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Abstract— 

The user’s perception that the confidentiality of their data is endangered by internal and external attacks 

is limiting the diffusion of public cloud database services. In this context, the use of cryptography is 

complicated by high computational costs and restrictions on supported SQL operations over encrypted 

data. In this paper, we propose an architecture that takes advantage of adaptive encryption mechanisms 

to guarantee at runtime the best level of data confidentiality for any type of SQL operation. We 

demonstrate through a large set of experiments that these encryption schemes represent a feasible 

solution for achieving data confidentiality in public cloud databases, even from a performance point of 

view. 
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I. INTRODUCTION 

The Database as a Service (DBaaS) [1] is a novel 

paradigm through which cloud providers offer the 

possibility of storing data in remote databases. 

The main concerns that are preventing the 

diffusion of DBaaS are related to data security 

and confidentiality issues [2]. Hence, the main 

alternative seems the use of cryptography, which 

is an already adopted solution for files stored in 

the cloud, but that represents an open issue for 

database operations over encrypted data. Fully 

homomorphic encryption theoretically supports 

any kind of computation over encrypted data [3], 

but it is computationally unfeasible, because it 

increases the computational cost of any operation 

by many orders of magnitude. Other schemes 

which allow the execution of computations over 

encrypted data limit the type of allowed 

operations (e.g., order comparison in [4], sums in 

[5], search in [6]). Although these methods were 

successfully deployed in some DBaaS contexts 

[7], they require the anticipatory choice of which 

encryption scheme can be used for each database 

column and for a specific set of SQL commands. 

In this paper, we propose a cloud database 

architecture based on adaptive encryption 

techniques [8] that encapsulate data through 

different layers of encryption. This adaptive 

encryption architecture is attractive because it 

does not require to define at design time which 

operations are allowed on each column, and 

because it can guarantee at runtime the maximum 

level of data confidentiality for different SQL 

operations. Unfortunately, this scheme is affected 

by high computationalcosts. However, through a 

prototype implementation of an encrypted cloud 

database, we show that adaptive encryption can be 

well applied to a cloud database paradigm, 

because most performance overheads are masked 

by network latencies. This study represents the 

first performance evaluation of adaptive 

encryption methods applied to cloud database 

services. Other experiments [8] assumed a LAN 

scenario and no network latency. The paper is 

structured as follows. Section II describes the 

proposed adaptive encryption scheme for cloud 
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database architectures. Section III presents the 

results of the experimental evaluations for 

different network scenarios, workload models and 

number of clients. Section IV outlines main 

conclusions and possible directions for 

improvement. 

II. ARCHITECTURE 

We describe the architecture we propose to 

guarantee data confidentiality through adaptive 

encryption methods in cloud database 

environments. 

A. Architecture model 

We refer to the distributed architecture 

represented where we assume that independent 

and distributed clients (Client 1 to N) access a 

public cloud database service [9]. All information 

(i.e., data and metadata) is stored encrypted in the 

cloud database. The proposed architecture 

manages five types of information. 

• plain data: the informative content provided by 

the client users. 

• encrypted data: the encrypted data that are stored 

in the cloud database. 

• plain metadata: all the information required by 

the clients to manage encrypted data on the cloud 

database. 

• encrypted metadata: the encrypted metadata that 

are stored in the cloud database. 

• master key: the encryption key of the encrypted 

metadata. We assume that it is distributed to all 

legitimate clients. A legitimate client can issue 

SQL operations (SELECT, INSERT, UPDATE, 

DELETE) to the encrypted cloud database by 

executing the following steps. It retrieves 

encrypted metadata, and obtains plain metadata by 

decrypting them through the master key. The 

metadata are cached locally in a volatile 

representation that is used for improving 

performance. Then, the client can issue SQL 

operations over the encrypted data (i.e., the real 

informative content), because it is able to encrypt 

the queries, their parameters, and decrypt their 

results by using the local plain metadata. This 

architecture guarantees confidentiality of data in a 

security model in which the WAN network is 

untrusted (malicious),while client users are 

trusted, that is, they do not reveal any 

informationabout plain data, plain metadata, 

andthe master key. The cloud provider 

administrator is semi- honest [10] (also called 

honest-but-curious), because he could try 

accessing information stored in the database, but 

he does not modify internal data and SQL 

operations results.  

