

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 250

Accessing Confidential Data in Public Clouds

1Namala Swathi& 2Veerendra
India

Abstract—

The user’s perception that the confidentiality of their data is endangered by internal and external attacks

is limiting the diffusion of public cloud database services. In this context, the use of cryptography is

complicated by high computational costs and restrictions on supported SQL operations over encrypted

data. In this paper, we propose an architecture that takes advantage of adaptive encryption mechanisms

to guarantee at runtime the best level of data confidentiality for any type of SQL operation. We

demonstrate through a large set of experiments that these encryption schemes represent a feasible

solution for achieving data confidentiality in public cloud databases, even from a performance point of

view.

Keywords-Cloud; Database; Confidentiality; Adaptivity; Encryption

I. INTRODUCTION

The Database as a Service (DBaaS) [1] is a novel

paradigm through which cloud providers offer the

possibility of storing data in remote databases.

The main concerns that are preventing the

diffusion of DBaaS are related to data security

and confidentiality issues [2]. Hence, the main

alternative seems the use of cryptography, which

is an already adopted solution for files stored in

the cloud, but that represents an open issue for

database operations over encrypted data. Fully

homomorphic encryption theoretically supports

any kind of computation over encrypted data [3],

but it is computationally unfeasible, because it

increases the computational cost of any operation

by many orders of magnitude. Other schemes

which allow the execution of computations over

encrypted data limit the type of allowed

operations (e.g., order comparison in [4], sums in

[5], search in [6]). Although these methods were

successfully deployed in some DBaaS contexts

[7], they require the anticipatory choice of which

encryption scheme can be used for each database

column and for a specific set of SQL commands.

In this paper, we propose a cloud database

architecture based on adaptive encryption

techniques [8] that encapsulate data through

different layers of encryption. This adaptive

encryption architecture is attractive because it

does not require to define at design time which

operations are allowed on each column, and

because it can guarantee at runtime the maximum

level of data confidentiality for different SQL

operations. Unfortunately, this scheme is affected

by high computationalcosts. However, through a

prototype implementation of an encrypted cloud

database, we show that adaptive encryption can be

well applied to a cloud database paradigm,

because most performance overheads are masked

by network latencies. This study represents the

first performance evaluation of adaptive

encryption methods applied to cloud database

services. Other experiments [8] assumed a LAN

scenario and no network latency. The paper is

structured as follows. Section II describes the

proposed adaptive encryption scheme for cloud

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 251

database architectures. Section III presents the

results of the experimental evaluations for

different network scenarios, workload models and

number of clients. Section IV outlines main

conclusions and possible directions for

improvement.

II. ARCHITECTURE

We describe the architecture we propose to

guarantee data confidentiality through adaptive

encryption methods in cloud database

environments.

A. Architecture model

We refer to the distributed architecture

represented where we assume that independent

and distributed clients (Client 1 to N) access a

public cloud database service [9]. All information

(i.e., data and metadata) is stored encrypted in the

cloud database. The proposed architecture

manages five types of information.

• plain data: the informative content provided by

the client users.

• encrypted data: the encrypted data that are stored

in the cloud database.

• plain metadata: all the information required by

the clients to manage encrypted data on the cloud

database.

• encrypted metadata: the encrypted metadata that

are stored in the cloud database.

• master key: the encryption key of the encrypted

metadata. We assume that it is distributed to all

legitimate clients. A legitimate client can issue

SQL operations (SELECT, INSERT, UPDATE,

DELETE) to the encrypted cloud database by

executing the following steps. It retrieves

encrypted metadata, and obtains plain metadata by

decrypting them through the master key. The

metadata are cached locally in a volatile

representation that is used for improving

performance. Then, the client can issue SQL

operations over the encrypted data (i.e., the real

informative content), because it is able to encrypt

the queries, their parameters, and decrypt their

results by using the local plain metadata. This

architecture guarantees confidentiality of data in a

security model in which the WAN network is

untrusted (malicious),while client users are

trusted, that is, they do not reveal any

informationabout plain data, plain metadata,

andthe master key. The cloud provider

administrator is semi- honest [10] (also called

honest-but-curious), because he could try

accessing information stored in the database, but

he does not modify internal data and SQL

operations results.

B. Adaptive encryption techniques

We consider SQL-aware encryption algorithms

that guarantee data confidentiality and allow the

cloud database server to carry out a large set of

SQL operations over encrypted data.Each

algorithm supports a specific subset of SQL

operators. This paper refers to the following

encryption schemes. Deterministic (Det): it

deterministically encrypts data, so that the

encryption of an input value always guarantees

the same output value. It supports the equality

operator. Order Preserving Encryption (OPE) [4]:

this encryption scheme preserves in the encrypted

values the numerical order of the original

unencrypted data. It supports the following SQL

operators: equal, unequal, less, less or equal,

greater, greater or equal. Sum: this encryption

algorithm is homomorphic with respect to the sum

operation: summing unencrypted data is

equivalent to multiplying the correspondent

encrypted values. It supports the sum operator

between integer values. Search: it supports

equality check on full strings (i.e., the LIKE

operator) that do not include fragments of words.

