

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 920

Hybrid Apriori- An Improvement

Suruchi Kannoujia 1& Akhilesh Kosta 2
Department of Computer Science and Engineering, Kanpur Institute of Technology (UPTU), Kanpur

kannoijiasuruchi@rediffmail.com
1
& akhileshkosta@gmail.com

2

 Abstract

In recent years, there has been a huge

accumulation of data. The amount of data

collected is said to be almost doubled every year.

The paper explores the sense of Data Explosion

.Seeking knowledge from massive data is one of

the most desired attributes of Data Mining.

Several techniques have evolved in order to

retrieve the interesting patterns by data mining.

One of them is Apriori Algorithm, which scans the

database several times before pointing out the

frequent patterns. But its drawback is that the

time and cost of this algorithm is very high

because of repetitive scanning of database. So,

our approach focuses on removing this drawback.

Our algorithm scans the database only once, and

produces the frequent patterns in almost constant

time. We have run our algorithm on databases

having 100 to 10000 transactions, which showed

that it took almost constant time.

Key Words: Data Set; Item Sets; Support;

Frequent Items; Apriori;

Paper

Nowadays, most of the varieties of the

information are stored electronically. Data mining

or knowledge discovery in databases (KDD) is a

collection of exploration techniques based on

advanced analytical methods and tools for

handling a large amount of information. The

nontrivial extraction of implicit, previously

unknown, and potentially useful information is

generated. In the last decade, there has been a

gigantic growth in the storage and generation of

electronic data. Traditional database systems are

often designed for running on daily basis in an

organization and are called Online Transaction

Processing (OLTP) systems. These systems are

designed to capture business transactions online

and are optimized for high throughput, a high

level of availability and in some cases high

security of information . The word „Frequent

Pattern Mining‟ means to extract frequently

occurring patterns from data set.That may help a

firm/company in forecasting and understanding its

business patterns more efficiently . “Association

Rules” are the building blocks for frequent pattern

mining. Association Rules describes association

relationships among the attributes in the set of

relevant data.Frequent pattern mining is guided

through two features “Support” and

“Confidence” .For a Rule:-

Body ==> Consequent [Support , Confidence]

Body: represents the examined data.

Consequent: represents a discovered property for

the examined data.

Support: represents the percentage of the records

satisfying the body or the consequent.

Confidence: represents the percentage of the

records satisfying both the body and the

consequent to those satisfying only the body.

To generate Frequent patterns from data frequent

pattern mining is used .Classical frequent pattern

mining algorithm is Apriori algorithm .Apriori

algorithm is easy to execute and very simple, is

used to mine all frequent item sets in database.

The algorithm makes many searches in database

to find frequent item sets where k-item sets are

used to generate k+1-item sets. Each k-item set

must be greater than or equal to minimum support

threshold to be frequency. Otherwise, it is called

candidate item sets.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 921

Description of the Apriori algorithm

Input: D, Database of transactions; min_sup,

minimum support threshold

Output: L, frequent item sets in D

Method:

(1) L1=find_frequent_1-item sets(D);

(2) for(k=2; Lk-1≠Φ; k++){

(3) Ck=apriori_gen(Lk-1, min_sup);

(4) for each transaction t∈D{

(5) Ct=subset(Ck,t);

(6) for each candidate c∈Ct

(7) c.count++；

(8) }

(9) Lk={c∈Ck |c.count≥min_sup }

(10) }

(11) return L=UkLk ;

Procedure apriori_gen(Lk-1:frequent(k-1)-item

sets)

(1) for each item set l1∈ Lk-1{

(2) for each item set l2∈ Lk-1{

(3) if(l1 [1]= l2 [1])∧ (l1 [2]= l2 [2]) ∧…∧(l1 [k-

2]=l2 [k-2]) ∧(l1 [k-1]< l2 [k-1]) then

 {

(4) c=l1∞l2;

(5) ifhas_infrequent_subset(c, Lk-1) then

(6) delete c;

(7) else add c to Ck ;

(8) }}}

(9) return Ck;

Procedure has_infrequent_subset(c: candidate k-

item set;

Lk-1:frequent(k-1)-item sets)

(1) for each(k-1)-subset s of c {

(2) if s ∉ Lk-1 then

(3) return true; }

(4) return false;

According to above algorithm, in the first pass,

the support of each individual item is counted, and

the large ones are determined. In each subsequent

pass, the large itemsets determined in the previous

pass is used to generate new itemsets called

candidate itemsets.The support of each candidate

itemset is counted, and the large ones are

determined.This process continues until no new

large itemsets are found .The major drawbacks are

time and space requirements for data analysis

because it scans database repeatedly to generate

candidate set .The number of database passes are

equal to the max length of frequent item set so it

takes more memory, space and time. For

candidate generation process Assumes transaction

database is memory resident. In this Algorithm,

Minimum support threshold used is uniform.

Whereas, other methods can address the problem

of frequent pattern mining with non-uniform

minimum support threshold.

My Proposed Algorithm:

In order to improve the Apriori algorithm, many

improvements have been suggested but with

limitations. For improvement of algorithm I have

introduced an attribute Transaction_Subsets (TS),

containing all the subsets of individual transaction in a

database which eliminates redundancy of candidates

by avoiding multiple phases of candidate generation

also Null sets are avoided by using only present items

in transaction set.

