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Abstract— 

When you drive to somewhere ‘far away’, you will 

leave your current location via one of only a few 

‘important’ traffic junctions. Starting from this 

informal observation, we develop an algorithmic 

approach—transit node routing— that allows us to 

reduce quickest-path queries in road networks to a 

small number of table lookups. We present two 

implementations of this idea, one based on a 

simple grid data structure and one based on 

highway hierarchies. For the road map of the 

United States, our best query times improve over 

the best previously published figures by two orders 

of magnitude. Our results exhibit various trade-

offs between average query time (5 μs to 63 μs), 

preprocessing time (59min to 1200min), and 

storage overhead (21 bytes/node to 244 

bytes/node). 

Index terms: Shortest path, air index, broadcasting 

 

I INTRODUCTION 

 The classical way to compute the shortest path 

between two given nodes in a graph with given edge lengths 

is Dijkstra’s algorithm Shortest path computation is an 

important function in modern car navigation systems and has 

been extensively studied in This function helps a driver to 

figure out the best route from his current position to 

destination. Typically, the shortest path is computed by 

offline data pre-stored in the navigation systems and the 

weight (travel time) of the road edges is estimated by the 

road distance or historical data. These systems can calculate 

the snapshot shortest path queries based on current live traffic 

data; however, they do not report routes to drivers 

continuously due to high operating costs. Answering the 

shortest paths on the live traffic data can be viewed as a 

continuous monitoring problem in spatial databases, which is 

termed online shortest paths computation (OSP) in this work. 

To the best of our knowledge, this problem has not received  

 

much attention and the costs of answering such continuous 

queries vary hugely in different system architectures. The 

main challenge on answering live shortest paths is scalability, 

in terms of the number of clients and the amount of live 

traffic updates. A new and promising solution to the shortest 

path computation is to broadcast an air index over the 

wireless network. The main advantages of this model are that 

the network overhead is independent of the number of clients 

and every client only downloads a portion of  the entire road 

map according to the index information. For instance, the 

proposed  index  constitutes a set of pair wise  minimum and 

maximum traveling costs between every two sub partitions of 

the road map. However, these methods only solve the 

scalability issue for the number of clients but not for the 

amount of live traffic updates. As reported in  the re-

computation time of the index takes 2 hours for the San 

Francisco (CA) road map. It is prohibitively expensive to 

update the index for OSP, in order to keep up with live traffic 

circumstances. Motivated by the lack of off-the-shelf solution 

for OSP, in this paper we present a new solution based on the 

index transmission model by introducing live traffic index 

(LTI) as the core technique. 

1.The index structure of LTI is optimized by two novel 

techniques, graph partitioning and stochastic-based 

construction, after conducting a thorough analysis on the 

hierarchical index techniques  To the best of our knowledge, 

this is the first work to give a thorough cost analysis on the 

hierarchical index techniques and apply stochastic process to 

optimize the index hierarchical structure 

2.LTI efficiently maintains the index for live traffic 

circumstances by incorporating Dynamic Shortest Path Tree 

(DSPT) [into hierarchical index techniques. In addition, a 

bounded version of DSPT is proposed to further reduce the 

broadcast overhead. 

3.By incorporating the above features, LTI reduces the tune-

in cost up to an order of magnitude as compared to the state-

of-the-art competitors; while it still provides competitive 

query response time, broadcast size, and maintenance time. 

To the best of our knowledge, we are the first work that 

attempts to minimize all these performance factors for OSP. 
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II PRELIMINARY 

A  Performance Factors 

 The main performance factors involved in OSP are: 

(i) tune-in cost (at client side), (ii) broadcast size (at server 

side), and (iii) maintenance time (at server side), and (iv) 

query response time (at client side). In this work, we 

prioritize the tune-in cost as the main optimized factor since 

it affects the duration of client receivers into active mode and 

power consumption is essentially determined by the tuning 

cost If we minimize the tune-in cost of one service, then we 

reserve more resources for other services. 

a shortest route using pre-stored weights 

b .shortest route using traffic live (by LTI) 

 

Fig. 1. Two alternative shortest paths 

 The index maintenance time and broadcast size 

relate to the freshness of the live traffic information. The 

maintenance time is the time required to update the index 

according to live traffic information. The broadcast size is 

relevant to the latency of receiving the latest index 

information. As the freshness is one of our main design 

criteria, we must provide reasonable costs for these two 

factors The last factor is the response time at client side. 