Random (Rand): it is a semantic secure encryption

(INDCPA) that does not reveal any information of

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 252

the original plain value. It does not support any

SQL operator. Plain: a special kind of

“encryption” that leaves values unencrypted. It

supports all SQL operators, and it is included to

store publicly available data, or some anonymous

values that do not require any data confidentiality.

If each column data was encrypted through only

one of these algorithms, the database

administrator would have to decide at the design

time which operations must be supported on each

database column. This assumption is impractical

in most cases. Hence, we need to define adaptive

schemes that allow our architecture to support at

runtime the SQL operations issued by the clients,

while preserving a high level of confidentiality on

the columns that are not involved in any

operation. For this reason, we organize the

encryption schemes into structures called Onions.

Each Onion is composed by different encryption

algorithms, called (Encryption) Layers, one above

the other. Outer Layers guarantee higher data

confidentiality and lower number of allowed

operations, and each Onion supports a specific set

of operators. When additional SQL operations are

to be executed on a column, the outer Layers are

dynamically decrypted. In this paper, we consider

and design the following Onions, which are also

represented. it manages the equality operator.

Onion-Ord: it manages the following operators:

less, less or equal, greater, greater or equal, equal,

unequal. Onion-Sum: it manages the sum

operator. Onion-Search: it manages the string

equality operator. Onion-Single-Layer: a special

type of Onion that support only a single

Encryption Layer. It is recommended for columns

in which operations to be supported are known at

design time. In our architecture, each plain

database column is encrypted into one or more

encrypted columns, each one corresponding to a

different Onion, depending on the SQL operations

that must be supported on that column. The most

external Encryption Layer of an Onion is called

Actual Layer, which by default corresponds to its

strongest encryption algorithm. Each data type is

characterized by a default set of supported

Onions, depending on the operations supported by

the data type and the compatibility between the

encryption algorithms and the data type itself.

Each database column can be defined through

three parameters: column name, data type, and

confidentiality parameters. The confidentiality

parameters of a column define the set of Onions to

be associated with it, and their starting Actual

Layers. The Onions associated to a column must

be compatible with the column data type. For

example, integer columns can be associated to

Onion- Eq, Onion-Ord and Onion-Sum, because

integer values support equality checks, order

comparisons and sums, but they cannot be

associated to Onion-Search, which manages the

string equality operator. At the time of a table

creation, the database administrator (DBA) has

the possibility to specify only a column’s name

and data type, as in normal relational Data bases,

because our architecture can automatically choose

the default set of Onions with regard to the

column data type. However, the DBA can also

manually specify the confidentiality parameters of

a column, when the SQL operations to be

supported on the column are known at design time

to adapt the level of data confidentiality to the

current SQL workload by decrypting an encrypted

column’s outer Layer(s). In such a way, it

supports at runtime any SQL operation issued by

a user. We refer to the Onion adaptation process

as the automatic column re-encryption. The

proposed architecture is designed so that the

column re-encryption is executed on the cloud

database through User Defined Functions (i.e.,

stored procedures) that, when required, are

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 253

automatically invoked by the clients. Only trusted

clients that know decryption keys can invoke

column re-encryption. For security reasons, they

cannot request any column re-encryption that

would expose the Plain Layer of an Onion. Hence,

all information stored in the cloud database is

always encrypted, and the cloud provider does not

have access to plain data. In the re-encryption

invocation phase, the client examines the plaintext

query issued by the user (which can also be an

external application) and evaluates whether the

involved SQL operators (e.g., equality checks and

order comparisons) are supported with respect to

the Actual Layers of the Onions available on the

involved columns. If it is necessary to adjust the

Actual Layer of one or more Onions in order to

support the operators, the client issues a request

for re-encryption to the cloud database through a

stored procedure invocation. Only trusted clients

know the decryption key that is required by the

stored procedure to decrypt the outer Layer of the

Onion. The invocation phase is repeated for each

column that requires re-encryption. In the re-

encryption execution phase, the cloud database

engine executes a properly defined stored

procedure that diminishes the Actual Layer of an

Onion by decrypting its row values one by one.

After the stored procedure execution, the cloud

database sends the information about its outcome

(success or failure) to the client that issued the

request for re encryption. We observe that any

new execution of the same SQL operator on the

column does not require to invoke the re-

encryption process again, because the cloud

database does not encrypt the Onion back to the

upper Layer.

C. Discussion

The proposed data confidentiality architecture is

inspired by the solutions presented in [8] and [7].

