

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 113

 Spontaneous Investigation packet Creation

Vempati Sudheshna1 & V. Sujatha2
1
M.Tech (C.S.E), Roll no: 13NN1D5812, Vignan's Nirula Institute of Technology & Science for Women,

Pedapalakaluru, Guntur-522005,AP.
2
Assistant Professor, Vignan's Nirula Institute of Technology & Science for Women, Pedapalakaluru,

Guntur-522005,AP.

ABSTRACT

Networks are getting larger and more complex, yet

administrators rely on rudimentary basic tools to

debug problems. We offer an automated and

methodical tactic for investigationing and

debugging networks, it is called “Spontaneous

Investigation Package Creation” (SIPC). SIPC

reads router configurations and creates a device-

independent model. The model is used to create a

least set of investigation packages to use every link

in the network or exercise every rule in the network.

Investigations are done occasionally, and detected

failures trigger a separate mechanism to restrict the

fault. SIPC can detect both functional like incorrect

firewall rule and performance problems like

congested queue. SIPC complements but goes

beyond earlier work in static checking which cannot

detect live ness or performance faults or fault

localization which only restricts faults given live

ness results). We describe our prototype SIPC

implementation and results on two real-world data

sets: AQ & T University’s backbone network and

Internet2. We find that a small number of

investigation packages suffice to investigation all

rules in these networks: For instance, 4000

packages can cover all rules in AQ & T backbone

network, while 54 are enough to cover all links.

Sending 4000 investigation packages 10 times per

second consume less than 1% of link capacity. SIPC

code and the data sets are publicly available.

Index Terms—Data plane analysis; network

repairing; and investigation package creation

INTRODUCTION

It is scandalously hard to fix networks. Every day,

network engineers struggle with router

misconfigurations, fiber cuts, defective interfaces,

mislabeled cables, software viruses, sporadic links,

and countless other reasons that cause networks to

play up or fail wholly. Network engineers hunt

down bugs using the most basic tools like SNMP,

and track down root causes using a mixture of

accrued wisdom and insight. Repairing networks is

only becoming harder as networks are getting

bigger (modern data centers may contain 12,000

switches, a campus network may serve 70000 users,

a 100-Gb/s long-haul link may carry 123000 flows)

and are getting more complicated (with over 6200

RFCs, router software is based on millions of lines

of source code, and network chips often contain

billions Gates).

Example 1: Presume a router with a defective line

card starting to drop packages silently. Ameer, who

manages 120 routers, receives a coupon from

numerous unfortunate users complaining about

connectivity. Ameer inspects each router to see if

the configuration was changed recently and

determines that the configuration was intact. Next,

Ameer uses his awareness of the topology to

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 114

triangulate the faulty device with ping and trace

rout. Finally, he calls a associate to replace the line

card.

Example 2: Suppose that video traffic is mapped to

a specific queue in a router, but packages are fell

because the token bucket rate is too low. It is not at

all clear how Ameer can track down such a

performance fault using ping and trace rout.

Repairing a network is difficult for three

reasons. First, the progressing state is distributed

across multiple routers and firewalls are defined by

their progressing tables, filter rules, and other

configuration parameters. Second, the progressing

state is hard to observe because it typically needs

manually logging into every box in the network.

Third, there are many diverse programs, protocols,

and humans updating the progressing state

concurrently. When Ameer uses ping and trace rout,

he is spending a rudimentary lens to investigate the

current advancing state for clues to track down the

disaster.

The procedure include: ―Security group X is

isolated from security Group Y,‖ ―Use SIPC for

routing,‖ and ―Video traffic should get at least 1

Mb/s.‖ We can think of the controller compiling the

policy (A) into device-specific configuration files

(B), which in turn determine the progressing

behavior of each package (C). To ensure the

network behaves as designed, all three steps should

remain stable at all times, i.e.,A = B = C . In

addition, the topology, shown to the bottom right in

the figure, should also satisfy a set of live ness

properties. Minimally L requires that sufficient

links and nodes are working; if the control plane

postulates that a laptop can access a server, the

desired outcome can fail if links fail. It can also

specify performance guarantees that detect flaky

links.

