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ABSTRACT 
 

Networks are getting larger and more complex, yet 

administrators rely on rudimentary basic tools to 

debug problems. We offer an automated and 

methodical tactic for investigationing and 

debugging networks, it is called “Spontaneous 

Investigation Package Creation” (SIPC). SIPC 

reads router configurations and creates a device-

independent model. The   model is used to create a 

least set of investigation packages to use every link 

in the network or exercise every rule in the network. 

Investigations are done occasionally, and detected 

failures trigger a separate mechanism to restrict the 

fault. SIPC can detect both functional like incorrect 

firewall rule and performance problems like 

congested queue. SIPC complements but goes 

beyond earlier work in static checking which cannot 

detect live ness or performance faults or fault 

localization which only restricts faults given live 

ness results). We describe our prototype SIPC 

implementation and results on two real-world data 

sets: AQ & T University’s backbone network and 

Internet2. We find that a small number of 

investigation packages suffice to investigation all 

rules in these networks: For instance, 4000 

packages can cover all rules in AQ & T backbone 

network, while 54 are enough to cover all links. 

Sending 4000 investigation packages 10 times per 

second consume less than 1% of link capacity. SIPC 

code and the data sets are publicly available. 

 

Index Terms—Data plane analysis; network 

repairing; and investigation package creation 

INTRODUCTION 

It is scandalously hard to fix networks. Every day, 

network engineers struggle with router 

misconfigurations, fiber cuts, defective interfaces, 

mislabeled cables, software viruses, sporadic links, 

and countless other reasons that cause networks to 

play up or fail wholly. Network engineers hunt 

down bugs using the most basic tools like SNMP, 

and track down root causes using a mixture of 

accrued wisdom and insight. Repairing networks is 

only becoming harder as networks are getting 

bigger (modern data centers may contain 12,000 

switches, a campus network may serve 70000 users, 

a 100-Gb/s long-haul link may carry 123000 flows) 

and are getting more complicated (with over 6200 

RFCs, router software is based on millions of  lines 

of source code, and network chips often contain 

billions  Gates). 

Example 1: Presume a router with a defective line 

card starting to drop packages silently. Ameer, who 

manages 120 routers, receives a coupon from 

numerous unfortunate users complaining about 

connectivity.  Ameer inspects each router to see if 

the configuration was changed recently and 

determines that the configuration was intact. Next, 

Ameer uses his awareness of the topology to 
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triangulate the faulty device with ping and trace 

rout. Finally, he calls a associate to replace the line 

card. 

Example 2: Suppose that video traffic is mapped to 

a specific queue in a router, but packages are fell 

because the token bucket rate is too low. It is not at 

all clear how Ameer can track down such a 

performance fault using ping and trace rout.  

Repairing a network is difficult for three 

reasons. First, the progressing state is distributed 

across multiple routers and firewalls are defined by 

their progressing tables, filter rules, and other 

configuration parameters. Second, the progressing 

state is hard to observe because it typically needs 

manually logging into every box in the network. 

Third, there are many diverse programs, protocols, 

and humans updating the progressing state 

concurrently. When Ameer uses ping and trace rout, 

he is spending a rudimentary lens to investigate the 

current advancing state for clues to track down the 

disaster.  

The procedure include: ―Security group X is 

isolated from security Group Y,‖ ―Use SIPC for 

routing,‖ and ―Video traffic should get at least 1 

Mb/s.‖ We can think of the controller compiling the 

policy (A) into device-specific configuration files 

(B), which in turn determine the progressing 

behavior of each package (C). To ensure the 

network behaves as designed, all three steps should 

remain stable at all times, i.e.,A = B = C . In 

addition, the topology, shown to the bottom right in 

the figure, should also satisfy a set of live ness 

properties. Minimally L requires that sufficient 

links and nodes are working; if the control plane 

postulates that a laptop can access a server, the 

desired outcome can fail if links fail. It can also 

specify performance guarantees that detect flaky 

links.  