Given a proper index structure, the response time of shortest 

path computation can be very fast The computation also 

consumes power but their effect is outweighed by 

communication. It remains, however, an evaluated factor for 

OSP. BA Adaptation of Existing Approaches The 

communication cost is proportional to the number of clients.  

Thus, we omit this model from the remaining discussion 

1. Raw Transmission Model 

Under the raw transmission model, the traffic data 

(i.e., edge weights) are broadcasted by a set of packets for 

each broadcast cycle. Uninformed search (e.g., Dijkstra’s 

algorithm) traverses graph nodes in ascending order of their 

distances from the source s, and eventually discovers the 

shortest path to the destination t. Bi-directional search 

reduces the search space by executing Dijkstra’s algorithm 

simultaneously forwards from s and backwards from  Goal 

directed approaches search towards the target by filtering out 

the edges that cannot possibly belong to the shortest path. 

The filtering procedure requires some pre-computed 

information. ALT and arc flags (AF) are two representative 

algorithms in this category  

Dynamic shortest path tree (DSPT) maintains a tree 

structure Finding a shortest path from s to any node is 

computed at time on the shortest path tree. In their work, a 

simple dynamic version of Dijkstra is proposed which can 

outperform all competitors. locally for efficient shortest path 

retrieval 

2 Index Transmission Model 

The index transmission model enables servers to broadcast an 

index instead of raw traffic data. We review the state-of the- 

art indices for shortest path computation and discuss their 

applicability on the index transmission model. 

Road map hierarchical approaches try to exploit the 

hierarchical structure to the road map network in a pre-

processing step, which can be used to accelerate all 

subsequent queries. 

Hierarchical index structures provide another way to 

abstracting and structuring a topographical index in a 

hierarchical fashion. Hierarchical MulTi-graph model (HiTi) 

is a representative approach in this category. Hierarchical 

encoded path view (HEPV) and Hub indexing share the same 

intuition of HiTi which divides large graph into smaller sub 

graphs and organize them in a hierarchical fashion by 

pushing up border nodes Furthermore, there is no discussion 

on how to maintain the TEDI structure in presence of edge 

weight updates. 

Oracle focus on pre computing certain shortest path distances 

called oracles in order to answer approximate shortest path 

queries efficiently. Full pre-computation pre-computes the 

shortest paths between any two nodes in the road network, 

such as SILC and distance index . Even though these 

approaches offer fast query response time, the maintenance 

cost and size overhead become prohibitive on large road 

networks. Combination approaches integrate promising 

features from different index structure to support efficient 

shortest path computation. SHARC and CALT are two well 

studied combination approaches which integrate road map 

hierarchical approaches with AF and ALT, respectively 

 

III LTI OVERVIEW AND OBJECTIVES 

A  LTI Overview 

The traffic provider collects the live traffic 

circumstances from the traffic monitors via techniques like 

road sensors and traffic video analysis. The service provider 

periodically receives live traffic updates from the traffic 

provider and broadcasts the live traffic index on radio or 

wireless network. 
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When a mobile client wishes to compute and monitor a 

shortest path, it listens to the live traffic index and reads the 

relevant portion of the index for computing the shortest path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. LTI system overview 

 

In Fig. 4, we illustrate the components and system flow in 

our LTI framework. The components shaded by gray color 

are the core of LTI. In order to provide live traffic 

information, the server maintains (component a) and 

broadcasts (component b) the index according to the up-to-

date traffic circumstances. In order to compute the online 

shortest path, a client listens to the live traffic index, reads 

the relevant portions of the index (component c), and 

computes the shortest path (component d). 

 

 

Fig 4. Components in LTI 

B LTI Objectives 

(1) Efficient maintenance strategy. Without efficient 

maintenance strategy, long maintenance time is needed at 

server side so that the traffic information is no longer live. 

This can reduce the maintenance time spent at component a. 

(2) Light index overhead. The index size must be controlled 

in a reasonable ratio to the entire road map data. This reduces 

not only the length of a broadcast cycle, but also makes 

clients listen fewer packets in the broadcast channel. This can 

save the communication cost at components b and c. 

