

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 879

Live Activity List Based Shortest Path Calculation
1M.Arjun & 2K.Sirisha

1
 M.Tech Student, Department of CSE, CREC, Tirupati,

Email id: hiarjun.m@gmail.com).
2
 Assistant Professor, Department of CSE, , CREC, Tirupati, INDIA,

Email.id: sirisha535@gmail.com

Abstract—

When you drive to somewhere ‘far away’, you will

leave your current location via one of only a few

‘important’ traffic junctions. Starting from this

informal observation, we develop an algorithmic

approach—transit node routing— that allows us to

reduce quickest-path queries in road networks to a

small number of table lookups. We present two

implementations of this idea, one based on a

simple grid data structure and one based on

highway hierarchies. For the road map of the

United States, our best query times improve over

the best previously published figures by two orders

of magnitude. Our results exhibit various trade-

offs between average query time (5 μs to 63 μs),

preprocessing time (59min to 1200min), and

storage overhead (21 bytes/node to 244

bytes/node).

Index terms: Shortest path, air index, broadcasting

I INTRODUCTION

 The classical way to compute the shortest path

between two given nodes in a graph with given edge lengths

is Dijkstra’s algorithm Shortest path computation is an

important function in modern car navigation systems and has

been extensively studied in This function helps a driver to

figure out the best route from his current position to

destination. Typically, the shortest path is computed by

offline data pre-stored in the navigation systems and the

weight (travel time) of the road edges is estimated by the

road distance or historical data. These systems can calculate

the snapshot shortest path queries based on current live traffic

data; however, they do not report routes to drivers

continuously due to high operating costs. Answering the

shortest paths on the live traffic data can be viewed as a

continuous monitoring problem in spatial databases, which is

termed online shortest paths computation (OSP) in this work.

To the best of our knowledge, this problem has not received

much attention and the costs of answering such continuous

queries vary hugely in different system architectures. The

main challenge on answering live shortest paths is scalability,

in terms of the number of clients and the amount of live

traffic updates. A new and promising solution to the shortest

path computation is to broadcast an air index over the

wireless network. The main advantages of this model are that

the network overhead is independent of the number of clients

and every client only downloads a portion of the entire road

map according to the index information. For instance, the

proposed index constitutes a set of pair wise minimum and

maximum traveling costs between every two sub partitions of

the road map. However, these methods only solve the

scalability issue for the number of clients but not for the

amount of live traffic updates. As reported in the re-

computation time of the index takes 2 hours for the San

Francisco (CA) road map. It is prohibitively expensive to

update the index for OSP, in order to keep up with live traffic

circumstances. Motivated by the lack of off-the-shelf solution

for OSP, in this paper we present a new solution based on the

index transmission model by introducing live traffic index

(LTI) as the core technique.

1.The index structure of LTI is optimized by two novel

techniques, graph partitioning and stochastic-based

construction, after conducting a thorough analysis on the

hierarchical index techniques To the best of our knowledge,

this is the first work to give a thorough cost analysis on the

hierarchical index techniques and apply stochastic process to

optimize the index hierarchical structure

2.LTI efficiently maintains the index for live traffic

circumstances by incorporating Dynamic Shortest Path Tree

(DSPT) [into hierarchical index techniques. In addition, a

bounded version of DSPT is proposed to further reduce the

broadcast overhead.

3.By incorporating the above features, LTI reduces the tune-

in cost up to an order of magnitude as compared to the state-

of-the-art competitors; while it still provides competitive

query response time, broadcast size, and maintenance time.

To the best of our knowledge, we are the first work that

attempts to minimize all these performance factors for OSP.

mailto:Kamakshi.vinni@gmail.com
mailto:sirisha535@gmail.com

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 880

II PRELIMINARY

A Performance Factors

 The main performance factors involved in OSP are:

(i) tune-in cost (at client side), (ii) broadcast size (at server

side), and (iii) maintenance time (at server side), and (iv)

query response time (at client side). In this work, we

prioritize the tune-in cost as the main optimized factor since

it affects the duration of client receivers into active mode and

power consumption is essentially determined by the tuning

cost If we minimize the tune-in cost of one service, then we

reserve more resources for other services.

a shortest route using pre-stored weights

b .shortest route using traffic live (by LTI)

Fig. 1. Two alternative shortest paths

 The index maintenance time and broadcast size

relate to the freshness of the live traffic information. The

maintenance time is the time required to update the index

according to live traffic information. The broadcast size is

relevant to the latency of receiving the latest index

information. As the freshness is one of our main design

criteria, we must provide reasonable costs for these two

factors The last factor is the response time at client side.

