑛)to 

length 𝑀 −  1 is done by multiplying 

𝑕𝑑(𝑛)with a window. Here the design is 

explained by considering the “rectangular 

window”, defined as 

𝑤 𝑛 =  
 1        𝑛 = 0,1,2, … , 𝑀 − 1
0                         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Thus, the impulse response of the FIR filter 

becomes 

𝑕 𝑛 = 𝑕𝑑 𝑛 𝑤(𝑛)

=  
𝑕𝑑 𝑛      𝑛 = 0,1,2, … , 𝑀 − 1

 0                               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 
  

Now, the multiplication of the window 

function 𝑤(𝑛) with 𝑕𝑑 𝑛  is equivalent to 

convolution of 𝐻𝑑(𝜔)with 𝑊(𝜔),where 

𝑊(𝜔)is the frequency domain representation 

(Fourier transform) of the window function i.e. 

𝑊 𝜔 =  𝑤 𝑛 𝑒−𝑗𝜔𝑛

∞

𝑖=0

 

Thus, the convolution of 𝐻𝑑(𝜔)with 

𝑊(𝜔)yields the frequency response of the 

truncated FIR Filter 𝐻(𝜔). 

𝐻 𝜔 =
1

2𝜋
 𝐻𝑑 𝑣 𝑊 𝑛 𝑒−𝑗𝜔𝑛

𝜋

−𝜋

 

The frequency response can also be obtained 

by Fourier transform of 𝑕(𝑛), given in the 

following relation, 

𝐻 𝜔 =  𝑕 𝑛 𝑒−𝑗𝜔𝑛

∞

𝑖=0

 

But direct truncation of the Fourier series 

𝑕𝑑 𝑛  to 𝑀terms to obtain 𝑕(𝑛) is known to 

introduce ripples in the frequency response 

characteristic 𝐻(𝜔). It is due to the non-

uniform convergence of the Fourier series at a 

discontinuity. The Oscillatory behaviour near 

the band edge of the filter is called Gibbs 

phenomenon. Thus, the frequency response 

obtained contains ripples in the frequency 

domain.  

In order to reduce the ripples, 𝑕𝑑 𝑛 is 

multiplied with a window function that 

contains a taper and decays toward zero 

gradually instead of abruptly as it occurs in a 

rectangular window. As multiplication of 

sequences 𝑕𝑑 𝑛 and 𝑤(𝑛) in time domain is 

equivalent to convolution of 𝐻𝑑(𝜔)and 𝑊(𝜔) 

in the frequency domain, it has the effect of 

smoothing𝐻𝑑 𝜔 . 

6. Implementation 

The -transform of𝑕𝑖(𝑛) is denoted by𝐻𝑖(𝑧) 

𝐻𝑖 𝑧 = 𝑍𝑇 𝑕𝑖 𝑛  =  𝑕𝑖 𝑛 z−n

𝑛

 

And 𝐺𝑖 𝑧 is similarly defined. It is 

assumedthat all filter coefficients 

𝑕𝑖 𝑛 𝑔𝑖 𝑛 are real valued.The frequency 

response𝐻𝑖(𝑒
𝑗𝜔 ) is given by 

𝐻𝑖 𝑒
𝑗𝜔  = 𝐷𝑇𝐹𝑇 𝑕𝑖 𝑛  =  𝑕𝑖 𝑛 𝑒

−𝑗𝜔𝑛

𝑛

 

And,𝐺𝑖(𝑒
𝑗𝜔 )is similarly defined. The filters 

𝑕𝑖 𝑛 and𝑔𝑖 𝑛 should satisfy the perfect 

reconstruction (PR) conditions. Frombasic 

multirate identities, the PR conditions are the 

following: 

 𝐻𝑖 𝑧 

2

𝑖=0

𝐻𝑖  
1

𝑧
 = 2 
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 𝐻𝑖 𝑧 

2

𝑖=0

𝐻𝑖  −
1

𝑧
 = 0 

 𝐺𝑖 𝑧 

2

𝑖=0

𝐺𝑖  
1

𝑧
 = 2 

 𝐺𝑖 𝑧 

2

𝑖=0

𝐺𝑖  −
1

𝑧
 = 0 

The scaling andwavelet functions are defined 

implicitly throughthe dilation and wavelet 

equations, given by, 

∅𝑕 𝑡 =  2  𝑕0 𝑛 ∅𝑕 2𝑡 − 𝑛 

𝑛

 