 

In fact, we learned from a survey of 61 network 

operators that the two most mutual causes of 

network failure are hardware failures and software 

bugs, and that problems manifest themselves both 

as reachability failures and throughput / latency 

degradation. Our goal is to automatically detect 

these types of failures. The main contribution of this 

paper is what we call a (SIPC) framework that 

spontaneously creates a minimal set of packages to 

investigation the live ness of the underlying 

topology and the congruence between data plane 

state and configuration specifications. The tool can 

also recurrently make packages to investigation 

performance assertions such as package latency. In 

Example 1, instead of Ameer manually deciding 

which ping packages to send, the tool does so 

periodically on her behalf. In Example 2, the tool 

determines that it must send packages with certain 

legends to ―exercise‖ the video queue, and then 

determines that these packages are being dropped.  

SIPC detects and diagnoses errors by independently 

and fully investigating all progressing entries, 

firewall rules, and any package processing rules in 

the network. In SIPC, investigation packages are 

created algorithmically from the device 

configuration files and FIBs, with the least number 

of packages required for complete coverage. 

Investigation packages are fed into the network so 

that every rule is drilled directly from the data 

plane. Since SIPC treats links just like normal 

progressing rules, its full coverage guarantees 
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investigating of every link in the network. It can 

also be specialized to generate a least set of 

packages that merely investigation every link for 

network aliveness. At least in this basic form, we 

feel that SIPC or some similar technique is 

important to networks: Instead of reacting to 

letdowns, many network operators such as Internet2 

[14] proactively check the health of their network 

using pings between all pairs of sources. Though, 

Planet Lab [30] organizations can customize SIPC 

to meet their needs; for specimen, they can choose 

to merely check for network live ness or check 

every rule to ensure security policy. SIPC can be 

modified to check only for reachability or for 

performance as well. SIPC can adapt to constraints 

such as requiring investigation packages from only 

a few places in the network or using special routers 

to generate investigation packages from every port. 

SIPC can also be tuned to allocate more 

investigation packages to exercise more critical 

rules. For sample, a healthcare network may 

dedicate more investigation packages to Firewall 

rules to ensure HIPPA compliance. 

 

It is scandalously hard to fix networks. Every day, 

network engineers struggle with router 

misconfigurations, fiber cuts, defective interfaces, 

mislabeled cables, software viruses, sporadic links, 

and countless other reasons that cause networks to 

play up or fail wholly. Network engineers hunt 

down bugs using the most basic tools like SNMP, 

and track down root causes using a mixture of 

accrued wisdom and insight. Repairing networks is 

only becoming harder as networks are getting 

bigger (modern data centers may contain 12,000 

switches, a campus network may serve 70000 users, 

a 100-Gb/s long-haul link may carry 123000 flows) 

and are getting more complicated (with over 6200 

RFCs, router software is based on millions of  lines 

of source code, and network chips often contain 

billions  Gates). 

Example 1: Presume a router with a defective line 

card starting to drop packages silently. Ameer, who 

manages 120 routers, receives a coupon from 

numerous unfortunate users complaining about 

connectivity.  Ameer inspects each router to see if 

the configuration was changed recently and 

determines that the configuration was intact. Next, 

Ameer uses his awareness of the topology to 

triangulate the faulty device with ping and trace 

rout. Finally, he calls a associate to replace the line 

card. 

Example 2: Suppose that video traffic is mapped to 

a specific queue in a router, but packages are fell 

because the token bucket rate is too low. It is not at 

all clear how Ameer can track down such a 

performance fault using ping and trace rout.  

Repairing a network is difficult for three reasons. 

First, the progressing state is distributed across 

multiple routers and firewalls are defined by their 

progressing tables, filter rules, and other 

configuration parameters. Second, the progressing 

state is hard to observe because it typically needs 

manually logging into every box in the network. 

Third, there are many diverse programs, protocols, 

and humans updating the progressing state 
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concurrently. When Ameer uses ping and trace rout, 

he is spending a rudimentary lens to investigate the 

current advancing state for clues to track down the 

disaster.  