Given a proper index structure, the response time of shortest

path computation can be very fast The computation also

consumes power but their effect is outweighed by

communication. It remains, however, an evaluated factor for

OSP. BA Adaptation of Existing Approaches The

communication cost is proportional to the number of clients.

Thus, we omit this model from the remaining discussion

1. Raw Transmission Model

Under the raw transmission model, the traffic data

(i.e., edge weights) are broadcasted by a set of packets for

each broadcast cycle. Uninformed search (e.g., Dijkstra’s

algorithm) traverses graph nodes in ascending order of their

distances from the source s, and eventually discovers the

shortest path to the destination t. Bi-directional search

reduces the search space by executing Dijkstra’s algorithm

simultaneously forwards from s and backwards from Goal

directed approaches search towards the target by filtering out

the edges that cannot possibly belong to the shortest path.

The filtering procedure requires some pre-computed

information. ALT and arc flags (AF) are two representative

algorithms in this category

Dynamic shortest path tree (DSPT) maintains a tree

structure Finding a shortest path from s to any node is

computed at time on the shortest path tree. In their work, a

simple dynamic version of Dijkstra is proposed which can

outperform all competitors. locally for efficient shortest path

retrieval

2 Index Transmission Model

The index transmission model enables servers to broadcast an

index instead of raw traffic data. We review the state-of the-

art indices for shortest path computation and discuss their

applicability on the index transmission model.

Road map hierarchical approaches try to exploit the

hierarchical structure to the road map network in a pre-

processing step, which can be used to accelerate all

subsequent queries.

Hierarchical index structures provide another way to

abstracting and structuring a topographical index in a

hierarchical fashion. Hierarchical MulTi-graph model (HiTi)

is a representative approach in this category. Hierarchical

encoded path view (HEPV) and Hub indexing share the same

intuition of HiTi which divides large graph into smaller sub

graphs and organize them in a hierarchical fashion by

pushing up border nodes Furthermore, there is no discussion

on how to maintain the TEDI structure in presence of edge

weight updates.

Oracle focus on pre computing certain shortest path distances

called oracles in order to answer approximate shortest path

queries efficiently. Full pre-computation pre-computes the

shortest paths between any two nodes in the road network,

such as SILC and distance index . Even though these

approaches offer fast query response time, the maintenance

cost and size overhead become prohibitive on large road

networks. Combination approaches integrate promising

features from different index structure to support efficient

shortest path computation. SHARC and CALT are two well

studied combination approaches which integrate road map

hierarchical approaches with AF and ALT, respectively

III LTI OVERVIEW AND OBJECTIVES

A LTI Overview

The traffic provider collects the live traffic

circumstances from the traffic monitors via techniques like

road sensors and traffic video analysis. The service provider

periodically receives live traffic updates from the traffic

provider and broadcasts the live traffic index on radio or

wireless network.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 881

When a mobile client wishes to compute and monitor a

shortest path, it listens to the live traffic index and reads the

relevant portion of the index for computing the shortest path.

Fig. 3. LTI system overview

In Fig. 4, we illustrate the components and system flow in

our LTI framework. The components shaded by gray color

are the core of LTI. In order to provide live traffic

information, the server maintains (component a) and

broadcasts (component b) the index according to the up-to-

date traffic circumstances. In order to compute the online

shortest path, a client listens to the live traffic index, reads

the relevant portions of the index (component c), and

computes the shortest path (component d).

Fig 4. Components in LTI

B LTI Objectives

(1) Efficient maintenance strategy. Without efficient

maintenance strategy, long maintenance time is needed at

server side so that the traffic information is no longer live.

This can reduce the maintenance time spent at component a.

(2) Light index overhead. The index size must be controlled

in a reasonable ratio to the entire road map data. This reduces

not only the length of a broadcast cycle, but also makes

clients listen fewer packets in the broadcast channel. This can

save the communication cost at components b and c.

(3) Efficient computation on a portion of entire index. This

property enables clients to compute shortest path on a portion

of the entire index. The computation at component d gets

improved since it is executed on a smaller graph. This

property also reduces the amount

Fig. 5. Hierarchical index structure

Of data. hierarchical index structures enable clients to

compute the shortest path on a portion of entire index.

However, without pairing up with the first and second

features, the communication and computation costs are still

infeasible for OSP. the hierarchical index structures enable

clients to compute the shortest path on a portion of entire

index. However, without pairing up with the first and second

features, the communication and computation costs are still

infeasible for OSP.

IV LTI CONSTRUCTION

To the best of our knowledge, this is the first work to analyze

the hierarchical index structures and exploit the stochastic

process to optimize the index.