In fact, we learned from a survey of 61 network

operators that the two most mutual causes of

network failure are hardware failures and software

bugs, and that problems manifest themselves both

as reachability failures and throughput / latency

degradation. Our goal is to automatically detect

these types of failures. The main contribution of this

paper is what we call a (SIPC) framework that

spontaneously creates a minimal set of packages to

investigation the live ness of the underlying

topology and the congruence between data plane

state and configuration specifications. The tool can

also recurrently make packages to investigation

performance assertions such as package latency. In

Example 1, instead of Ameer manually deciding

which ping packages to send, the tool does so

periodically on her behalf. In Example 2, the tool

determines that it must send packages with certain

legends to ―exercise‖ the video queue, and then

determines that these packages are being dropped.

SIPC detects and diagnoses errors by independently

and fully investigating all progressing entries,

firewall rules, and any package processing rules in

the network. In SIPC, investigation packages are

created algorithmically from the device

configuration files and FIBs, with the least number

of packages required for complete coverage.

Investigation packages are fed into the network so

that every rule is drilled directly from the data

plane. Since SIPC treats links just like normal

progressing rules, its full coverage guarantees

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 115

investigating of every link in the network. It can

also be specialized to generate a least set of

packages that merely investigation every link for

network aliveness. At least in this basic form, we

feel that SIPC or some similar technique is

important to networks: Instead of reacting to

letdowns, many network operators such as Internet2

[14] proactively check the health of their network

using pings between all pairs of sources. Though,

Planet Lab [30] organizations can customize SIPC

to meet their needs; for specimen, they can choose

to merely check for network live ness or check

every rule to ensure security policy. SIPC can be

modified to check only for reachability or for

performance as well. SIPC can adapt to constraints

such as requiring investigation packages from only

a few places in the network or using special routers

to generate investigation packages from every port.

SIPC can also be tuned to allocate more

investigation packages to exercise more critical

rules. For sample, a healthcare network may

dedicate more investigation packages to Firewall

rules to ensure HIPPA compliance.

It is scandalously hard to fix networks. Every day,

network engineers struggle with router

misconfigurations, fiber cuts, defective interfaces,

mislabeled cables, software viruses, sporadic links,

and countless other reasons that cause networks to

play up or fail wholly. Network engineers hunt

down bugs using the most basic tools like SNMP,

and track down root causes using a mixture of

accrued wisdom and insight. Repairing networks is

only becoming harder as networks are getting

bigger (modern data centers may contain 12,000

switches, a campus network may serve 70000 users,

a 100-Gb/s long-haul link may carry 123000 flows)

and are getting more complicated (with over 6200

RFCs, router software is based on millions of lines

of source code, and network chips often contain

billions Gates).

Example 1: Presume a router with a defective line

card starting to drop packages silently. Ameer, who

manages 120 routers, receives a coupon from

numerous unfortunate users complaining about

connectivity. Ameer inspects each router to see if

the configuration was changed recently and

determines that the configuration was intact. Next,

Ameer uses his awareness of the topology to

triangulate the faulty device with ping and trace

rout. Finally, he calls a associate to replace the line

card.

Example 2: Suppose that video traffic is mapped to

a specific queue in a router, but packages are fell

because the token bucket rate is too low. It is not at

all clear how Ameer can track down such a

performance fault using ping and trace rout.

Repairing a network is difficult for three reasons.

First, the progressing state is distributed across

multiple routers and firewalls are defined by their

progressing tables, filter rules, and other

configuration parameters. Second, the progressing

state is hard to observe because it typically needs

manually logging into every box in the network.

Third, there are many diverse programs, protocols,

and humans updating the progressing state

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 116

concurrently. When Ameer uses ping and trace rout,

he is spending a rudimentary lens to investigate the

current advancing state for clues to track down the

disaster.