The procedure include: ―Security group X is 

isolated from security Group Y,‖ ―Use SIPC for 

routing,‖ and ―Video traffic should get at least 1 

Mb/s.‖ We can think of the controller compiling the 

policy (A) into device-specific configuration files 

(B), which in turn determine the progressing 

behavior of each package (C). To ensure the 

network behaves as designed, all three steps should 

remain stable at all times, i.e.,A = B = C . In 

addition, the topology, shown to the bottom right in 

the figure, should also satisfy a set of live ness 

properties. Minimally L requires that sufficient 

links and nodes are working; if the control plane 

postulates that a laptop can access a server, the 

desired outcome can fail if links fail. It can also 

specify performance guarantees that detect flaky 

links.  

 

In fact, we learned from a survey of 61 network 

operators that the two most mutual causes of 

network failure are hardware failures and software 

bugs, and that problems manifest themselves both 

as reachability failures and throughput / latency 

degradation. Our goal is to automatically detect 

these types of failures. The main contribution of this 

paper is what we call a (SIPC) framework that 

spontaneously creates a minimal set of packages to 

investigation the live ness of the underlying 

topology and the congruence between data plane 

state and configuration specifications. The tool can 

also recurrently make packages to investigation 

performance assertions such as package latency. In 

Example 1, instead of Ameer manually deciding 

which ping packages to send, the tool does so 

periodically on her behalf. In Example 2, the tool 

determines that it must send packages with certain 

legends to ―exercise‖ the video queue, and then 

determines that these packages are being dropped.  

SIPC detects and diagnoses errors by independently 

and fully investigating all progressing entries, 

firewall rules, and any package processing rules in 

the network. In SIPC, investigation packages are 

created algorithmically from the device 

configuration files and FIBs, with the least number 

of packages required for complete coverage. 

Investigation packages are fed into the network so 

that every rule is drilled directly from the data 

plane. Since SIPC treats links just like normal 

progressing rules, its full coverage guarantees 

investigating of every link in the network. It can 

also be specialized to generate a least set of 

packages that merely investigation every link for 

network aliveness. At least in this basic form, we 

feel that SIPC or some similar technique is 

important to networks: Instead of reacting to 

letdowns, many network operators such as Internet2 

[14] proactively check the health of their network 

using pings between all pairs of sources. Though, 

Planet Lab [30] organizations can customize SIPC 

to meet their needs; for specimen, they can choose 

to merely check for network live ness or check 

every rule to ensure security policy. SIPC can be 

modified to check only for reachability or for 

performance as well. SIPC can adapt to constraints 
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such as requiring investigation packages from only 

a few places in the network or using special routers 

to generate investigation packages from every port. 

SIPC can also be tuned to allocate more 

investigation packages to exercise more critical 

rules. For sample, a healthcare network may 

dedicate more investigation packages to Firewall 

rules to ensure HIPPA compliance.  

 

NETWORK MODEL 

SIPC uses the legend space framework—a 

symmetrical model of how packages are processed 

we described in [16] used in [31]). In legend space, 

protocol-specific meanings related with legends are 

ignored: A legend is viewed as a flat sequence of 

ones and zeros. A legend is a point and a flow is a 

region in the space, where is an upper bound on 

legend length. By using the legend space 

framework, we obtain a unified, vendor-

independent, and protocol- model of the network2 

that simplifies the package creation process 

significantly. 

A. Definitions 

Packages: A package is defined by a port and 

legend tuple, where the port denotes a package’s 

position in the network at any time instantly; each 

physical port in the network is assigned a unique 

number. 

Switches: A switch transfer function, T, models a 

network device, such as a switch or router. Each 

network device contains a set of progressing rules 

that determine how packages are processed. An 

arriving package is associated with exactly one rule 

by matching it against each rule in descending order 

of priority, and is dropped if no rule matches. 

Rules: A rule creates a list of one or more output 

packages, corresponding to the output port(s) to 

which the package is sent, and defines how package 

fields are modified. The rule perception mockups all 

real-world rules we know including IP progressing 

adapts port, checksum, and TTL, but not IP address. 

VLAN classification adds VLAN IDs to the legend 

and ACLs block a legend, or map to a queue. 

Basically, a rule describes how a region of legend 

space at the ingress the set of packages matching 

the rule is distorted into regions of legend space at 

the egress [16]. 

