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ABSTRACT 

Speech enhancement is a process of 

increasing the quality, intelligibility of the 

speech signal which is one dimensional. So, by 

removing the external world noise or artefacts 

this can be improve and reject the background 

interference in the form of additive background 

noise which helps in the improvement of 

performance of communication system. The 

enhancement of speech signal consists of 3 

major objectives: A) Sound is to be clear to the 

listener. B) Improve robustness. C) Lossless 

perception is required which improves the 

accuracy. For loss enhancement subspace 

methods were used such as Spectral Subtraction 

method, Time domain method, Transform 

method. The signal enhancement process is 

going to be perform by using sub band 

decomposition method under low and high pass 

filter collaboration i.e., WAVELET (DWT) 

transformation. The existing technique KLT sub 

space is a loss transformation and performed 

enhancing signal but theoretically it can be 

improved by Wavelet transformation and will 

perform a lossless transformation technique. 
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I. INTRODUCTION 

 

The performance of speech communication 

systems in applications such as hands-free 

telephony, degrade considerably in adverse 

acoustic environments. The presence of noise 

can cause loss of intelligibility as well as the 

listener’s discomfort and fatigue. Speech 

enhancement methods seek to improve the 

performance of these systems and to make the 

corrupted speech more pleasant to the listener. 

These methods are also useful in other 

applications such as automatic speech 

recognition. In this paper we focus on the signal 

subspace approach (SSA) for speech 

enhancement [1]. This technique is based on the 

decomposition of the noisy signal vector space 

into two orthogonal subspaces called the noise 

subspace and the signal subspace. In this 

context, the signal subspace decomposition can 

be achieved either using the Karhunen-Loeve 

transform (KLT) via Eigen value decomposition 

(EVD) of the data covariance matrix [1]–[4], or 

using the singular value decomposition (SVD) 

of a data matrix [5]–[7]. The discrete cosine 

transform (DCT) has also been proposed as an 

approximation to the KLT [8], [9]. In the SSA, 

enhancement is obtained by removing the noise 

subspace as a first step. Then the clean speech is 

recovered in the remaining signal subspace by 

optimally weighting the signal coefficients in 

this subspace. The different SSA methods vary 

according to the weighting scheme used [6]. The 

SSA can also be interpreted as a filter bank with 

the weighting coefficients serving as the sub 

band filters [10]. 
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As in most single channel speech enhancement 

methods such as spectral subtraction [11], the 

signal subspace methods suffer from the 

annoying residual noise known as musical 

noise. Tones at random frequencies, resulting 

from poor estimation of the signal and noise 

statistics, are at the origin of this artefact. In 

spectral subtraction and its variants, 

modifications using a human hearing model 

were proposed to reduce the prominence of the 

musical noise [12]–[16]. This technique, which 

was first introduced in audio coding [17], is 

based on the fact that the human auditory 

system is able to tolerate additive noise as long 

as it is below some masking threshold. Methods 

to calculate the masking threshold are developed 

in the frequency domain according to critical 

band analysis and the excitation pattern of the 

basilar membrane in the inner ear [18]. 

Recently, a DCT based SSA imitating the 

human hearing resolution was proposed [9]. 

However, no algorithm which employs a 

sophisticated hearing model with a KLT based 

SSA is available. The reason is that the SSA do 

not operate in the frequency domain where the 

available hearing models are developed. In this 

paper, we present a frequency to eigendomain 

transformation (FET) which provides a way to 

calculate a perceptually based eigenfilter. This 

is done by estimating an eigenvalue 

decomposition based power spectral density 

(PSD) from 

which a masking threshold is calculated. This 

threshold is transformed to the speech signal 

eigendomain using the FET allowing to design 

the perceptual eigenfilter. This filter yields 

better residual noise shaping from a 

psychoacoustic perspective. We provide an 

analysis of the FET and show how it can be 

incorporated in the SSA to improve its 

performance.We also show how the method can 

be modified to cover the more general case of 

colored noise. Informal as well as formal 

subjective listening test results show that the 

proposed new method outperforms the 

conventional SSA. The results also show that 

our method provides better noise shaping in the 

sense that for a given speech signal, the residual 

noise has relatively similar characteristics in 

different noisy environments.  