𝜓𝑕,1 𝑡 =  2  𝑕1 𝑛 ∅𝑕 2𝑡 − 𝑛 

𝑛

 

𝜓𝑕,2 𝑡 =  2  𝑕2 𝑛 ∅𝑕 2𝑡 − 𝑛 

𝑛

 

Where 𝜙𝑔(𝑡)and 𝜓𝑔,𝑖 𝑡 are defined similarly. 

The Fourier transforms of the scaling functions 

and wavelets will be denoted as, 

Φ𝑕 𝜔 = ℱ ∅𝑕 𝑡  , Φ𝑔 𝜔 = ℱ ∅𝑔 𝑡   

Ψ𝑕,𝑖 𝜔 = ℱ ∅𝑕,𝑖 𝑡  , Ψ𝑔,𝑖 𝜔 = ℱ Ψ𝑔,𝑖 𝑡   

The Hilbert transform of a function𝑓(𝑡) will be 

denoted as ℋ 𝑓(𝑡) .Following the work by 

Kingsbury, we want thewavelets to form 

Hilbert transform pairs, 

𝜓𝑔,1 𝑡 = ℋ 𝜓𝑕,1(𝑡)  

𝜓𝑔,2 𝑡 = ℋ 𝜓𝑕,2(𝑡)  

Recalling the definition of the Hilbert 

transform, this means that, 

Ψ𝑔,𝑖 𝜔 =  
−𝑗Ψ𝑕,𝑖 𝜔 ,   𝜔 > 0 

𝑗Ψ𝑕,𝑖 𝜔 ,     𝜔 < 0 
  

7. Results 

a. Test Case #1 

The test case considers a general one 

dimension signal called the original signal 

which is used to create a new signal called 

noisy signal by adding AWGN and Rayleigh 

noise of known variance. The noisy signal is 

denoised using the proposed filter to generate 

the denoised signal. 

Fig. 1.1 shows the results of the complete 

process. In this case only AWGN noise was 

added to the original signal with zero mean 

and standard deviation equal to unity. The 

computed threshold for the denoised signal was 

2.0058e+13 and the mean square error was 

8.5436. 

 

Figure 1.1: Test Case #1 (AWGN only) 

Fig. 1.2 shows the mean square error for 

various values of noise standard deviation with 

AWGN noise only. Noise Mean is zero in each 

case. As shown the relation is linear as 

expected. 

 

Figure 1.2: Test Case #1 (AWGN only) (MSE 

vs. Standard Deviation) 

Now, we will create the noisy signal by adding 

AWGN and Rayleigh noise of known variance. 
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Fig. 1.3 shows the results of the complete 

process. In this case AWGN and Rayleigh 

noise were added to the original signal with 

zero mean and standard deviation equal to 

unity. The computed threshold for the denoised 

signal was 1.0029e+13 and the mean square 

error was 16.2801. 

 

Figure 1.3: Test Case #1 (AWGN + Rayleigh) 

Fig. 1.4 shows the mean square error for 

various values of noise standard deviation with 

AWGN + Rayleigh. Noise Mean is zero in 

each case. As shown the relation is linear as 

expected. 

As seen from both the results obtained (with 

AWGN only, and AWGN + Rayleigh) we can 

see that the increase in the noise level will 

increase the mean square error. The mean 

square error is calculated between the original 

and the denoised signal. 

As the Rayleigh noise would degrade the 

originalsignalmore than AWGN alone, the 

mean square error would be more in former 

case. The obtained results illustrate this fact. 

 

Figure 1.4: Test Case #1 (AWGN + Rayleigh) 

(MSE vs. Standard Deviation) 

b. Test Case #2 

The test case considers another general one 

dimension signal original signal used to create 

a noisy signal by adding AWGN and Rayleigh 

noise of known variance. The noisy signal is 

denoised using the proposed filter to generate 

the denoised signal. 

