

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 294

Search-as-You-Type by Using SQL in Bulk Databases

D.Revathi1& A. Malla Reddy2

1
PG Scholar, Dept of CSE, Sri Indu Institute of Engineering & Technology, Sheriguda, Ibrahimpatnam,

Telangana,501510

2
Professor & HOD , Dept of CSE, Sri Indu Institute of Engineering & Technology, Sheriguda,

Ibrahimpatnam, Telangana,501510

ABSTRACT:
A search-as-you-type system computes answers on-the-fly as a user types in a keyword query character

by character. We study how to support search-as-you-type on data residing in a relational DBMS. We

focus on how to support this type of search using the native database language, SQL. A main challenge is

how to leverage existing database functionalities to meet the high performance requirement to achieve an

interactive speed. We study how to use auxiliary indexes stored as tables to increase search performance.

We present solutions for both single-keyword queries and multi keyword queries, and develop novel

techniques for fuzzy search using SQL by allowing mismatches between query keywords and answers. We

present techniques to answer first-N queries and discuss how to support updates efficiently. Experiments

on large, real data sets show that our techniques enable DBMS systems on a commodity computer to

support search-as-you-type on tables with millions of records.

Index Terms—Search-as-you-type; databases; SQL; fuzzy search

INTRODUCTION: MANY information systems

nowadays improve user search experiences by

providing instant feedback as users formulate

search queries. Most search engines and online

search forms support auto completion, which

shows suggested queries or even answers “on the

fly” as a user types in a keyword query character

by character. For instance, consider the Web

search interface at Netflix,1 which allows a user

to search for movie information. If a user types in

a partial query “mad,” the system shows movies

with a title matching this keyword as a prefix,

such as “Madagascar” and “Mad Men: Season 1.”

The instant feedback helps the user not only in

formulating the query, but also in understanding

the underlying data. This type of search is

generally called search-as-you-type or type-ahead

search. Since many search systems store their

information in a backend relational DBMS, a

question arises naturally: how to support search-

as-you-type on the data residing in a DBMS?

Some databases such as Oracle and SQL server

already support prefix search, and we could use

this feature to do search-as-you-type. However,

not all databases provide this feature. For this

reason, we study new methods that can be used in

all databases. One approach is to develop a

separate application layer on the database to

construct indexes, and implement algorithms for

answering queries. While this approach has the

advantage of achieving a high performance, its

main drawback is duplicating data and indexes,

resulting in additional hardware costs. Another

approach is to use database extenders, such as

DB2 Extenders, Informix Data Blades, Microsoft

SQL Server Common Language Runtime (CLR)

integration, and Oracle Cartridges, which allow

developers to implement new functionalities to a

DBMS. This approach is not feasible for

databases that do not provide such an extender

interface, such as MySQL. Since it needs to

utilize proprietary interfaces provided by database

vendors, a solution for one database may not be

portable to others. In addition, an extender-based

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 295

solution, especially those implemented in C/C++,

could cause serious reliability and security

problems to database engines. In this paper we

study how to support search-as-you-type on

DBMS systems using the native query language

(SQL). In other words, we want to use SQL to

find answers to a search query as a user types in

keywords character by character. Our goal is to

utilize the built-in query engine of the database

system as much as possible. In this way, we can

reduce the programming efforts to support search-

as-you-type. In addition, the solution developed

on one database using standard SQL techniques is

portable to other databases which support the

same standard. Similar observation are also made

by Gravano et al. and Jestes et al. which use SQL

to support similarity join in databases.

A main question when adopting this attractive

idea is: Is it feasible and scalable? In particular,

can SQL meet the high performance requirement

to implement an interactive search interface?

Studies have shown that such an interface requires

each query be answered within 100 milliseconds

[38]. DBMS systems are not specially designed

for keyword queries, making it more challenging

to support search-as-you-type. As we will see

later in this paper, some important functionalities

to support search-as-you-type require join

operations, which could be rather expensive to

execute by the query engine.