 

Estimation of Covariance  

 

The calculation of the KLT is typically 

performed by finding the eigenvectors of the 

covariance matrix, which, of course, requires an 

estimate of the covariance matrix. If the entire 

signal is available, as is the case for coding a 

single image, the covariance matrix can be 

estimated from n data samples as 

 
where xi is a sample data vector. If only 

portions of the signal are available, care must be 

taken to ensure that the estimate is 

representative of the entire signal. In the 

extreme, if only one data vector is used then 

only one nonzero eigen value exists, and its 

eigenvector is simply the scaled version of the 

data vector. For typical images, it is rarely the 

case that their covariance matrix has any zero 

eigen values. For a data vector of dimension N, 

a good rule of thumb is that at least 10 × N 

representative samples from the various regions 

within an image be used to ensure a good 

estimate if it is not feasible to use the entire 

image. 

 In contrast to a Fourier series where the 

coefficients are fixed numbers and the 

expansion basis consists of sinusoidal 

functions (that is, sine and cosine functions), the 

coefficients in the Karhunen–Loève theorem 

are random variables and the expansion basis 

depends on the process. In fact, the orthogonal 

basis functions used in this representation are 

https://en.wikipedia.org/wiki/Trigonometric_function
https://en.wikipedia.org/wiki/Trigonometric_function
https://en.wikipedia.org/wiki/Trigonometric_function
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Random_variable
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determined by the covariance function of the 

process. One can think that the Karhunen–

Loève transform adapts to the process in order 

to produce the best possible basis for its 

expansion. 

In the case of a centered stochastic 

process {Xt}t ∈ [a, b] (centered means E[Xt] = 

0 for all t ∈ [a, b]) satisfying a technical 

continuity condition, Xt admits a decomposition 

 
where Zk are pairwise uncorrelated random 

variables and the functions ek are continuous 

real-valued functions on [a, b] that are 

pairwise orthogonal in L
2
([a, b]). It is therefore 

sometimes said that the expansion is bi-

orthogonal since the random coefficients Zk are 

orthogonal in the probability space while the 

deterministic functions ek are orthogonal in the 

time domain. The general case of a 

process Xt that is not centered can be brought 

back to the case of a centered process by 

considering Xt − E[Xt] which is a centered 

process. 

Moreover, if the process is Gaussian, then the 

random variables Zk are Gaussian 

and stochastically independent. This result 

generalizes the Karhunen–Loève transform. An 

important example of a centered real stochastic 

process on [0, 1] is the Wiener process; the 

Karhunen–Loève theorem can be used to 

provide a canonical orthogonal representation 

for it. In this case the expansion consists of 

sinusoidal functions. 

The above expansion into uncorrelated random 

variables is also known as the Karhunen–Loève 

expansion or Karhunen–Loève decomposition. 

The empirical version (i.e., with the coefficients 

computed from a sample) is known as 

the Karhunen–Loève 

transform (KLT), principal component 

analysis, proper orthogonal decomposition 

(POD), Empirical orthogonal functions (a term 

used in meteorology and geophysics), or 

the Hotelling transform. 

 Throughout this article, we will consider a 

square-integrable zero-mean random 

process Xt defined over a probability 

space (Ω, F, P) and indexed over a closed 

interval[a, b], with covariance function KX(s, t). 

We thus have: 

 

 

 
 We associate to KX a linear operator TKX defined 

in the following way: 

 
Since TKX is a linear operator, it makes sense to 

talk about its eigenvalues λk and 

eigenfunctions ek, which are found solving the 

homogeneous Fredholm integral equation of the 

second kind 

 
The Karhunen–Loève expansion minimizes 

the total mean square error 

In the introduction, we mentioned that the 

truncated Karhunen–Loeve expansion was the 

best approximation of the original process in the 

sense that it reduces the total mean-square error 

resulting of its truncation. Because of this 

property, it is often said that the KL transform 

optimally compacts the energy. 

More specifically, given any orthonormal basis 

{fk} of L
2
([a, b]), we may decompose the 

process Xt as: 

 
where 

 
and we may approximate Xt by the finite sum 

https://en.wikipedia.org/wiki/Covariance_function
https://en.wikipedia.org/wiki/Uncorrelated
https://en.wikipedia.org/wiki/Orthogonal
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Stochastically_independent
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Empirical_orthogonal_functions
https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Geophysics
https://en.wikipedia.org/wiki/Harold_Hotelling
https://en.wikipedia.org/wiki/Linear_operator
https://en.wikipedia.org/wiki/Integral_equation
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for some integer N. 

 

II. Independent Component Analysis 

ICA finds the independent components (also 

called factors, latent variables or sources) by 

maximizing the statistical independence of the 

estimated components. We may choose one of 

many ways to define independence, and this 

choice governs the form of the ICA algorithm. 