A Analysis of Hierarchical Index Structures

Hierarchical index structures TEDI enable fast shortest path

computation on a portion of entire index which significantly

reduces the tune-in cost on the index transmission model. For

the sake of analysis, we use HiTi as our reference model in

the remaining discussion. Our analysis can be adapted to

other approaches since their execution paradigm shares the

same principle. Stochastic based index construction. The

graph partitioning frame work only returns a binary tree

index that is constructed based on Cheeger cut sequences.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 882

Fig.6.Effect of hierarchical structure.

To estimate the average size of the search graphs, we

apply a stochastic process, Monte Carlo, that relies on

random sampling to obtain numerical results.

The construction terminates when we have enough leave

entries (i.e., g). Algorithm 1 shows the pseudo codes of the

partitioning algorithm based on the stochastic process.

The effect of g. In this work, LTI requires only one parameter

g to construct the index which is used to control the number

of subgraphs being constructed. Our proposed techniques

attempt to optimize the index (O2 and O3) subject to g.

V LTI TRANSMISSION

The broadcasting model uses radio or wireless

network (e.g., 3G, LTE, Mobile WiMAX) as the transmission

medium. When the server broadcasts a data set (i.e., a

“programme”), all clients can listen to the data set

concurrently. Thus, this transmission model scales well

independent of the number of clients. A broadcasting scheme

is a protocol to be followed by the server and the clients.

First, the server partitions the data set into m equi-sized data

segments. Each packet contains a header and a data segment,

where a header describes the broadcasting schedule of all

packets. In this example, the variables i and n in each header

represent the last broadcasted item and the total number of

items. The server periodically broadcasts a sequence of

packets. The query performance can be measured by the

tuning time and the waiting time at the client side. The tuning

time is the time for reading the packets. The waiting time is

the time from the start time to the termination time of the

query. In this broadcasting scheme, the parameter m decides

the tradeoff between tune-in size and the overhead. A large m

favors small tune-in size whereas a small m incurs small

waiting time. Imielinski et al. suggests to set m to the square

root of the ratio of the data size to the index size.

5.3 Client Tune-in Procedures of Air LTI

Fig. 9 shows the content of a broadcast cycle for a LTI

structure in Fig. 7. In this example, the air index uses a ð1;

2Þ interleaving scheme and each data packet stores the edge

weight of different sub graphs. For instance, the edge weight

of sub graph SG1 are stored in the 2nd packet of a broadcast

cycle.

Fig. 7: Receiving LTI data from the air index

VI .LTI MAINTENANCE

 In this section, we study an incremental update

approach that can efficiently maintain the live traffic index

according to the updates. As a remark, the entire update

process is done at the service provider and there is no extra

data structure being broadcasted to the clients. To reduce the

maintenance cost, we incorporates dynamic shortest path tree

technique (DSPT) into the hierarchical index structures and

reduce the size of trees by a bounded version (BSPT) The

weight of these shortcuts can be maintained by the

corresponding shortest path tree from each border node BSGi

. Given a graph G ¼ ðV ;EÞ, a shortest path tree (SPT)

rooted at a vertex r 2 V, denoted as SPTðrÞ, is a tree with

root r, and 8v 2 V _ frg, SPTðrÞ contains a shortest path from

r to v. In Fig. 10a, the shortest path tree of vertex k is

highlighted by bold lines. Given a shortest path tree, a

dynamic Dijkstra approach [22] is proposed for handling

both weight increasing (Fig. 10b) and decreasing cases (Fig.

10c). The intuition of the algorithms is to find the affected

local vertices and revise the shortest path tree using a

Dijkstra like algorithm starting from the updated vertices. For

instance, the weight of edgeðm; lÞ is decreased from 2 to 0.

Starting from the vertex m, a new path m ! l ! k, that is a

better path from m to k, is found by the Dijkstra searching.

Thereby, the update process revises the shortest path tree

accordingly as shown in Fig. 10c.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 883

Fig. 8:. Shortest path tree maintenance

Definition 1 (Bounded shortest path tree (BSPT)).

Inspired by the discussion, we propose a variant

shortest path tree, named as bounded shortest path tree

BSPTðvÞ, in Definition 1. A shortest path starting from v is

necessarily kept in a bounded shortest path tree BSPTðvÞ if

and only if the distance of the shortest path is shorter than the

distance from v to every border node. In Fig. 11b, BSPTðlÞ

keeps only one shortest path l ! k. The shortest path l ! m and

l ! j are dropped since the shortest distance of l ! m and l ! j is

not shorter than the distance from l to border node k.

Typically, BSPTðvÞ is much smaller than SPTðvÞ and it also

boosts up computation efficiency due to smaller search space.

Pruning ability of BSPT. The pruning ability of BSPT is

highly relevant to the border node selection in each subgraph.