Fig. 1.4 shows the results of the complete 

process. In this case only AWGN noise was 

added to the original signal with zero mean 

and standard deviation equal to unity. The 

computed threshold for the denoised signal was 

1.6715e+13 and the mean square error was 

12.3609. Fig. 1.5 shows the mean square error 

for various values of noise standard deviation 

with AWGN noise only. Noise Mean is zero in 

each case. As shown the relation is linear as 

expected. 

 

Figure 1.5: Test Case #2 (AWGN only) 
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Figure 1.6: Test Case #2 (AWGN only) (MSE 

vs. Standard Deviation) 

Now, we will create the noisy signal by adding 

AWGN and Rayleigh noise of known variance. 

Fig. 1.7 shows the results of the complete 

process. In this case AWGN and Rayleigh 

noise were added to the original signal with 

zero mean and standard deviation equal to 

unity. The computed threshold for the denoised 

signal was 1.1144e+13 and the mean square 

error was 18.2465. 

 

Figure 1.7: Test Case #2 (AWGN + Rayleigh) 

Fig. 1.8 shows the mean square error for 

various values of noise standard deviation with 

AWGN + Rayleigh. Noise Mean is zero in 

each case. As shown the relation is linear as 

expected. 

 

Figure 1.8: Test Case #2 (AWGN + Rayleigh) 

(MSE vs. Standard Deviation) 
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AWGN alone, the mean square error would be 

more in former case. The obtained results 

illustrate this fact. 
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remove the trend, a low order polynomial is 

fitted to the noisy ECG signaland that 

polynomial isthen used to de-trend it. This 

doesn’t removes any noise, but only remove 

the base line wander. As the noise is already 

added, so there is no need to re-add noise to 

this signal. The noisy ECG signal is further 

denoised using the proposed filter to generate 

the denoised signal. 
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Figure 1.9: Test Case #3 

Fig. 1.9 shows the results of the complete 

process. The computed threshold for the 

denoised signal was 2.8528e+15 and the mean 

square error was 0.1030. 

8. Comparison 

A smaller MSE implies a shorter transient 

duration. The notch filter given in [10] with 

time varying radius achieves an MSE of 0.12 

while the traditional notch filter obtains an 

MSE of 0.2. The filter proposed in this work 

achieves an MSE of 0.10. Hence, it is clear that 

the proposed notch filter is effective in 

reducing transient response compared to 

traditional filters. It is also worth noting that 

higher order filters achieve lower MSE at the 

cost of increase in processing power and 

complexity. 

Table 1.1: MSE Comparison 

 
Filter 

[10] 
Filter[11] 

Traditional 

Filter 

Proposed 

Filter 

MSE 0.12 0.35 0.2 0.10 

ConclusionECG is a measure of electrical 

activity of the heart over time. The signal is 

measured by electrodes attached to the skin and 

is sensitive to disturbances such as power 

source interference and noises due to 

movement artifacts. ECG of a patient is 

observed visually in time dominion. But 

examining the ECG curve visually is typically 

inadequate. Signal processing approaches are 

performed to observe the ECG curve correctly. 

Frequency domain approaches, spectrum 

approximation and filtering are necessary to 

examine the ECG curve. 

This work used a wavelet based window FIR 

filter that combined the discrete wavelet 

transform and two level FIR filter, each of 

which has its own characteristics and benefits. 

The proposed system resembles a new family 

of dyadic wavelet tight frames based on two 

scaling purposes and four distinct wavelets. 

One pair of the four wavelets are designed to 

be offset from the other pair of wavelets so that 

the integer transforms of one wavelet pair fall 

midway between the integer translates of the 

other pair.  

Simultaneously, one pair of wavelets are 

designed to be approximate Hilbert transforms 

of the other pair of wavelets so that two 

complex (approximately analytic) wavelets can 

be formed. Therefore, they can be used to 

implement complex and directional wavelet 

transforms. This work developed a design 

procedure to obtain finite impulse response 

(FIR) filters that satisfy the numerous 

constraints imposed. This design procedure 

employed a fractional-delay all pass filter, 

spectral factorization, and filter bank 

completion. The simulation results show 

considerable performance enhancements with 

high degree of smoothness. Comparison based 

on mean square error, with previous work 

shows significant improvement in the noise 

reduction using proposed filter. 
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