
 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 465 

Security based Optimizing Design to Migrate Cloud 
 

Pokuru Guruteja ; Jayendra Kumar 

(M.Tech) ASSISTANT PROFESSOR CVSR ENGINEERING COLLEGE 

 

ABSTRACT : 

The on-demand use, high scalability, and 

low maintenance cost nature of cloud 

computing have attracted more and more 

enterprises to migrate their legacy 

applications to the cloud environment. 

Although the cloud platform itself promises 

high reliability, ensuring high quality of 

service is still one of the major concerns, 

since the enterprise applications are usually 

complicated and consist of a large number 

of distributed components. Thus, improving 

the reliability of an application during cloud 

migration is a challenging and critical 

research problem. A reliability-based 

optimization framework, named RO Cloud, 

to improve the application reliability by 

fault tolerance. RO Cloud includes two 

ranking algorithms. The first algorithm 

ranks components for the applications that 

all their components will be migrated to the 

cloud. The second algorithm ranks 

components for hybrid applications that 

only part of their components are migrated 

to the cloud. Both algorithms employ the 

application structure information as well as 

the historical reliability information for 

component ranking. Based on the ranking 

result, optimal fault-tolerant strategy will be 

selected automatically for the most 

significant components with respect to their 

predefined constraints. The experimental 

results show that by refactoring a small 

number of error-prone components and 

tolerating faults of the most significant 

components, the reliability of the application 

can be greatly improved. 

 

Index Terms—Cloud migration, component 

ranking, fault tolerance, software reliability 

 

INTRODUCTION : Cloud computing 

enables convenient, on-demand network 

access to a shared pool of configurable 

computing resources. In the cloud 

computing environment, the computing 

resources (e.g., networks, servers, storage, 

etc.) can be provisioned to users on-demand, 

like the electricity grid. Start-up companies 

can deploy their newly developed Internet 

services to the cloud without the concern of 

upfront capital or operator expense. 

However, cloud computing is not only for 

start-ups, its cost effective, high scalability 

and high reliability features also attracted 

enterprises to migrate their legacy 

applications to the cloud. Before the 

migration, enterprises usually have the 

concern to keep or improve the application 

reliability in the cloud environment. Thus, 

reliability based optimization when 

migrating legacy applications to the cloud 

environment is becoming an urgently 

required research problem. 

 In traditional software reliability 

engineering, there are four major approaches 

to improve system reliability: fault 

prevention, fault removal, fault tolerance, 

and fault forecasting. When turning to the 

cloud environment, since the applications 

deployed in the cloud are usually 

complicated and consist of a large number 

of components, only employing fault 

prevention techniques and fault removal 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 466 

techniques are not sufficient. Another 

approach for building reliable systems is 

software fault tolerance, which is to employ 

functionally equivalent components to 

tolerate faults. 

 Software fault tolerance approach 

takes advantage of the redundant resources 

in the cloud environment, and makes the 

system more robust by masking faults 

instead of removing them. Although the 

cloud platform is flexible and can provide 

resources on-demand, there is still a charge 

for using the cloud components (e.g., the 

virtual machines of Amazon Elastic 

Compute Cloud or Simple Storage Service). 

At the same time, legacy applications 

usually involve a large number of 

components, so it will be expensive to 

provide redundancies for each component. 

To reduce the cost so as to assure highly 

reliability in a limited budget during the 

migration of legacy applications to cloud, an 

efficient reliability-based optimization 

framework is needed. 

In ROCloud, each component is 

considered as independent and the fault-

tolerant strategy selection is carried out on 

component basis. In the future, we will 

study the fault tolerance of interrelated 

components. In addition, ROCloud uses the 

ratios of component failure to application 

failure to measure the failure impact of 

components.  

 

Comparison Criteria 

 

We compare the approaches with respect to 

the following eight criteria: 

1.Modernization Strategy. The strategy of 

the proposed approach: one of replacement, 

redevelopment, wrapping and migration. 

2.Legacy System Type. The kind of system 

to which the technique applies. 

3.Degree of Complexity. Time/cost 

complexity of the method (or NA, if not 

reported). 

Analysis Depth. 

4.The strategy used to analyze the legacy 

system to understand its concepts and locate 

the important functions to be exposed as part 

of SOA architecture.  