The procedure include: ―Security group X is

isolated from security Group Y,‖ ―Use SIPC for

routing,‖ and ―Video traffic should get at least 1

Mb/s.‖ We can think of the controller compiling the

policy (A) into device-specific configuration files

(B), which in turn determine the progressing

behavior of each package (C). To ensure the

network behaves as designed, all three steps should

remain stable at all times, i.e.,A = B = C . In

addition, the topology, shown to the bottom right in

the figure, should also satisfy a set of live ness

properties. Minimally L requires that sufficient

links and nodes are working; if the control plane

postulates that a laptop can access a server, the

desired outcome can fail if links fail. It can also

specify performance guarantees that detect flaky

links.

In fact, we learned from a survey of 61 network

operators that the two most mutual causes of

network failure are hardware failures and software

bugs, and that problems manifest themselves both

as reachability failures and throughput / latency

degradation. Our goal is to automatically detect

these types of failures. The main contribution of this

paper is what we call a (SIPC) framework that

spontaneously creates a minimal set of packages to

investigation the live ness of the underlying

topology and the congruence between data plane

state and configuration specifications. The tool can

also recurrently make packages to investigation

performance assertions such as package latency. In

Example 1, instead of Ameer manually deciding

which ping packages to send, the tool does so

periodically on her behalf. In Example 2, the tool

determines that it must send packages with certain

legends to ―exercise‖ the video queue, and then

determines that these packages are being dropped.

SIPC detects and diagnoses errors by independently

and fully investigating all progressing entries,

firewall rules, and any package processing rules in

the network. In SIPC, investigation packages are

created algorithmically from the device

configuration files and FIBs, with the least number

of packages required for complete coverage.

Investigation packages are fed into the network so

that every rule is drilled directly from the data

plane. Since SIPC treats links just like normal

progressing rules, its full coverage guarantees

investigating of every link in the network. It can

also be specialized to generate a least set of

packages that merely investigation every link for

network aliveness. At least in this basic form, we

feel that SIPC or some similar technique is

important to networks: Instead of reacting to

letdowns, many network operators such as Internet2

[14] proactively check the health of their network

using pings between all pairs of sources. Though,

Planet Lab [30] organizations can customize SIPC

to meet their needs; for specimen, they can choose

to merely check for network live ness or check

every rule to ensure security policy. SIPC can be

modified to check only for reachability or for

performance as well. SIPC can adapt to constraints

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 117

such as requiring investigation packages from only

a few places in the network or using special routers

to generate investigation packages from every port.

SIPC can also be tuned to allocate more

investigation packages to exercise more critical

rules. For sample, a healthcare network may

dedicate more investigation packages to Firewall

rules to ensure HIPPA compliance.

NETWORK MODEL

SIPC uses the legend space framework—a

symmetrical model of how packages are processed

we described in [16] used in [31]). In legend space,

protocol-specific meanings related with legends are

ignored: A legend is viewed as a flat sequence of

ones and zeros. A legend is a point and a flow is a

region in the space, where is an upper bound on

legend length. By using the legend space

framework, we obtain a unified, vendor-

independent, and protocol- model of the network2

that simplifies the package creation process

significantly.

A. Definitions

Packages: A package is defined by a port and

legend tuple, where the port denotes a package’s

position in the network at any time instantly; each

physical port in the network is assigned a unique

number.

Switches: A switch transfer function, T, models a

network device, such as a switch or router. Each

network device contains a set of progressing rules

that determine how packages are processed. An

arriving package is associated with exactly one rule

by matching it against each rule in descending order

of priority, and is dropped if no rule matches.

Rules: A rule creates a list of one or more output

packages, corresponding to the output port(s) to

which the package is sent, and defines how package

fields are modified. The rule perception mockups all

real-world rules we know including IP progressing

adapts port, checksum, and TTL, but not IP address.

VLAN classification adds VLAN IDs to the legend

and ACLs block a legend, or map to a queue.