Nevertheless, this is the first that allows to

leverage adaptive encryption mechanisms while

avoiding the use of any intermediate (trusted)

proxy server to manage encryption details. There

are several benefits characterizing the proposed

architecture. It guarantees confidentiality of

information stored in the cloud database, while

allowing the execution of SQL operations over

encrypted data. It simplifies database

configuration, because it does not require to

manually define column. It guarantees best level

of data confidentiality for any SQL workload,

thanks to the automatic column re-encryption

mechanism. It does not require any intermediate

(trusted) proxy to manage encryption details. We

observe that adaptive encryption is also affected

by two major drawbacks. The first problem is that

each plain column must be encrypted into one or

more encrypted columns (Onions), thus increasing

the overall database size up to one order of

magnitude. This cost may be considered

acceptable, or it can be reduced by the database

administrator through a suitable tuning of the

confidentiality parameters. The second problem is

the performance overhead characterizing adaptive

encryption,that has to encrypt all parameters and

decrypt the results of every SQL operation

through all the Encryption Layers of each

involved Onion. These costs prevent the use of

adaptive encryption methods on most real

contexts. However, in Section III we show that

this overhead becomes less significant when an

encrypted database is used in the cloud, because

in these scenarios realistic network latencies tend

to mask the CPU time of expensive operations.

III. PERFORMANCE EVALUATION

A. Experimental Testbed

We design a suite of performance tests in order to

evaluate the impact of adaptive encryption

methods on response times and throughput for

different network latencies (from 0 to 120 ms) and

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 254

number of clients (from 5 to 20). The experiments

are carried out in Emulab [11], which provides us

with a set of machines in a controlled LAN

environment. The TPC-C standard benchmark is

used as the workload model for the database

services. In Emulab, we design and implement the

testbed as a simulated network that connects 20

clients with one server. Each client machine runs

the Python client prototype of our architecture on

a pc3000 machine having single 3GHz processor,

2GB of RAM and two 10,000 RPM 146GB SCSI

disks. The server machine hosts a database server

implemented in PostgreSQL 9.1 on a d710

machine having a quad-core Xeon 2.4 GHz

processor, 12GB of RAM and a 7,200 RPM

500GB SATA disk. Each machine runs a Fedora

15 image. The current version of the prototype

supports the main SQL operations (SELECT,

DELETE, INSERT and UPDATE) and the

WHERE clause expressions.

IV. CONCLUSION AND FUTURE WORK

We proposed an architecture that supports

adaptive data confidentiality in cloud database

environments without requiring any intermediate

trusted proxy. Adaptive encryption mechanisms

have two main benefits: they guarantee at runtime

the maximum level of data confidentiality for any

SQL workload, and they simplify database

configuration at design time. However, they are

affected by high computational costs with respect

to non adaptive encryption schemes. This paper

demonstrated that applying adaptive encryption

methods to cloud database services is a suitable

solution, because network latency masks the

overhead caused by adaptive encryption for most

SQL operations. If we consider the overall set of

queries belonging to the TPC-C standard

benchmark, the overhead becomes negligible for

network latencies that are typical of most intra-

continental distances, and lower than those of

inter-continental distances that often characterize

cloud services. Our results also show that the

overhead of some SQL operations requiring more

encryption steps and more parameters are not

masked by Internet latencies. If the workload is

characterized by many similar operations, the

present alternative is to accept this cost when data

confidentiality is more important than

performance. As a future solution, we are also

studying encryption parallelization solutions that

can leverage multithreading over different

processor cores.

REFERENCES

[1] H. Hacig¨um¨us¸, B. Iyer, and S. Mehrotra,

“Providing database as a service,” in Proc. of the

18th IEEE International Conference on Data

Engineering, February 2002, pp. 29–38.

[2] T. Mather, S. Kumaraswamy, and S. Latif,

“Cloud security and privacy: an enterprise

perspective on risks and compliance”. O’Reilly

Media, Incorporated, 2009.

[3] C. Gentry, “Fully homomorphic encryption

using ideal lattices,” in Proc. of the 41st annual

ACM symposium on Theory of computing, May

2009, pp. 169–178.

[4] A. Boldyreva, N. Chenette, and A. O’Neill,

“Order-preserving encryption revisited: Improved

security analysis and alternative solutions,” in

Proc. of the Advances in Cryptology – CRYPTO

2011. Springer, August 2011, pp. 578–595.

[5] P. Paillier, “Public-key cryptosystems based

on composite degree residuosityclasses,” in Proc.

of the Advances in Cryptology –

EUROCRYPT99. Springer, May 1999, pp. 223–

238.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 255

[6] D. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in

Proc. of the IEEE Symposium on Security and

Privacy, May 2000, pp. 44–55.

[7] L. Ferretti, M. Colajanni, and M. Marchetti,

“Distributed, concurrent, and independent access

to encrypted cloud databases,” IEEE Transactions

on Parallel and Distributed Systems, vol. 99,

no.PrePrints, 2013.

[8] R. A. Popa, C. M. S. Redfield, N. Zeldovich,

and H. Balakrishnan, “CryptDB: protecting

confidentiality with encrypted query processing,”

in Proc. of the 23rd ACM Symposium on

Operating Systems Principles, October 2011, pp.

85–100.

[9] L. Ferretti, M. Colajanni, and M. Marchetti,

“Supporting security and consistency for cloud

database,” in Proc. of the 4th International

Symposium on Cyberspace Safety and Security.

Springer, December 2012, pp. 179–193.