5.The analysis could be shallow or deep 

depending on the strategy used. Minimal 

dependency on the existing legacy system 

components in achieving SOA architecture 

can provide more flexibility. 

6.Process Adaptability. How well the 

process adapts to the legacy system to 

minimize the extent of the required 

modifications. 

7.Tool Support. To what degree is the 

process automated, and if a tool is proposed 

or implemented. 

8.Degree of Coverage. Does the proposed 

approach present a complete strategy for 

moving to SOA, or only a specific part of 

the modernization. 

Validation Maturity. Has the proposed 

approach been applied and validated. 

 

Replacement of Legacy Systems 

 Although replacement is not one of 

the strategies advocated by the 

surveyedpapers, it may make sense to retire 

the application and replace it with an off-

the-shelf package or a complete rewrite of 

the legacy system from scratch. Twopossible 

reasons are if the business rules in the 

application are well understood inthe 

organization, and the legacy system involves 

obsolete or difficult to maintaintechnologies 

Wrapping Strategies 
Wrapping provides a new SOA 

interface (e.g. WSDL) to a legacy 

component, making it easily accessible by 

other software components. It is a black-box 

modernization technique, since it 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 467 

concentrates on the interface of the legacy 

system,hiding the complexity of its 

internals.  

 

Redevelopment Strategies 

 we use the term redevelopment to 

refer to reengineering approaches. 

Reengineering is the analysis and 

adjustment of an application in order to 

represent it in a new form. Reengineering 

can include activities such as 

reverseengineering, restructuring, 

redesigning, and re-implementing software. 

The following approaches use reverse 

engineering and reengineering to add new 

SOAfunctionality to existing legacy 

systems. 

There are three main issues in service-

oriented reengineering: service 

identification, service packaging, and 

service deployment. Identification of 

servicesfrom a legacy system is not an easy 

task. Software reengineering can play 

animportant role in migration to the service-

oriented environment. It is 

especiallyapplicable to legacy systems with 

the following characteristics: 

 

1. The legacy system needs to be migrated 

to a distributed environment andcan be 

wrapped and exposed as a Web Service. 

2. The legacy system has embedded reusable 

and reliable functionality withvaluable 

business logic. 

3. Some of the components in the legacy 

system are more maintainable thanthe whole 

legacy system. 

4. The embedded functionality is useful to 

be exposed as independent services. 

5. Target components need to run on 

different platforms or vendor products. 

 

 

N–Version Programming 

Recovery Block Technique  

 This technique was evolved as a 

result of first long term systematic 

investigation of multiversion technique 

initiated by Brian Ran dell in early 1970s . 

In this technique, alternate software versions 

are organized in a manner similar to the 

dynamic redundancy (standby) technique in 

hardware. It’s objective is to perform 

runtime Software Fault Tolerance detection 

by an acceptance test performed on the 

results delivered by the first version. 

Recovery is considered complete when 

acceptance test is passed. Checkpoint 

memory is needed to recover the state after a 

version fails, to provide a valid starting 

operational point for the next version (Fig 

1). 

 

 

 
 

 

 

 

N-version programming  

The NVP investigation project was 

started by A.Avizienis in 1975.  N-fold 

computation is carried out by using N 

independently designed software modules or 

“versions” and their results are sent to a 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 468 

decision algorithm that determines a single 

decision result.  

The fundamental difference between the RB 

and NVP approaches is the decision 

algorithm. In the RB approach, an 

acceptance test that is specific to the 

application program being implemented 

must be provided. In the NVP approach, a 

decision algorithm that delivers an 

agreement/disagreement decision is 

implemented. The N-Version programming 

isdefined as the independent generation of 

N>=2 software modules, called “versions”, 

from the same initial requirements . 

“Independent generation” refer to the 

programming effort by individual or groups 

that do not interact with each other with 

respect to programming process. As the goal 

of NVP is to minimize the probability of 

similar errors at decision points, different 

algorithms, programming languages, 

environments and tools are used wherever 

possible.  

 

In NVP, since all the versions are built to 

satisfy the same requirements, it requires 

considerable development effort. But the 

complexity is not greater than inherent 

complexity of building a single version. 

Comparison of outputs and declaration of 

single result is carried out by output 

selection algorithm or voting algorithm 

(Figure 2). The output selection algorithms 

should be capable of detecting erroneous 

version outputs and prevent the propagation 

of bad values to main output. The output 

selection algorithm should be developed 

considering the application attributes like 

safety and reliability. 