Basically, a rule describes how a region of legend

space at the ingress the set of packages matching

the rule is distorted into regions of legend space at

the egress [16].

Rule Antiquity: At any point, each package has a

rule antiquity: an ordered list of rules the package

matched so far as it navigated the network. Rule

histories are vital to SIPC, as they provide the basic

raw material from which SIPC hypotheses

investigations.

Topology: The topology transfer function, T,

models the network topology by specifying which

pairs of ports are connected by links. Links are rules

that forward packages from pk1 to pk2 without

alteration. If no topology rules match an input port,

the port is an edge port, and the package has

touched its destination.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 118

Lifecycle of a Package

The life of a package can be viewed as applying the

switch and topology transfer functions repeatedly.

When a package pk1 arrives at a network port, the

switch function that covers the input port is applied

to pk1, creating a list of new packages. If the

package reaches its destination, it is recorded.

Otherwise, the topology function is used to invoke

the switch function containing the new port. The

process repeats until packages reach their

destinations or dropped.

SIPC SYSTEM

Based on the network model, SIPC creates the

nominal number of investigation packages so that

every progressing rule in the network is trained and

covered by at least one investigation package. When

an error is detected, SIPC uses a fault localization

algorithm to regulate the failing rules or links. The

system first collects all the progressing state from

the network. This usually involves reading the FIBs,

ACLs, and config files, as well as gaining the

topology. SIPC uses Legend Space Analysis [16] to

compute reachability between all the investigation

terminals. The result is then used by the

investigation package selection algorithm to

compute a nominal set of investigation packages

that can investigation all rules. These packages will

be sent occasionally by the investigation terminals.

If an error is sensed, the fault localization algorithm

is invoked to narrow down the cause of the error.

Investigation Package creation

Algorithm: We assume a set of investigation

terminals in the network can send and receive

investigation packages. Our goal is to create a set of

investigation packages to exercise every rule in

every switch function, so that any fault will be

observed by at least one investigation package. This

is analogous to software investigation suites that try

to investigation every possible branch in a program.

The wider goal can be limited to investigating every

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 119

link or every queue. When creating investigation

packages, SIPC must respect two key checks:

 1) Port: SIPC must only use investigation terminals

that are available;

2) Legend: SIPC must only use legends that each

investigation terminal is permitted to send. For

example, the network admin may only allow using a

specific set of VLANs. Officially, we have the

following problem.

Problem 1 (Investigation Package Selection): For a

network with the switch functions, T , and topology

function, t , define the least set of investigation

packages to work out all accessible rules, subject to

the port and legend constraints. SIPC chooses

investigation packages using an algorithm we call

Investigation Package Selection (TPS). TPS first

finds all equivalent classes between each pair of

available ports. An equivalent class is a set of

packages that works on the same combination of

rules. It then samples each class to choose

investigation packages, and finally compresses the

resulting set of investigation packages to find the

minimum covering set.

EXECUTION

We employed a prototype system to spontaneously

parse router configurations and generate a set of

investigation packages for the network. The code is

publicly available [1].

 A. Investigation Package creator. The

investigation package creator, written in Python,

contains a Cisco IOS configuration parser and a

Juniper Junos parser. The data plane info, including

router configurations, FIBs, MAC learning tables,

and network topologies, is collected and parsed

through the command line interface (Cisco IOS) or

XML files (Junos). The creator then uses the Hassel

[13] legend space analysis library to construct

switch and topology functions. All-pairs

reachability is computed using the parallel-

processing module shipped with Python. Each

process studies a subset of the investigation ports

and finds all the accessible ports from each one.

After reachability investigations are complete,

results are collected, and the master process

executes the Min- Set-Cover algorithm.

Investigation packages and the set of investigation

rules are stored in a SQLite database.