(3) Efficient computation on a portion of entire index. This 

property enables clients to compute shortest path on a portion 

of the entire index. The computation at component d gets 

improved since it is executed on a smaller graph. This 

property also reduces the amount  

 

 

 

 

 

 

 

Fig. 5. Hierarchical index structure 

 

Of data. hierarchical index structures enable clients to 

compute the shortest path on a portion of entire index. 

However, without pairing up with the first and second 

features, the communication and computation costs are still 

infeasible for OSP. the hierarchical index structures enable 

clients to compute the shortest path on a portion of entire 

index. However, without pairing up with the first and second 

features, the communication and computation costs are still 

infeasible for OSP. 

 

IV LTI CONSTRUCTION 

To the best of our knowledge, this is the first work to analyze 

the hierarchical index structures and exploit the stochastic 

process to optimize the index. 

A  Analysis of Hierarchical Index Structures 

Hierarchical index structures TEDI enable fast shortest path 

computation on a portion of entire index which significantly 

reduces the tune-in cost on the index transmission model. For 

the sake of analysis, we use HiTi as our reference model in 

the remaining discussion. Our analysis can be adapted to 

other approaches since their execution paradigm shares the 

same principle. Stochastic based index construction. The 

graph partitioning frame work only returns a binary tree 

index that is constructed based on Cheeger cut sequences. 
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Fig.6.Effect of hierarchical structure. 

To estimate the average size of the search graphs, we 

apply a stochastic process, Monte Carlo, that relies on 

random sampling to obtain numerical results. 

The construction terminates when we have enough leave 

entries (i.e., g). Algorithm 1 shows the pseudo codes of the 

partitioning algorithm based on the stochastic process. 

 

The effect of g. In this work, LTI requires only one parameter 

g to construct the index which is used to control the number 

of subgraphs being constructed. Our proposed techniques 

attempt to optimize the index (O2 and O3) subject to g. 

 

V LTI TRANSMISSION 

The broadcasting model uses radio or wireless 

network (e.g., 3G, LTE, Mobile WiMAX) as the transmission 

medium. When the server broadcasts a data set (i.e., a 

“programme”), all clients can listen to the data set 

concurrently. Thus, this transmission model scales well 

independent of the number of clients. A broadcasting scheme 

is a protocol to be followed by the server and the clients. 

First, the server partitions the data set into m equi-sized data 

segments. Each packet contains a header and a data segment, 

where a header describes the broadcasting schedule of all 

packets. In this example, the variables i and n in each header 

represent the last broadcasted item and the total number of 

items. The server periodically broadcasts a sequence of 

packets. The query performance can be measured by the 

tuning time and the waiting time at the client side. The tuning 

time is the time for reading the packets. The waiting time is 

the time from the start time to the termination time of the 

query. In this broadcasting scheme, the parameter m decides 

the tradeoff between tune-in size and the overhead. A large m 

favors small tune-in size whereas a small m incurs small 

waiting time. Imielinski et al. suggests to set m to the square 

root of the ratio of the data size to the index size. 

5.3 Client Tune-in Procedures of Air LTI 

 

Fig. 9 shows the content of a broadcast cycle for a LTI 

structure in Fig. 7. In this example, the air index uses a ð1; 

2Þ interleaving scheme and each data packet stores the edge 

weight of different sub graphs. For instance, the edge weight 

of sub graph SG1 are stored in the 2nd packet of a broadcast 

cycle. 

 

 

 

Fig. 7: Receiving LTI data from the air index 

 

VI .LTI MAINTENANCE 

 In this section, we study an incremental update 

approach that can efficiently maintain the live traffic index 

according to the updates. As a remark, the entire update 

process is done at the service provider and there is no extra 

data structure being broadcasted to the clients. To reduce the 

maintenance cost, we incorporates dynamic shortest path tree 

technique (DSPT) into the hierarchical index structures and 

reduce the size of trees by a bounded version (BSPT) The 

weight of these shortcuts can be maintained by the 

corresponding shortest path tree from each border node BSGi 

. Given a graph G ¼ ðV ;EÞ, a shortest path tree (SPT) 

rooted at a vertex r 2 V, denoted as SPTðrÞ, is a tree with 

root r, and 8v 2 V _ frg, SPTðrÞ contains a shortest path from 

r to v. In Fig. 10a, the shortest path tree of vertex k is 

highlighted by bold lines. Given a shortest path tree, a 

dynamic Dijkstra approach [22] is proposed for handling 

both weight increasing (Fig. 10b) and decreasing cases (Fig. 