The two broadest definitions of independence 

for ICA are 

1. Minimization of mutual information 

2. Maximization of non-Gaussianity 

The Minimization-of-Mutual 

information (MMI) family of ICA algorithms 

uses measures like Kullback-Leibler 

Divergence and maximum entropy. The non-

Gaussianity family of ICA algorithms, 

motivated by the central limit theorem, 

uses kurtosis and negentropy. 

Typical algorithms for ICA use centering 

(subtract the mean to create a zero mean 

signal), whitening (usually with the eigenvalue 

decomposition), and dimensionality reduction as 

preprocessing steps in order to simplify and 

reduce the complexity of the problem for the 

actual iterative algorithm. Whitening 

and dimension reduction can be achieved 

withprincipal component analysis or singular 

value decomposition. Whitening ensures that all 

dimensions are treated equally a priori before 

the algorithm is run. Well-known algorithms for 

ICA include infomax, FastICA, and JADE, but 

there are many others. 

In general, ICA cannot identify the actual 

number of source signals, a uniquely correct 

ordering of the source signals, nor the proper 

scaling (including sign) of the source signals. 

ICA is important to blind signal separation and 

has many practical applications. It is closely 

related to (or even a special case of) the search 

for a factorial code of the data, i.e., a new 

vector-valued representation of each data vector 

such that it gets uniquely encoded by the 

resulting code vector (loss-free coding), but the 

code components are statistically independent. 

 

Application 

ICA can be extended to analyze non-physical 

signals. For instance, ICA has been applied to 

discover discussion topics on a bag of news list 

archives. 

Some ICA applications are listed below optical 

Imaging of neurons neuronal spike sorting face 

recognition modeling receptive fields of primary 

visual neurons predicting stock market prices 

mobile phone communications colour based 

detection of the ripeness of tomatoes removing 

artifacts, such as eye blinks, from EEG data. 

 

  
Fig: Independent Component Analysis in 

EEG LAB 

III. DWT 

One level of the transform 

The DWT of a signal  is calculated by passing 

it through a series of filters. First the samples 

are passed through a low pass 

filter with impulse response  resulting in 

aconvolution of the two: 

 

https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Negentropy
https://en.wikipedia.org/wiki/Whitening_transformation
https://en.wikipedia.org/wiki/Eigenvalue_decomposition
https://en.wikipedia.org/wiki/Eigenvalue_decomposition
https://en.wikipedia.org/wiki/Eigenvalue_decomposition
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimension_reduction
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Infomax
https://en.wikipedia.org/wiki/FastICA
https://en.wikipedia.org/wiki/Blind_signal_separation
https://en.wikipedia.org/wiki/Factorial_code
https://en.wikipedia.org/wiki/EEG
https://en.wikipedia.org/wiki/Low_pass_filter
https://en.wikipedia.org/wiki/Low_pass_filter
https://en.wikipedia.org/wiki/Low_pass_filter
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/File:Independent_component_analysis_in_EEGLAB.png
https://en.wikipedia.org/wiki/File:Wavelets_-_DWT.png
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The signal is also decomposed simultaneously 

using a high-pass filter . The outputs giving 

the detail coefficients (from the high-pass filter) 

and approximation coefficients (from the low-

pass). It is important that the two filters are 

related to each other and they are known as 

a quadrature mirror filter. 

 

Fig : Block diagram of filter analysis 

However, since half the frequencies of the 

signal have now been removed, half the samples 

can be discarded according to Nyquist’s rule. 

The filter outputs are then subsampledby 2. In 

the next two formulas, the notation is the 

opposite: g- denotes high pass and h- low pass 

as is Mallat's and the common notation: 

 

 

This decomposition has halved the time 

resolution since only half of each filter output 

characterises the signal. However, each output 

has half the frequency band of the input so the 

frequency resolution has been doubled. 

With the subsampling operator  

 

the above summation can be written more 

concisely. 

 

 

However computing a complete 

convolution  with subsequent 

downsampling would waste computation time. 

The Lifting scheme is an optimization where 

these two computations are interleaved. 

 

IV. CONCLUSION: 

Finally, by using WAVELET (DWT) 

transformation I have implemented the Speech 

enhancement effectively. By removing the 

external world noise or artefacts this can be 

improve and reject the background interference 

in the form of additive background noise which 

helps in the improvement of performance of 

communication system. 

 

V. RESULT: 
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