B. Grid Observer

The network grid observer accepts there are special

investigation agents in the network grid that are able

to send/receive investigation packages. The network

grid observer reads the database and constructs

investigation packages and coaches each agent to

send the right packages. Presently, investigation

agents separate investigation packages by IP Proto

field and TCP/UDP port number, and IP option can

also be used. If some of the investigations fail, the

observer selects other investigation packages from

reserved packages to pinpoint the problem. The

procedure recurrences until the fault have been

known. The observer uses JSON to communicate

with the investigation agents, and uses SQLite’s

string matching to lookup investigation packages

efficiently.

C. Alternate Implementations

Our prototype was designed to be slightly

aggressive, requiring no changes to the network

except to add termini at the edge. In network grids

requiring faster analysis, the following extensions

are possible.

Cooperative Routers: A new feature could be added

to switches/routers, so that a central SIPC system

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 120

can teach a router to send/receive investigation

packages. In fact, for manufacturing investigating

determinations, it is likely that almost every

commercial switch/router can already do this; we

just need an open interface to control them.

SDN-Based Investigation: In a software defined

network (SDN) such as Open Flow [27], the

controller could directly coach the switch to send

investigation packages and to detect and forward

established investigation packages to the control

plane. For performance investigation, investigation

packages need to be time-stamped at the routers.

ASSESSMENT:

A. Data Sets: AQ & T and Internet2

We assessed our sample system on two sets of

network configurations: the AQ & T backbone and

the Internet2 backbone, representing a large size

enterprise network and a nationwide backbone

network, individually.

AQ & T Backbone: With a population of over

15500 employees, 2500 Consultant, and five/16

IPv4 subnets, AQ & T represents a large enterprise

network. There are 17 operational zone (OZ) Cisco

routers connected via 10 Ethernet switches to two

backbone Cisco routers that in turn connect AQ & T

to the outside world. Overall, the network has more

than 859000 progressing entries and 1500 ACL

rules. Data plane arrangements are collected

through command line interfaces. AQ & T has

made the entire configuration rule set public [1].

Internet2: Internet2 is a nationwide backbone

network with nine Juniper T1600 routers and 100-

Gb/s interfaces, supporting over 88000 institutions

in US. There are about 125000 IPv4 progressing

rules. All Internet2 configurations and FIBs of the

core routers are publicly available [14], with the

exception of ACL rules, which are removed for

security concerns. Though IPv6 and MPLS entries

are also accessible, we only use IPv4 rules in this

paper.

B. Investigation Package creation

We ran SIPC on a quad-core Intel Core i7 CPU 3.2

GHz and 16 GB memory using eight threads. For a

given number of investigation terminals, we made

the minimum set of investigation packages needed

to investigate all the reachable rules in the AQ & T

and Internet2 backbones. For example, the first

column tells us that if we attach investigation

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 121

terminals to 10% of the ports, then all of the

reachable AQ & T rules (22.2% of the total) can be

investigated by sending 725 investigation packages.

If every edge port can act as an investigation

terminal, 100% of the AQ & T rules can be

investigated by sending just 3,871 investigation

packages. The Period row indicates how long it

took SIPC to run; the worst case took about an hour,

the majority of which was devoted to calculating

all-pairs reachability.

To put these results into viewpoint, each

investigation for the AQ & T backbone requires

sending about 997 packages per port in the worst

case. If these packages were sent over a single 1-

Gb/s link, the entire network could be investigated

in less than 1 ms, supposing each investigation

package is 100 B and not as the propagation delay.

Put another way, investigating the entire set of

progressing rules 10 times every second would use

less than 1% of the link bandwidth. Similarly, all

the progressing rules in Internet2 can be

investigated using 4677 investigation packages per

port in the worst case. Even if the investigation

packages were sent over 10-Gb/s links, all the

progressing rules could be investigated in less than

0.5 ms, or 10 times every second using less than 1%

of the link bandwidth.

We also found that 100% link coverage (instead of

rule coverage) only needed 54 packages for AQ &

T and 20 for Internet2.