10c). The intuition of the algorithms is to find the affected 

local vertices and revise the shortest path tree using a 

Dijkstra like algorithm starting from the updated vertices. For 

instance, the weight of edgeðm; lÞ is decreased from 2 to 0. 

Starting from the vertex m, a new path m ! l ! k, that is a 

better path from m to k, is found by the Dijkstra searching. 

Thereby, the update process revises the shortest path tree 

accordingly as shown in Fig. 10c. 
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Fig. 8:. Shortest path tree maintenance 

Definition 1 (Bounded shortest path tree (BSPT)). 

Inspired by the discussion, we propose a variant 

shortest path tree, named as bounded shortest path tree 

BSPTðvÞ, in Definition 1. A shortest path starting from v is 

necessarily kept in a bounded shortest path tree BSPTðvÞ if 

and only if the distance of the shortest path is shorter than the 

distance from v to every border node. In Fig. 11b, BSPTðlÞ 

keeps only one shortest path l ! k. The shortest path l ! m and 

l ! j are dropped since the shortest distance of l ! m and l ! j is 

not shorter than the distance from l to border node k. 

Typically, BSPTðvÞ is much smaller than SPTðvÞ and it also 

boosts up computation efficiency due to smaller search space. 

Pruning ability of BSPT. The pruning ability of BSPT is 

highly relevant to the border node selection in each subgraph. 

In the worst case, BSPT performs as the same as a na€ıve 

SPT if the borders are very far from each others. However, 

such cases rarely happen in LTI since the graph partitioning 

technique prefers a partitioning having small number of 

borders, which minimizes the change of the worst-case 

scenario. In our study, BSPT prunes 30 to 50 percent edges 

from the complete SPT for our evaluated data sets. 

  

 

 

 

 

 

 

PUTTING ALL TOGETHER 

 

 

A client can invoke Algorithm 2 in order to find the 

shortest path from a source s to a destination t. First, the 

client generates a search graph Gq based on s (i.e., current 

location) and d. When the client tunes-in the broadcast 

channel it keeps listening until it discovers a header segment 

(cf. Fig. 9). After reading the header segment, it decides the 

necessary segments (to be read) for computing the shortest 

path. These issues are addressed. The client then waits for 

those segments, reads them, and updates the weight of Gq. 

Subsequently, Gq is used to compute the shortest path in the 

client machine locally Note that Algorithm 2 is kept running 

in order to provide online shortest path until the client 

reaches to the destination. service provider, as shown in 

Algorithm 3. The first step is devoted  to construct the live 

traffic index; they are offline tasks to be executed once only. 

The service provider builds the live traffic index by 

partitioning the graph G into a set of sub graphs fSGig such 

that they are ready for broadcasting. We develop an effective 

graph partitioning algorithm for minimizing the total size of 

sub graphs and study a combinatorial optimization for 

reducing the search space of shortest path queries in. In each 

broadcasting cycle, the server first collects live traffic 

updates from the traffic provider, updates the sub graphs 

fSGig eventually broadcasts them. 

 

VII CONCLUSION 

 In this paper we studied online shortest path 

computation; the shortest path result is computed/updated 

based on the live traffic circumstances. We carefully analyze 

the existing work and discuss their inapplicability to the 

problem (due\ to their prohibitive maintenance time and large 

transmission overhead). To address the problem, we suggest 

a promising architecture that broadcasts the index on the air. 

We first identify an important feature of the hierarchical 

index structure which enables us to compute shortest path on 
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a small portion of index. This important feature is thoroughly 

used in our solution, LTI. Our experiments confirm that LTI 

is a Pareto optimal solution in terms of four performance 

factors for online shortest path computation. In the future, we 

will extend our solution on time dependent networks. This is 

a very interesting topic since the decision of a shortest path 

depends not only on current traffic data but also based on the 

predicted traffic circumstances. 
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