Rule Antiquity: At any point, each package has a 

rule antiquity: an ordered list of rules the package 

matched so far as it navigated the network. Rule 

histories are vital to SIPC, as they provide the basic 

raw material from which SIPC hypotheses 

investigations. 

Topology: The topology transfer function, T, 

models the network topology by specifying which 

pairs of ports are connected by links. Links are rules 

that forward packages from pk1 to pk2 without 

alteration. If no topology rules match an input port, 

the port is an edge port, and the package has 

touched its destination. 
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Lifecycle of a Package 

The life of a package can be viewed as applying the 

switch and topology transfer functions repeatedly.  

When a package pk1 arrives at a network port, the 

switch function that covers the input port is applied 

to pk1, creating a list of new packages. If the 

package reaches its destination, it is recorded. 

Otherwise, the topology function is used to invoke 

the switch function containing the new port. The 

process repeats until packages reach their 

destinations or dropped. 

SIPC SYSTEM 

Based on the network model, SIPC creates the 

nominal number of investigation packages so that 

every progressing rule in the network is trained and 

covered by at least one investigation package. When 

an error is detected, SIPC uses a fault localization 

algorithm to regulate the failing rules or links. The 

system first collects all the progressing state from 

the network. This usually involves reading the FIBs, 

ACLs, and config files, as well as gaining the 

topology. SIPC uses Legend Space Analysis [16] to 

compute reachability between all the investigation 

terminals. The result is then used by the 

investigation package selection algorithm to 

compute a nominal set of investigation packages 

that can investigation all rules. These packages will 

be sent occasionally by the investigation terminals. 

If an error is sensed, the fault localization algorithm 

is invoked to narrow down the cause of the error.  

 

 

 

Investigation Package creation 

Algorithm: We assume a set of investigation 

terminals in the network can send and receive 

investigation packages. Our goal is to create a set of 

investigation packages to exercise every rule in 

every switch function, so that any fault will be 

observed by at least one investigation package. This 

is analogous to software investigation suites that try 

to investigation every possible branch in a program. 

The wider goal can be limited to investigating every 
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link or every queue. When creating investigation 

packages, SIPC must respect two key checks: 

 1) Port: SIPC must only use investigation terminals 

that are available;  

2) Legend: SIPC must only use legends that each 

investigation terminal is permitted to send. For 

example, the network admin may only allow using a 

specific set of VLANs. Officially, we have the 

following problem.  

Problem 1 (Investigation Package Selection): For a 

network with the switch functions, T , and topology 

function, t , define the least set of investigation 

packages to work out all accessible rules, subject to 

the port and legend constraints. SIPC chooses 

investigation packages using an algorithm we call 

Investigation Package Selection (TPS). TPS first 

finds all equivalent classes between each pair of 

available ports. An equivalent class is a set of 

packages that works on the same combination of 

rules. It then samples each class to choose 

investigation packages, and finally compresses the 

resulting set of investigation packages to find the 

minimum covering set.  

EXECUTION 

We employed a prototype system to spontaneously 

parse router configurations and generate a set of 

investigation packages for the network. The code is 

publicly available [1]. 

 A. Investigation Package creator. The 

investigation package creator, written in Python, 

contains a Cisco IOS configuration parser and a 

Juniper Junos parser. The data plane info, including 

router configurations, FIBs, MAC learning tables, 

and network topologies, is collected and parsed 

through the command line interface (Cisco IOS) or 

XML files (Junos). The creator then uses the Hassel 

[13] legend space analysis library to construct 

switch and topology functions. All-pairs 

reachability is computed using the parallel-

processing module shipped with Python. Each 

process studies a subset of the investigation ports 

and finds all the accessible ports from each one. 

After reachability investigations are complete, 

results are collected, and the master process 

executes the Min- Set-Cover algorithm. 

Investigation packages and the set of investigation 

rules are stored in a SQLite database. 

B. Grid Observer 

The network grid observer accepts there are special 

investigation agents in the network grid that are able 

to send/receive investigation packages. The network 

grid observer reads the database and constructs 

investigation packages and coaches each agent to 

send the right packages. Presently, investigation 

agents separate investigation packages by IP Proto 

field and TCP/UDP port number, and IP option can 

also be used. If some of the investigations fail, the 

observer selects other investigation packages from 

reserved packages to pinpoint the problem. The 

procedure recurrences until the fault have been 

known. The observer uses JSON to communicate 

with the investigation agents, and uses SQLite’s 

string matching to lookup investigation packages 

efficiently. 