Significance of Software Component  

Collections of already developed 

programs are important resources for 

efficient development of reliable software 

systems. In this paper, we propose a novel 

graph-representation model of a software 

component library (repository), called 

component rank model. This is based on 

analyzing actual usage relations of the 

components and propagating the 

significance through the usage relations. 

Using the component rank model, we have 

developed a Java class retrieval system 

named SPARS-J and applied SPARS-J to 

various collections of Java files. The result 

shows that SPARS-J gives a higher rank to 

components that areused more frequently. 

As a result, software engineers looking for a 

component have a better chance of finding it 

quickly. SPARS-J has been used by two 

companies, and has produced promising 

results. 

 

 

 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 469 

Cloud Migration 

Proposed migration project 

 

The case study organization is a UK 

based SME thatprovides bespoke IT 

solutions for the Oil & Gas industry.It 

comprises of around 30 employees with 

offices in theUK and the Middle East. It has 

an organizational structurebased on 

functional divisions: 

Administration;Engineering; Support; of 

which Engineering is the largestdepartment. 

The migration use-case comprises the 

feasibility of themigration of one of the 

organization’s primary serviceofferings (a 

quality monitoring and data 

acquisitionsystem) to Amazon EC2. The  

 

 

A Distributed EvaluationFrame Work 
When conducting replication strategies 

evaluation andelection, there are several 

challenges to be solved: 

• Evaluation location:  

The service users are usuallyfrom different 

locations with different network conditions. 

Therefore, conducting evaluation on the 

targetWeb services from various locations is 

necessary. 

• Evaluation accuracy:  

Few service users have goodknowledge on 

replication strategies, test case generation, 

test result analysis and so on, making 

accuratereplication strategies evaluation 

difficult. 

 

• Evaluation efficiency:  

It is time-consuming for serviceusers to 

conduct evaluation themselves. More 

efficient 

approaches are needed.Taking the viewpoint 

of service users where the remoteWeb 

service is treated as a black box without any 

internaldesign or implementation 

information, The proposed 

distributedevaluation framework includes a 

centralized server with anumber of 

distributed clients. The overall process can 

beexplained as follows. 

1. Evaluation registration:  

Users submit evaluation requestswith related 

information, such as the targetWeb service 

addresses, particular test cases, strategies 

selectionparameters, and so on, to the server. 

2. Client-side application loading:  

A client-side evaluationapplication is loaded 

to the user’s computer. 

 

3. Test case generation:  

The TestCase Generator in theserver 

automatically creates test cases based on the 

interface 

of the target Web Services (WSDL files). 

Twotypes of test cases are created: single 

test cases forindividual Web service 

evaluation, and multiple testcases for 

replication strategy evaluation. 

4. Test coordination:  

Test tasks are scheduled based onthe number 

of current users and test cases. 

 

5. Test cases retrieval: 

Distributed client-side applicationsget test 

cases from the server. 

Fault-Tolerant Cloud Applications 
 

Significant Determination  

 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 470 

The cloud applications are typically 

large scale and include alot of distributed 

cloud components. To build a highly 

reliablecloud applications is a challenging 

and critical research 

problem. To attack this challenge, a 

component rankingframework, named 

FTCloud is used for building 

faulttolerantcloud applications.To reduce the 

cost so as to develop highly reliable 

cloudapplications within a limited budget, a 

small set of criticalcomponents needs to be 

identified from the cloudapplications. The 

critical components are identified 

bydetermining the significant value. Kernel 

PrincipalComponent Ranking named KPCR 

Cloud approach isexpected to have better 

accuracy in selecting the significantvalues 

for identifying critical components.  

1. Ranking 

2. Optimal fault-tolerance selection.The 

procedures of FTCloud are as follows: 

1. A component graph is built for the cloud 

application basedon the component 

invocation relationships. 

2. Significance values of the cloud 

components are calculatedby employing 

component ranking algorithms. Based on 

thesignificance values, the components can 

be ranked. 

3. Most significant components in the cloud 

application areidentified based on the 

ranking results. 

4. The performance of various fault-

tolerance strategycandidates is calculated 

and the most suitable fault-tolerancestrategy 

is selected for each significant component. 