Rule Structure: The reason we need so few

investigation packages is because of the structure of

the rules and the routing policy. Most rules are part

of an end-to-end route, and so multiple routers

cover the same rule. Also, multiple devices contain

the same ACL or QoS configuration as they are part

of a network-wide policy. Thus, the number of

discrete regions of legend space grows linearly, not

exponentially, with the diameter of the network. We

can validate this structure by clustering rules in AQ

& T and Internet2 that match the same legend

patterns. In both networks, 60%–70% of matching

patterns appear in more than one router. We also

discovered that this recurrence is correlated to the

network topology. In the AQ & T backbone, which

has a two-level hierarchy, similar patterns usually

appear in two (52.4%) or four (19.3%) routers,

which signifies the length of edge-to-Internet and

edge-to-edge routes. In Internet2, 77.1%of all

distinct rules are replicated nine times, which is the

number of routers in the topology.

C. Investigating in an Emulated Network

To evaluate the network grid observer and

investigation agents, we replicated the AQ & T

backbone network in [20], a container-based

network emulator. We used Open v Switch (OVS)

[29] to emulate the routers, using the real port

configuration info, and connected them according to

the real topology. We then interpreted the

progressing entries in the AQ & T backbone

network grid into equivalent Open Flow [27] rules

and connected them in the OVS switches with

Beacon [4]. We used matched hosts to send and

receive investigation packages created by SIPC.

The part of network that is used for tests in this

section. We now present diverse investigation

scenarios and the corresponding results.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 122

Limitations: As with all investigating policies,

SIPC has limitations.

1) Vibrant boxes: SIPC cannot model boxes whose

internal state can be changed by investigation

packages. For example, an NAT that vigorously

assigns TCP ports to outgoing packages can

complicate the online observer as the same

investigation package can give different results.

2) Nondeterministic boxes: Boxes can load balance

packages based on a hash function of package

fields, usually joint with a random seed; this is

common in multipath routing such as ECMP. When

the hash algorithm and parameters are unknown,

SIPC cannot properly model such rules. But, if there

are known package patterns that can repeat through

all possible outputs, SIPC can create packages to

traverse every output.

3) Invisible rules: A failed rule can make a backup

rule active, and as a result, no changes may be

observed by the investigation packages. This can

happen when, despite a failure, an investigation

package is routed to the predictable destination by

other rules. In addition, an error in a backup rule

cannot be noticed in normal operation. Another

example is when two drop rules appear in a row:

The failure of one rule is untraceable since the

effect will be disguised by the other rule.

4) Momentary network states: SIPC cannot

uncover errors whose lifetime is shorter than the

time between each round of investigations. For

example, cramming may disappear before an

available bandwidth probing investigation

concludes. Finer-grained investigation agents are

needed to capture abnormalities of short duration.

5) Specimen: SIPC uses specimen when creating

investigation packages. As a result, SIPC can miss

match faults since the error is not uniform across all

matching legends. In the worst case (when only one

legend is in error), exhaustive investigation is

required.

CONCLUSION

Investigating live ness of a network is a important

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither comprehensive nor scalable [30]. It serves to

find a minimal set of end-to-end packages that

traverse each link. Though, doing this requires a

way of abstracting across device specific

configuration files like legend space, creating

legends and the links they reach such as all-pairs

reachability, and finally defining a minimum set of

investigation packages (Min-Set-Cover). The

fundamental problem of spontaneously creating

investigation packages for efficient live ness

investigation requires techniques akin to SIPC.

SIPC, though, goes much further than live

ness investigation with the same framework. SIPC

can investigate for reachability policy by

investigating all rules including drop rules and

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 123

performance health by associating performance

measures such as latency and loss with investigation

packages. Our application also augments

investigations with a simple fault localization

scheme also constructed using the legend space

framework. As in software investigation, the formal

model helps exploit investigation reporting while

reducing investigation packages. Our results show

that all progressing rules in AQ & T backbone or

Internet2 can be trained by a astonishingly small

number of investigation packages.