In the worst case, BSPT performs as the same as a na€ıve

SPT if the borders are very far from each others. However,

such cases rarely happen in LTI since the graph partitioning

technique prefers a partitioning having small number of

borders, which minimizes the change of the worst-case

scenario. In our study, BSPT prunes 30 to 50 percent edges

from the complete SPT for our evaluated data sets.

PUTTING ALL TOGETHER

A client can invoke Algorithm 2 in order to find the

shortest path from a source s to a destination t. First, the

client generates a search graph Gq based on s (i.e., current

location) and d. When the client tunes-in the broadcast

channel it keeps listening until it discovers a header segment

(cf. Fig. 9). After reading the header segment, it decides the

necessary segments (to be read) for computing the shortest

path. These issues are addressed. The client then waits for

those segments, reads them, and updates the weight of Gq.

Subsequently, Gq is used to compute the shortest path in the

client machine locally Note that Algorithm 2 is kept running

in order to provide online shortest path until the client

reaches to the destination. service provider, as shown in

Algorithm 3. The first step is devoted to construct the live

traffic index; they are offline tasks to be executed once only.

The service provider builds the live traffic index by

partitioning the graph G into a set of sub graphs fSGig such

that they are ready for broadcasting. We develop an effective

graph partitioning algorithm for minimizing the total size of

sub graphs and study a combinatorial optimization for

reducing the search space of shortest path queries in. In each

broadcasting cycle, the server first collects live traffic

updates from the traffic provider, updates the sub graphs

fSGig eventually broadcasts them.

VII CONCLUSION

 In this paper we studied online shortest path

computation; the shortest path result is computed/updated

based on the live traffic circumstances. We carefully analyze

the existing work and discuss their inapplicability to the

problem (due\ to their prohibitive maintenance time and large

transmission overhead). To address the problem, we suggest

a promising architecture that broadcasts the index on the air.

We first identify an important feature of the hierarchical

index structure which enables us to compute shortest path on

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 884

a small portion of index. This important feature is thoroughly

used in our solution, LTI. Our experiments confirm that LTI

is a Pareto optimal solution in terms of four performance

factors for online shortest path computation. In the future, we

will extend our solution on time dependent networks. This is

a very interesting topic since the decision of a shortest path

depends not only on current traffic data but also based on the

predicted traffic circumstances.

REFERENCE

[1] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D.

Schultes, “In Transit to Constant Time Shortest-Path Queries

in Road Networks,” Proc. Workshop Algorithm Eng. and

Experiments (ALENEX), 2007.

[2] P. Sanders and D. Schultes, “Engineering Highway

Hierarchies,” Proc. 14th Conf. Ann. European Symp. (ESA),

pp. 804-816, 2006.

[3] G. Dantzig, Linear Programming and Extensions, series

Rand Corporation Research Study Princeton Univ. Press,

1963.

[4] R.J. Gutman, “Reach-Based Routing: A New Approach to

Shortest Path Algorithms Optimized for Road Networks,”

Proc. Sixth Workshop Algorithm Eng. and Experiments and

the First Workshop Analytic Algorithmics and

Combinatorics (ALENEX/ANALC), pp. 100-111, 2004.

[5] B. Jiang, “I/O-Efficiency of Shortest Path Algorithms: An

Analysis,” Proc. Eight Int’l Conf. Data Eng. (ICDE), pp. 12-

19, 1992.

[6] P. Sanders and D. Schultes, “Highway Hierarchies Hasten

Exact Shortest Path Queries,” Proc. 13th Ann. European

Conf. Algorithms (ESA), pp. 568-579, 2005.

[7] D. Schultes and P. Sanders, “Dynamic Highway-Node

Routing,” Proc. Sixth Int’l Conf. Experimental Algorithms

(WEA), pp. 66-79, 2007.

[8] F. Zhan and C. Noon, “Shortest Path Algorithms: An

Evaluation Using Real Road Networks,” Transportation

Science, vol. 32, no. 1, pp. 65-73, 1998.

[9] “Google Maps,” http://maps.google.com, 2014.

[10] “NAVTEQ Maps and Traffic,” http://www.navteq.com,

2014.

[11] “INRIX Inc. Traffic Information Provider,”

http://www.inrix. com, 2014.

[12] “TomTom NV,” http://www.tomtom.com, 2014.

[13] “Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2010-2015,” 2011.

[14] D. Stewart, “Economics of Wireless Means Data Prices

Bound to Rise,” The Global and Mail, 2011.

[15] W.-S. Ku, R. Zimmermann, and H. Wang, “Location-

Based Spatial Query Processing in Wireless Broadcast

Environments,” IEEE Trans. Mobile Computing, vol. 7, no.

6, pp. 778-791, June 2008.

http://www.inrix/