Algorithm Description

Input: D:Database of transaction; minimum

support threshold S0.

Output: frequent itemsets Fitem_set.

Method:

Step:1Scan the transaction database D.

Set Fitemset ={ᶲ}

For each transaction t∈D

Step:2for (t=0; t<length(D) ; t++)

GenerateTS: All subsets of individual transaction

t

 Count[] =0; //Total count

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 922

Step3: Generate each present element, count all

the possible subsets Scount(j) of that transaction t.

Count[] =Count[] +Scount(j)

Step:4If (count[]≥ S0)

Then Fitem_set = Fitem_set U Ai

Step:5Go to step 2

Step: 6 End For

Step: 7 return Fitem_Set

In the above algorithm the entire possible item

sets were not generated, items already present in

transaction sets were considered for frequent set

Analysis. Hence it reduce time and space

requirement by avoiding multiple candidate

RESULT ANALYSIS:

For the analysis of the improvements in My algorithm,

I have compared the Apriori and the improved

algorithm both on similar databases, The number of

transactions (D) vary from 6oo to 5500.The minimum

support counts (S0) also vary for each type length i.e.

40, 80,120,160,240.All the operations have been

performed on a Windows based CoreI5 Processor

machine. The programs have been written on C++ and

C language.

Table 1

In the above table, table 1 we see the execution time

of the Apriori Algorithm for various lengths of

datasets along with different support counts.

 Apriori execution times against the number of

transactions. We can clearly see that Apriori works in

time <0.5µs for smaller databases, but as the number

of transactions increases the execution time also

increases linearly(more than 1µs).

Table 2

No. of

transactions

(D)

Different Minimum Support Counts(S0)

40 80 120 160 240

640 0.004 0.004 0.005 0.004 0.004

1280 0.004 0.004 0.004 0.004 0.004

2560 0.004 0.004 0.004 0.005 0.004

5120 0.004 0.004 0.004 0.008 0.004

In the above table, table 2 we see the execution

times of the Improved Algorithm for various

lengths of datasets along with different support

counts.It can be seen that Apriori works in time

<=0.005µs for smaller databases, but as the

number of transactions increases the execution

time increases negligibly and we can say that

the algorithm runs in an

almost constant time.

 Chart1

0

0.2

0.4

0.6

0.8

1

640 1280 2560 5120

Comparison

Improved Algorithm Apriori Algorithm

No. of

transactions

(D)

Different Minimum Support Counts(S0)

40 80 120 160 240

640 0.065 0.032 0.036 0.032 0.043

1280 0.172 0.132 0.064 0.064 0.064

2560 1.168 0.836 0.820 0.832 0.744

5120 1.204 0.844 0.816 0.748 0.836

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 08, August 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 923

CONCLUSION:

• As in the comparison charts, we can see that

our algorithm is taking almost constant time, and

the Apriori algorithm is increasing almost linearly

as the dataset‟s length is increasing.

• Another point to be noted is that our

algorithm is producing more frequent sets than the

Apriori algorithm, still it is taking almost 1/100
th

of the execution time.

• This showes that our algorithm is

performing better even for the larger datasets.

REFERENCES:

[1] M. M. Gaber, A. Zaslavsky, and S.

Krishnaswamy, “Mining data streams: A review”,

ACM SIGMOD Record, Vol. 34, no. 1, 2005.

[2] C. C. Aggarwal, “Data Streams: models and

algorithms”, Springer, 2007.

[3] Nicholson, S. The Bibliomining Process:

“Data Warehousing and Data Mining for Library

Decision Making”. Information Technology and

Libraries, 2003, 22(4):146-151.

[4]Agrawal, Rakesh, “Fast Algorithms for Mining

Association Rules in Large Databases”,

Proceedings of the ACM SIGMOD International

Conference Management of Data,Washington,

1993, pp.207-216.

[5] Chaudhary, M. Rana, A. Dubey, “Online

Mining of Data to generate association rule

mining in large databases”, Recent Trends in

Information Systems (ReTIS), International

Conference on Dec. 2011,IEEE.

[6] Binesh Nair, Amiya Kumar Tripathy,

“Accelerating Closed Frequent Itemset Mining by

Elimination of Null Transactions”, Journal of

Emerging Trends in Computing and Information

Sciences, Volume 2 No.7, JULY 2011, pp 317-

324.

[7] Shilpa and Sunita Parashar, “Performance

Analysis of Apriori Algorithm with Progressive

Approach for Mining Data”, International Journal

of Computer Applications (0975 – 8887) Volume

31- No.1, October 2011, pp 13-18.

[8] G. Cormade and M. Hadiielefteriou, “Finding

frequent items in data streams”, In Proceeding of

the 34th International Conference on Very Large

Data Bases (VLDB), pages 1530-1541, Auckland,

New Zealand, 2008.

[9]Improved Data mining approach to find

Frequent Itemset Using Support count table-

Ramratan Ahirwal, Neelesh Kumar Kori and

Dr.Y.K. Jain.

[10]Improving the efficiency of Apriori

Algorithm in Data Mining -Vipul Mangla,

Chandni Sarda and Sarthak Madra.