REFERENCES

[1] ―SIPC code repository,‖ [Online]. Available:

http://eastzone.github.com/SIPC

[2] ―Automatic Investigation Pattern Generation,‖

2013 [Online]. Available:

http://en.wikipedia.org/wiki/Automatic_investigatio

n_pattern_generation

[3] P. Barford, N. Duffield, A. Ron, and J.

Sommers, ―Network performance anomaly

detection and localization,‖ in Proc. IEEE

INFOCOM, Apr. , pp. 1377–1385.

[4] ―Beacon,‖ [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, ―Robust

observering of link delays and faults in IP

networks,‖ IEEE/ACM Trans. Netw., vol. 14, no. 5,

pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, ―Klee:

Unassisted and automatic generation of high-

coverage investigations for complex systems

programs,‖ in Proc. OSDI, Berkeley, CA, USA,

2008, pp. 209–224.

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic, and

J. Rexford, ―A NICE way to investigation

OpenFlow applications,‖ in Proc. NSDI, 2012, pp.

10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C.

Diot, ―Netdiagnoser: Repairing network

unreachabilities using end-to-end probes and

routing data,‖ in Proc. ACM CoNEXT, 2007, pp.

18:1–18:12..

[9] N. Duffield, ―Network tomography of binary

network performance characteristics,‖ IEEE Trans.

Inf. Theory, vol. 52, no. 12, pp. 5373–5388, Dec.

2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D.

Towsley, ―Inferring linkloss using striped unicast

probes,‖ in Proc. IEEE INFOCOM, 2001,vol. 2, pp.

915–923.

[11] N. G. Duffield and M. Grossglauser,

―Trajectory sampling for direct traffic observation,‖

IEEE/ACM Trans. Netw., vol. 9, no. 3, pp.280–292,

Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan,

―Understanding network failures in data centers:

Measurement, analysis, and implications,‖ in Proc.

ACM SIGCOMM, 2011, pp. 350–361.

[13] ―Hassel, the Legend Space Library,‖ [Online].

Available: https://bitbucket. org/peymank/hassel-

public/

[14] Internet2, Ann Arbor, MI, USA, ―The Internet2

observatory data collections,‖ [Online]. Available:

http://www.internet2.edu/observatory/archive/data-

collections.html

[15] M. Jain and C. Dovrolis, ―End-to-end available

bandwidth: Measurement methodology, dynamics,

and relation with TCP throughput,‖ IEEE/ACM

Trans. Netw., vol. 11, no. 4, pp. 537–549, Aug.

2003.

http://eastzone.github.com/SIPC
http://en.wikipedia.org/wiki/Automatic_investigation_pattern_generation
http://en.wikipedia.org/wiki/Automatic_investigation_pattern_generation
http://www.beaconcontroller.net/
https://bitbucket/
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 124

[16] P. Kazemian, G. Varghese, and N. McKeown,

―Legend space analysis: Static checking for

networks,‖ in Proc. NSDI, 2012, pp. 9–9.

[17] R. R. Kompella, J. Yates, A. Greenberg, and A.

C. Snoeren, ―IP fault localization via risk

modeling,‖ in Proc. NSDI, Berkeley, CA, USA,

2005, vol. 2, pp. 57–70.

[18] M. Kuzniar, P. Peresini, M. Canini, D.

Venzano, and D. Kostic, ―A SOFT way for

OpenFlow switch interoperability investigationing,‖

in Proc. ACM CoNEXT, 2012, pp. 265–276.

[19] K. Lai and M. Baker, ―Nettimer: A tool for

measuring bottleneck link, bandwidth,‖ in Proc.

USITS, Berkeley, CA, USA, 2001, vol. 3, pp. 11–

11.

[20] B. Lantz, B. Heller, and N. McKeown, ―A

network in a laptop: Rapid prototyping for

software-defined networks,‖ in Proc. Hotnets, 2010,

pp. 19:1–19:6.