C. Alternate Implementations 

Our prototype was designed to be slightly 

aggressive, requiring no changes to the network 

except to add termini at the edge. In network grids 

requiring faster analysis, the following extensions 

are possible. 

Cooperative Routers: A new feature could be added 

to switches/routers, so that a central SIPC system 
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can teach a router to send/receive investigation 

packages. In fact, for manufacturing investigating 

determinations, it is likely that almost every 

commercial switch/router can already do this; we 

just need an open interface to control them. 

 

SDN-Based Investigation: In a software defined 

network (SDN) such as Open Flow [27], the 

controller could directly coach the switch to send 

investigation packages and to detect and forward 

established investigation packages to the control 

plane. For performance investigation, investigation 

packages need to be time-stamped at the routers.  

 

ASSESSMENT: 

A. Data Sets: AQ & T and Internet2 

We assessed our sample system on two sets of 

network configurations: the AQ & T backbone and 

the Internet2 backbone, representing a large size 

enterprise network and a nationwide backbone 

network, individually. 

AQ & T Backbone: With a population of over 

15500 employees, 2500 Consultant, and five/16 

IPv4 subnets, AQ & T represents a large enterprise 

network. There are 17 operational zone (OZ) Cisco 

routers connected via 10 Ethernet switches to two 

backbone Cisco routers that in turn connect AQ & T 

to the outside world. Overall, the network has more 

than 859000 progressing entries and 1500 ACL 

rules. Data plane arrangements are collected 

through command line interfaces. AQ & T has 

made the entire configuration rule set public [1]. 

Internet2: Internet2 is a nationwide backbone 

network with nine Juniper T1600 routers and 100-

Gb/s interfaces, supporting over 88000 institutions 

in US. There are about 125000 IPv4 progressing 

rules. All Internet2 configurations and FIBs of the 

core routers are publicly available [14], with the 

exception of ACL rules, which are removed for 

security concerns. Though IPv6 and MPLS entries 

are also accessible, we only use IPv4 rules in this 

paper. 

B. Investigation Package creation 

We ran SIPC on a quad-core Intel Core i7 CPU 3.2 

GHz and 16 GB memory using eight threads. For a 

given number of investigation terminals, we made 

the minimum set of investigation packages needed 

to investigate all the reachable rules in the AQ & T 

and Internet2 backbones. For example, the first 

column tells us that if we attach investigation 
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terminals to 10% of the ports, then all of the 

reachable AQ & T rules (22.2% of the total) can be 

investigated by sending 725 investigation packages. 

If every edge port can act as an investigation 

terminal, 100% of the AQ & T rules can be 

investigated by sending just 3,871 investigation 

packages. The Period row indicates how long it 

took SIPC to run; the worst case took about an hour, 

the majority of which was devoted to calculating 

all-pairs reachability. 

To put these results into viewpoint, each 

investigation for the AQ & T backbone requires 

sending about 997 packages per port in the worst 

case. If these packages were sent over a single 1-

Gb/s link, the entire network could be investigated 

in less than 1 ms, supposing each investigation 

package is 100 B and not as the propagation delay. 

Put another way, investigating the entire set of 

progressing rules 10 times every second would use 

less than 1% of the link bandwidth. Similarly, all 

the progressing rules in Internet2 can be 

investigated using 4677 investigation packages per 

port in the worst case. Even if the investigation 

packages were sent over 10-Gb/s links, all the 

progressing rules could be investigated in less than 

0.5 ms, or 10 times every second using less than 1% 

of the link bandwidth. 

We also found that 100% link coverage (instead of 

rule coverage) only needed 54 packages for AQ & 

T and 20 for Internet2. 