PRELIMINARIES: We first formulate the

problem of search-as-you-type in DBMS and then

discuss different ways to support search-as-you-

type.

Problem Formulation: Let T be a relational

table with attributes A1;A2; . . .;A„. Let R ¼ fr1;

r2; . . . ; rng be the collection of records in T, and

ri½Aj_ denote the content of record ri in attribute

Aj. Let W be the set of tokenized keywords in R.

Search-as-You-Type for Single-keyword

Queries

Exact Search: As a user types in a single partial

(prefix) keyword w character by character, search-

as-you-type on the- fly finds the records that

contain keywords with a prefix w.We call this

search paradigm prefix search. Without loss of

generality, each tokenized keyword in the data set

and queries is assumed to use lower case

characters. For example, consider the data in

Table 1, A1 ¼ title, A2 ¼ authors, A3 ¼ booktitle,

and A4 ¼ year. R ¼ fr1; . . . ; r10g. r3[booktitle]

¼ „„sigmod‟‟.

EXACT SEARCH FOR SINGLE

KEYWORD: This section proposes two types of

methods to use SQL to support search-as-you-

type for single-keyword queries. In , we discuss

no-index methods. We build auxiliary tables as

index structures to answer a query.

No-Index Methods: A straightforward way to

support search-as-you-type is to issue an SQL

query that scans each record and verifies whether

the record is an answer to the query. There are

two ways to do the checking: 1) Calling User-

Defined Functions (UDFs). We can add functions

into databases to verify whether a record contains

the query keyword; and 2) Using the LIKE

predicate. Databases provide a LIKE predicate to

allow users to perform string matching. We can

use the LIKE predicate to check whether a record

contains the query keyword. This method may

introduce false positives, e.g., keyword

“publication” contains the query string “ic,” but

the keyword does not have the query string “ic” as

a prefix. We can remove these false positives by

calling UDFs. The two no-index methods need no

additional space, but they may not scale since they

need to scan all records in the table

Index-Based Methods: In this section, we

propose to build auxiliary tables as index

structures to facilitate prefix search. Some

databases such as Oracle and SQL server already

support prefix search, and we could use this

feature to do prefix search. However, not all

databases provide this feature. For this reason, we

develop a new method that can be used in all

databases. In addition, our experiments in Section

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 296

8.3 show that our method performs prefix search

more efficiently. Inverted-index table. Given a

table T, we assign unique ids to the keywords in

table T, following their alphabetical order. We

create an inverted-index table IT with records in

nthe form hkid; ridi, where kid is the id of a

keyword and rid is the id of a record that contains

the keyword. Given a complete keyword, we can

use the inverted-index table to find records with

the keyword. Prefix table. Given a table T, for all

prefixes of keywords in the table, we build a

prefix table PT with records in the form hp; lkid;

ukidi, where p is a prefix of a keyword, lkid is the

smallest id of those keywords in the table T

having p as a prefix, and ukid is the largest id of

those keywords having p as a prefix. An

interesting observation is that a complete word

with p as a prefix must have an ID in the keyword

range ½lkid; ukid_, and each complete word in

the table T with an ID in this keyword range must

have a prefix p. Thus, given a prefix keyword w,

we can use the prefix table to find the range of

keywords with the prefix.

FUZZY SEARCH FOR SINGLE KEYWORD

No-Index Methods

Recall the two no-index methods for exact search

in Since the LIKE predicate does not support

fuzzy search, we cannot use the LIKE-based

method. We can use Index-Based Methods This

section proposes to use the inverted-index table

and prefix table to support fuzzy search-as you-

type. Given a partial keyword w, we compute its

answers in two steps. First we compute its similar

prefixes from the prefix table PT , and get the

keyword ranges of these similar prefixes.\ Then

we compute the answers based on these ranges

using the inverted-index table IT as discussed in.

In this section, we focus on the first step:

computing w‟s similar prefixes.

