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Abstract— 

Most existing patch-based image denoising 

algorithms filter overlapping image patches and 

aggregate multiple estimates for the same pixel 

via weighting. Current weighting approaches 

always assume the restored estimates as 

independent random variables, which is 

inconsistent with the reality. In this letter, we 

analyze the correlation among the estimates and 

propose a bias-variance model to estimate 

theMean Squared Error (MSE) under various 

weights. The new model exploits the overlapping 

information of the patches; it then utilizes the 

optimization to try to minimize the estimated 

MSE. Under this model, we propose a new 

weighting approach based on Quadratic 

Programming (QP), which can be embedded into 

various denoising algorithms. Experimental 

results show that the Peak Signal to Noise Ratio 

(PSNR) of algorithms like K-SVD and EPLL can 

be improved by around 0.1 dB under a range of 

noise levels. This improvement is promising, 

since it is gained independent to which image 

model is used, especially when the gain from 

designing new image models becomes less and 

less. 

Index Terms—EPLL; image denoising; K-SVD 

 

I. INTRODUCTION 

IMAGE denoising is one of the most classical image  

 

 

 

 

processing problems; it aims to restore an image 

under random additive white Gaussian noise. Many 

state-of-the-art image denoising algorithms are based 

on image patches [1], [2], [3], [4], [5], [6], [7], [8], 

[9]. Their denoising methods can be interpreted as an 

iteration of a so-called Filtering and Weighting 

(F&W) process. Under the F&Wprocess, local image 

patches are firstly restored through filtering, and then 

multiple estimates of the same pixel from overlapping 

restored patches are weighted to derive the final 

estimate. For the filtering method, sophisticated  

patch-based image models have been applied to 

generate the filters, e.g., the sparse coding model [1], 

[3], [5], [6], [9], the Gaussian Mixture Model [7], [8], 

and the non-local similarity Manuscript received July 
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model [2], [4]. In contrast, the weighting methods are 

still 

somewhat straightforward, either using simple 

averaging or deriving the weight independently based 

on certain transform 

coefficients of the corresponding image patch itself 

[2], [4], [9]. This form of weighting method is 

optimal when the estimates for weighting are 

independent random variables. However, the 

estimates can be heavily correlated due to 

overlapping of the patches, which violates the 

assumption of independence. 

Therefore, we may further improve the denoising 

performance by analyzing the correlation among the 

estimates using the overlapping information. Based 

on the above idea, in Section II, we describe the 

F&W process precisely, analyze theMean Squared 

Error (MSE) under various weights, and derive a 

bias-variance model to estimate it accurately. We also 

show that optimizing the weight under the proposed 

model yields the minimum MSE with the help of the 

overlapping information. In Section III, we propose a 

new weighting approach to solve the optimization 

problem under the bias-variance model via Quadratic 

Programming (QP). In Section IV, we introduce the 

proposed weighting approach into the K-SVD 

algorithm and the EPLL algorithm. It indicates that 

the Peak Signal to Noise Ratio (PSNR) of both 

algorithms can be improved by around 0.1 dB under a 

range of noise levels. Finally, Section V concludes 

the letter.  

 

II. THE BIAS-VARIANCE MODEL:  

         In this section, we first formulate the 

degradation model of image denoising and describe 

the F&W process in an analytic way. Then we 

propose a bias-variance model to characterize the 

correlation of the restored estimates under the F&W 

process. The new model can estimate the MSE under 

various weights “faithfully” by exploiting the 

overlapping information of the restored patches. 

Therefore, optimizing the weight under this model is 

nearly equivalent to minimizing the real MSE. 

 

A. The Degradation Model and the   F&W Process 

The degradation model of image denoising can be 

formulated as 

 

                          Y=X+N 

 

where denote the (vectorized) clean image, is its 

noisy version, and represents the additive white 

Gaussian noise with variance . Under the above 

notations, one can represent the F&W 

process for each pixel as: 

 
Fig. 1. Two examples of X and P,i,k . In the image of (the 
left one), the red point indicates pixel and the blue block 
represents the -th local region. In the image of P,i,k(the 
right one), the lighter the pixel, the larger the 
corresponding element in P,i,k . (a) A smooth region. (b) A 

region contains an edge.  
Filtering within Local Regions: Suppose there are 
local regions (also known as patches) that share pixel 

. In the –th region, is estimated as 

 
where ( ) can be seen as a low-pass global filter. 