B. Adaptive encryption techniques 

We consider SQL-aware encryption algorithms 

that guarantee data confidentiality and allow the 

cloud database server to carry out a large set of 

SQL operations over encrypted data.Each 

algorithm supports a specific subset of SQL 

operators. This paper refers to the following 

encryption schemes. Deterministic (Det): it 

deterministically encrypts data, so that the 

encryption of an input value always guarantees 

the same output value. It supports the equality 

operator. Order Preserving Encryption (OPE) [4]: 

this encryption scheme preserves in the encrypted 

values the numerical order of the original 

unencrypted data. It supports the following SQL 

operators: equal, unequal, less, less or equal, 

greater, greater or equal. Sum: this encryption 

algorithm is homomorphic with respect to the sum 

operation: summing unencrypted data is 

equivalent to multiplying the correspondent 

encrypted values. It supports the sum operator 

between integer values. Search: it supports 

equality check on full strings (i.e., the LIKE 

operator) that do not include fragments of words. 

Random (Rand): it is a semantic secure encryption 

(INDCPA) that does not reveal any information of 
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the original plain value. It does not support any 

SQL operator. Plain: a special kind of 

“encryption” that leaves values unencrypted. It 

supports all SQL operators, and it is included to 

store publicly available data, or some anonymous 

values that do not require any data confidentiality. 

If each column data was encrypted through only 

one of these algorithms, the database 

administrator would have to decide at the design 

time which operations must be supported on each 

database column. This assumption is impractical 

in most cases. Hence, we need to define adaptive 

schemes that allow our architecture to support at 

runtime the SQL operations issued by the clients, 

while preserving a high level of confidentiality on 

the columns that are not involved in any 

operation. For this reason, we organize the 

encryption schemes into structures called Onions. 

Each Onion is composed by different encryption 

algorithms, called (Encryption) Layers, one above 

the other. Outer Layers guarantee higher data 

confidentiality and lower number of allowed 

operations, and each Onion supports a specific set 

of operators. When additional SQL operations are 

to be executed on a column, the outer Layers are 

dynamically decrypted. In this paper, we consider 

and design the following Onions, which are also 

represented. it manages the equality operator. 

Onion-Ord: it manages the following operators: 

less, less or equal, greater, greater or equal, equal, 

unequal. Onion-Sum: it manages the sum 

operator. Onion-Search: it manages the string 

equality operator. Onion-Single-Layer: a special 

type of Onion that support only a single 

Encryption Layer. It is recommended for columns 

in which operations to be supported are known at 

design time. In our architecture, each plain 

database column is encrypted into one or more 

encrypted columns, each one corresponding to a 

different Onion, depending on the SQL operations 

that must be supported on that column. The most 

external Encryption Layer of an Onion is called 

Actual Layer, which by default corresponds to its 

strongest encryption algorithm. Each data type is 

characterized by a default set of supported 

Onions, depending on the operations supported by 

the data type and the compatibility between the 

encryption algorithms and the data type itself. 

Each database column can be defined through 

three parameters: column name, data type, and 

confidentiality parameters. The confidentiality 

parameters of a column define the set of Onions to 

be associated with it, and their starting Actual 

Layers. The Onions associated to a column must 

be compatible with the column data type. For 

example, integer columns can be associated to 

Onion- Eq, Onion-Ord and Onion-Sum, because 

integer values support equality checks, order 

comparisons and sums, but they cannot be 

associated to Onion-Search, which manages the 

string equality operator. At the time of a table 

creation, the database administrator (DBA) has 

the possibility to specify only a column’s name 

and data type, as in normal relational Data bases, 

because our architecture can automatically choose 

the default set of Onions with regard to the 

column data type. However, the DBA can also 

manually specify the confidentiality parameters of 

a column, when the SQL operations to be 

supported on the column are known at design time 

to adapt the level of data confidentiality to the 

current SQL workload by decrypting an encrypted 

column’s outer Layer(s). In such a way, it 

supports at runtime any SQL operation issued by 

a user. We refer to the Onion adaptation process 

as the automatic column re-encryption. The 

proposed architecture is designed so that the 

column re-encryption is executed on the cloud 

database through User Defined Functions (i.e., 

stored procedures) that, when required, are 



  

 
International Journal of Research (IJR) 

e-ISSN: 2348-6848,  p- ISSN: 2348-795X Volume 2, Issue 09, September 2015 

Available at http://internationaljournalofresearch.org 

 

Available online:http://internationaljournalofresearch.org/ P a g e  | 253 

automatically invoked by the clients. Only trusted 

clients that know decryption keys can invoke 

column re-encryption. For security reasons, they 

cannot request any column re-encryption that 

would expose the Plain Layer of an Onion. Hence, 

all information stored in the cloud database is 

always encrypted, and the cloud provider does not 

have access to plain data. In the re-encryption 

invocation phase, the client examines the plaintext 

query issued by the user (which can also be an 

external application) and evaluates whether the 

involved SQL operators (e.g., equality checks and 

order comparisons) are supported with respect to 

the Actual Layers of the Onions available on the 

involved columns. If it is necessary to adjust the 

Actual Layer of one or more Onions in order to 

support the operators, the client issues a request 

for re-encryption to the cloud database through a 

stored procedure invocation. Only trusted clients 

know the decryption key that is required by the 

stored procedure to decrypt the outer Layer of the 

Onion. The invocation phase is repeated for each 

column that requires re-encryption. In the re-

encryption execution phase, the cloud database 

engine executes a properly defined stored 

procedure that diminishes the Actual Layer of an 

Onion by decrypting its row values one by one. 