Rule Structure: The reason we need so few 

investigation packages is because of the structure of 

the rules and the routing policy. Most rules are part 

of an end-to-end route, and so multiple routers 

cover the same rule. Also, multiple devices contain 

the same ACL or QoS configuration as they are part 

of a network-wide policy. Thus, the number of 

discrete regions of legend space grows linearly, not 

exponentially, with the diameter of the network. We 

can validate this structure by clustering rules in AQ 

& T and Internet2 that match the same legend 

patterns. In both networks, 60%–70% of matching 

patterns appear in more than one router. We also 

discovered that this recurrence is correlated to the 

network topology. In the AQ & T backbone, which 

has a two-level hierarchy, similar patterns usually 

appear in two (52.4%) or four (19.3%) routers, 

which signifies the length of edge-to-Internet and 

edge-to-edge routes. In Internet2, 77.1%of all 

distinct rules are replicated nine times, which is the 

number of routers in the topology. 

C. Investigating in an Emulated Network 

To evaluate the network grid observer and 

investigation agents, we replicated the AQ & T 

backbone network in [20], a container-based 

network emulator. We used Open v Switch (OVS) 

[29] to emulate the routers, using the real port 

configuration info, and connected them according to 

the real topology. We then interpreted the 

progressing entries in the AQ & T backbone 

network grid into equivalent Open Flow [27] rules 

and connected them in the OVS switches with 

Beacon [4]. We used matched hosts to send and 

receive investigation packages created by SIPC. 

The part of network that is used for tests in this 

section. We now present diverse investigation 

scenarios and the corresponding results. 

 



  

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 09, September 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 122 

 

Limitations: As with all investigating policies, 

SIPC has limitations. 

1) Vibrant boxes: SIPC cannot model boxes whose 

internal state can be changed by investigation 

packages. For example, an NAT that vigorously 

assigns TCP ports to outgoing packages can 

complicate the online observer as the same 

investigation package can give different results. 

2) Nondeterministic boxes: Boxes can load balance 

packages based on a hash function of package 

fields, usually joint with a random seed; this is 

common in multipath routing such as ECMP. When 

the hash algorithm and parameters are unknown, 

SIPC cannot properly model such rules. But, if there 

are known package patterns that can repeat through 

all possible outputs, SIPC can create packages to 

traverse every output. 

3) Invisible rules: A failed rule can make a backup 

rule active, and as a result, no changes may be 

observed by the investigation packages. This can 

happen when, despite a failure, an investigation 

package is routed to the predictable destination by 

other rules. In addition, an error in a backup rule 

cannot be noticed in normal operation. Another 

example is when two drop rules appear in a row: 

The failure of one rule is untraceable since the 

effect will be disguised by the other rule. 

4) Momentary network states: SIPC cannot 

uncover errors whose lifetime is shorter than the 

time between each round of investigations. For 

example, cramming may disappear before an 

available bandwidth probing investigation 

concludes. Finer-grained investigation agents are 

needed to capture abnormalities of short duration. 

5) Specimen: SIPC uses specimen when creating 

investigation packages. As a result, SIPC can miss 

match faults since the error is not uniform across all 

matching legends. In the worst case (when only one 

legend is in error), exhaustive investigation is 

required. 

CONCLUSION 

Investigating live ness of a network is a important 

problem for ISPs and large data center operators. 

Sending probes between every pair of edge ports is 

neither comprehensive nor scalable [30]. It serves to 

find a minimal set of end-to-end packages that 

traverse each link. Though, doing this requires a 

way of abstracting across device specific 

configuration files like legend space, creating 

legends and the links they reach such as all-pairs 

reachability, and finally defining a minimum set of 

investigation packages (Min-Set-Cover). The 

fundamental problem of spontaneously creating 

investigation packages for efficient live ness 

investigation requires techniques akin to SIPC.  

SIPC, though, goes much further than live 

ness investigation with the same framework. SIPC 

can investigate for reachability policy by 

investigating all rules including drop rules and 
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performance health by associating performance 

measures such as latency and loss with investigation 

packages. Our application also augments 

investigations with a simple fault localization 

scheme also constructed using the legend space 

framework. As in software investigation, the formal 

model helps exploit investigation reporting while 

reducing investigation packages. Our results show 

that all progressing rules in AQ & T backbone or 

Internet2 can be trained by a astonishingly small 

number of investigation packages.  
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