5. The component ranking results and the 

selected faulttolerancestrategies for the 

significant components arereturned to the 

system designer for building a reliable 

cloudapplication. 

 

 

 

 

 

CONCLUSION 

This paper presents a reliability-based 

design optimization framework for 

migrating legacy applications to the cloud 

environment. The framework consists of 

three parts: legacy application analysis, 

significant component ranking and 

automatic optimal fault-tolerant strategy 

selection. Two algorithms are proposed in 

the ranking phase: the first ranks 

components for the applications where all 

the components can be migrated to the 

cloud; the second ranks components for the 

applications where only part of the 

components can be migrated to the cloud. In 

both algorithms, the significance value of 

each component is calculated based on the 

application structure, component invocation 

relationships, component failure rates, and 

failure impacts. A higher significance value 

means the component imposes higher 

impact on the application reliability than 

others. After finding the most significant 

components, an optimal fault-tolerant 

strategy can be selected automaticallywith 

respect to the time and cost constraints. The 

experimental results show that ROCloud1 

and ROCloud2 outperform other approaches 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/


 International Journal of Research 
 Available at http://internationaljournalofresearch.org/  

p-ISSN: 2348-6848 

e-ISSN: 2348-795X 
 

Volume 01 Issue 08 

September 2015 

  

Available online: http://internationaljournalofresearch.org/  P a g e  | 471 

and can greatly improve the application 

reliability. 

In ROCloud, each component is considered 

as independent and the fault-tolerant 

strategy selection is carried out on 

component basis. In the future, we will 

study the fault tolerance of interrelated 

components. In addition, ROCloud uses the 

ratios of component failure to application 

failure to measure the failure impact of 

components. While the relationship between 

component failures and application failures 

can be complicated, more sophisticated 

models (e.g., Markov models, fault trees, 

etc.)will be investigated in the future work. 

Our future work also includes: 

1. Considering more factors (such as data 

transfer, invocation latency, etc.) when 

computing the 

weights of invocations links. 

2. Taking the constraint factors such as cost 

into consideration during the ranking phase, 

and letting the designer know intuitively 

which components can make the biggest 

improvement while cost the least. 

3. More experimental analysis on the impact 

of incorrect prior knowledge such as 

invocation frequencies and component 

failure rates. 

 

REFERENCES 

[1] S. Al-kiswany, D. Subhraveti, P. Sarkar, 

and M. Ripeanu, ‘‘VMFlock: Virtual 

Machine Co-Migration for the Cloud,’’ in 

Proc. 20th Int. Symp. High Perform. Distrib. 

Comput., New York, 

NY, USA, 2011, pp. 159-170. 

[2] A.A. Almonaies, J.R. Cordy, and T.R. 

Dean, ‘‘Legacy System Evolution Towards 

Service-Oriented Architecture,’’ in Proc. 

Int.Workshop SOAME, Madrid, Spain, Mar. 

2001, pp. 53-62. 

[3] G. Anthes. (). Security in the Cloud. 

Commun. ACM [Online]. 53(11), pp. 16-18. 

Available: 

http://doi.acm.org/10.1145/1839676. 

1839683 

 

[4] M. Armbrust, A. Fox, R. Griffith, A. 

Joseph, R. Katz, A. Konwinski, G. Lee, D. 

Patterson, A. Rabkin, I. Stoica, and M. 

Zaharia, ‘‘A View of Cloud Computing,’’ 

Commun. ACM, vol. 53, no. 4, pp. 50-58, 

2010. 

 

[5] M.Armbrust,A.Fox,R.Griffith,A.D. 

Joseph,R.H.Katz,A.Konwinski, G. Lee, 

D.A. Patterson, A. Rabkin, I. Stoica, and M. 

Zaharia, ‘‘Above the Clouds: A Berkeley 

View of Cloud Computing,’’ EECS Dept., 

Univ. California, Berkeley, CA, USA, Tech. 

Rep. EECS-2009-28, 2009. 

[6] A. Avizienis, ‘‘The Methodology of N-

Version Programming,’’ in Software Fault 

Tolerance, M.R. Lyu, Ed. Chichester, U.K.: 

Wiley, 1995, pp. 23-46. 

 

 

 

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/
http://doi.acm.org/10.1145/1839676