After the stored procedure execution, the cloud 

database sends the information about its outcome 

(success or failure) to the client that issued the 

request for re encryption. We observe that any 

new execution of the same SQL operator on the 

column does not require to invoke the re-

encryption process again, because the cloud 

database does  not encrypt the Onion back to the 

upper Layer. 

C. Discussion 

The proposed data confidentiality architecture is 

inspired by the solutions presented in [8] and [7]. 

Nevertheless, this is the first that allows to 

leverage adaptive encryption mechanisms while 

avoiding the use of any intermediate (trusted) 

proxy server to manage encryption details. There 

are several benefits characterizing the proposed 

architecture. It guarantees confidentiality of 

information stored in the cloud database, while 

allowing the execution of SQL operations over 

encrypted data. It simplifies database 

configuration, because it does not require to 

manually define column. It guarantees best level 

of data confidentiality for any SQL workload, 

thanks to the automatic column re-encryption 

mechanism. It does not require any intermediate 

(trusted) proxy to manage encryption details. We 

observe that adaptive encryption is also affected 

by two major drawbacks. The first problem is that 

each plain column must be encrypted into one or 

more encrypted columns (Onions), thus increasing 

the overall database size up to one order of 

magnitude. This cost may be considered 

acceptable, or it can be reduced by the database 

administrator through a suitable tuning of the 

confidentiality parameters. The second problem is 

the performance overhead characterizing adaptive 

encryption,that has to encrypt all parameters and 

decrypt the results of every SQL operation 

through all the Encryption Layers of each 

involved Onion. These costs prevent the use of 

adaptive encryption methods on most real 

contexts. However, in Section III we show that 

this overhead becomes less significant when an 

encrypted database is used in the cloud, because 

in these scenarios realistic network latencies tend 

to mask the CPU time of expensive operations. 

III. PERFORMANCE EVALUATION 

A. Experimental Testbed 

We design a suite of performance tests in order to 

evaluate the impact of adaptive encryption 

methods on response times and throughput for 

different network latencies (from 0 to 120 ms) and 
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number of clients (from 5 to 20). The experiments 

are carried out in Emulab [11], which provides us 

with a set of machines in a controlled LAN 

environment. The TPC-C standard benchmark is 

used as the workload model for the database 

services. In Emulab, we design and implement the 

testbed as a simulated network that connects 20 

clients with one server. Each client machine runs 

the Python client prototype of our architecture on 

a pc3000 machine having single 3GHz processor, 

2GB of RAM and two 10,000 RPM 146GB SCSI 

disks. The server machine hosts a database server 

implemented in PostgreSQL 9.1 on a d710 

machine having a quad-core Xeon 2.4 GHz 

processor, 12GB of RAM and a 7,200 RPM 

500GB SATA disk. Each machine runs a Fedora 

15 image. The current version of the prototype 

supports the main SQL operations (SELECT, 

DELETE, INSERT and UPDATE) and the 

WHERE clause expressions. 

IV. CONCLUSION AND FUTURE WORK 

We proposed an architecture that supports 

adaptive data confidentiality in cloud database 

environments without requiring any intermediate 

trusted proxy. Adaptive encryption mechanisms 

have two main benefits: they guarantee at runtime 

the maximum level of data confidentiality for any 

SQL workload, and they simplify database 

configuration at design time. However, they are 

affected by high computational costs with respect 

to non adaptive encryption schemes. This paper 

demonstrated that applying adaptive encryption 

methods to cloud database services is a suitable 

solution, because network latency masks the 

overhead caused by adaptive encryption for most 

SQL operations. If we consider the overall set of 

queries belonging to the TPC-C standard 

benchmark, the overhead becomes negligible for 

network latencies that are typical of most intra-

continental distances, and lower than those of 

inter-continental distances that often characterize 

cloud services. Our results also show that the 

overhead of some SQL operations requiring more 

encryption steps and more parameters are not 

masked by Internet latencies. If the workload is 

characterized by many similar operations, the 

present alternative is to accept this cost when data 

confidentiality is more important than 

performance. As a future solution, we are also 

studying encryption parallelization solutions that 

can leverage multithreading over different 

processor cores. 
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