Using UDF

Given a keyword w, we can use a UDF to find its

similar prefixes from the prefix table PT . We

issue an SQL query that scans each prefix in PT

and calls the UDF to check if the prefix is similar

to w. We issue the following SQL query to

answer the prefix-search query. Incrementally

Computing Similar Prefixes The previous

methods have the following limitations. First, they

need to find similar prefixes of a keyword from

scratch. Second, they may need to call UDFs

many times. In this section, we propose a

character-level incremental method to find similar

prefixes of a keyword as a user types character by

character.

EXISTING SYSTEM:

Most search engines and online search forms

support auto completion, which shows suggested

queries or even answers “on the fly” as a user

types in a keyword query character by character.

Since many search systems store their information

in a backend relational DBMS, a question arises

naturally: how to support search-as-you-type on

the data residing in a DBMS? Some databases

such as Oracle and SQL server already support

prefix search, and we could use this feature to do

search-as-you-type. However, not all databases

provide this feature. For this reason, we study new

methods that can be used in all databases. One

approach is to develop a separate application layer

on the database to construct indexes, and

implement algorithms for answering queries.

DISADVANTAGES OF EXISTING SYSTEM:

 In an existing systems are not specially

designed for keyword queries, making it more

challenging to support search-as-you-type.

 SQL meet the high performance requirement

to implement an interactive search interface.

 Some important functionality to support

search-as-you-type requires join operations,

which could be rather expensive to execute by

the query engine.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 297

PROPOSED SYSTEM:

In this paper, we develop various techniques to

address these challenges. We propose two types

of methods to support search-as-you-type for

single-keyword queries, based on whether they

require additional index structures stored as

auxiliary tables.

We discuss the methods that use SQL to scan a

table and verify each record by calling a user-

defined function (UDF) or using the LIKE

predicate. We study how to support fuzzy search

for single-keyword queries.

We discuss a gram-based method and a UDF-

based method. As the two methods have a low

performance, we propose a new neighborhood-

generation based method, using the idea that two

strings are similar only if they have common

neighbors obtained by deleting characters.

We extend the techniques to support multi-

keyword queries. We develop a word-level

incremental method to efficiently answer multi-

keyword queries. Notice that when deployed in a

Web application, the incremental-computation

algorithms do not need to maintain session

information, since the results of earlier queries are

stored inside the database and shared by future

queries.

ADVANTAGES OF PROPOSED SYSTEM:

 A main challenge is how to utilize the

limited expressive power of the SQL

language (compared with other languages

such as C++ and Java) to support efficient

search.

 We study how to use the available

resources inside a DBMS, such as the

capabilities to build auxiliary tables, to

improve query performance.

 An interesting observation is that despite

the fact we need SQL queries with join

operations, using carefully designed

auxiliary tables, built-in indexes on key

attributes, foreign key constraints, and

incremental algorithms using cached

results, these SQL queries can be executed

efficiently by the DBMS engine to achieve

a high speed.

CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of using

SQL to support search-as-you-type in data bases.

We focused on the challenge of how to leverage

existing DBMS functionalities to meet the high-

performance requirement to achieve an interactive

speed. To support prefix matching, we proposed

solutions that use auxiliary tables as index

structures and SQL queries to support search-as-

you-type. We extended the techniques to the case

of fuzzy queries, and proposed various techniques

to improve query performance. We proposed

incremental-computation techniques to answer

multi keyword queries, and studied how to

support first-N queries and incremental updates.

Our experimental results on large, real data sets

showed that the proposed techniques can enable

DBMS systems to support search-as-you-type on

large tables. There are several open problems to

support search-as you- type using SQL. One is

how to support ranking queries efficiently.

Another one is how to support multiple tables.

REFERENCE:

[1.] Guoliang Li, Jianhua Feng,Member, IEEE,

and Chen Li, Member, IEEE “ Supporting

Search-As-You-Type Using SQL in

Databases”- IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 25, NO. 2,

FEBRUARY 2013.