Various denoising algorithms compute ( ) in their 
own way, butthe values are just slightly different. For 

example, in EPLL [7], suppose pixel is at the -th 

place of the -th (vectorized) local region , where is a 

selection matrix, then the patch is Wiener filtered to 
be 
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where and are the parameter of a Gaussian 

distribution. In this case, equals to the -th column of 

 

and equals to the -th element of . Due to the property 

of , is a sparse vector with nonzero elements only in 

the -th local region, and its -th element reflects the 

closeness between and . As illustrated in Fig. 1, the -

th element of is always the largest, and if the local 

region in contains two smooth areas like in Fig. 1(b), 

the –th element of is close to 0 when pixel is in the 

other area; is a bias term of the filter. Weighting 

Throughout Local Regions: The estimates are 

weighted to derive the final estimate of as 

 

All the denoising algorithms in [1], [2], [3], [4], [5], 

[6], [7], 

[8], [9] fit the F&W process quite well. As for the 

Non-local Means algorithm [10], though it can be 

seem as a weighting algorithm without filtering, the 
weights actually reflect the closeness among pixels, 

which is mainly what ’s do under the F&W process. 

Hence, NLM is more proper to be interpreted as a 
global filtering process with only one estimate for 

each pixel 

B. Two Components in MSE Under the F&W process, 
we assume in (6) is computed exactly using the 

original filtering method of a denoising algorithm. 

Therefore, is formulated as a function of , and is 
MES(x^) formulated as 

 

where is the number of pixels in and is denoted as the 
concatenation of all ’s. Since is a random variable 

depend on noise , we propose a bias-variance model, 

which estimates it by its expectation under . For 
mathematical derivation simplicity, we assume that ’s 

are independent to . Hence, the expectation can be 

estimated as 

 

is the variance. In reality, ’s are derived from , which 

makes them still correlated to , i.e., the assumption 
that leads to (8) may be violated. To evaluate the 

appropriateness of using to approximate , we compute 

their ratio 

 

under various ’s. If is a constant under all ’s, then we 
can conclude that optimizing (8) is equivalent to 

minimizing the true value of . Experimental results 

done on several standard images under three 

representative denoising algorithms, K-SVD [1], 
EPLL [7], and BM3D [2] validate this guess. As 

shown in Table I, under each image and denoising 

algorithm combination, the values of under an 
averaging and a uniformly sampled are really close. 

We only list these two values for illustration due to 

space limitation, the value of 

TABLE I 

UNDER (IMAGE, DENOISING ALGORITHM) COMBINATIONS. IN 

EACH COMBINATION, THE LEFT ONE USE AVERAGING AND THE 

RIGHT ONE USE A UNIFORMLY SAMPLED 

 

under other ’s are also quite close to the presented ones. 

Therefore, we denote the objective function as 
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In current weighting approaches, ( )’s, for , are assumed to 

be independent random variables with zero means, so that 

their covariance matrix is assumed to be a diagonal matrix. 

Among them, the most promising one computes the weight 

as the inverse of the sparsity of the transform coefficients 

[2], [9]. Though it has been validated under a shift-

invariant DCT transform based denoising algorithm [9], 

experimental results show that the same weighting method 
doesn’t work for K-SVD and EPLL, which use simple 

averaging originally. The reason is: on one side, in [9], 

some estimates are not so good when the block DCT basis 

can not represent the patches sparsely, so that the 

weighting strategy performs well by giving such estimates 

small weights; on the other side, in K-SVD and EPLL, all 

the estimates are comparable since the transform is more 

adaptive and always yields sparse representations, which 

makes this strategy ineffective. While under the bias-

variance model, there is no independence assumption, and 

the covariance matrix is derived analytically 

 
as shown in (12). Such is superior than any diagonal matrix 

because it retain the overlapping information of different 

local regions by computing . It is easy to see that each 
element of is a inner product of two ’s.Asmentioned in 

Section II-A, has zero elements outside local region and 

the value of its nonzero elements is mostly dependent on 

how close is the corresponding to . Therefore, the inner 

product of and can be seen as the total squared closeness to 

of the overlapped pixels in local region and . 

 

III. THE QP BASED WEIGHTING APPROACH 

      In this section, we propose a Quadratic Programming 

(QP) based weighting approach for optimizing . This 

approach contains two profiles. In Section III-A, we 
propose the “approximation” profile, which optimizes with 

an approximation matrix . In Section III-B, we propose the 

“practical” profile, which computes the optimal weight as a 

linear combination of two weights, each minimizes the bias 

and the variance component separately, with a practically 

derived combination coefficient. 

 

A. The Approximation Profile 

     

       There is unknown pixel values contained in . Hence, 

before optimizing , we need to approximate first based on 

and ’s. For simplicity, like previous weighting methods 
assume as a diagonal matrix, we assume here as a diagonal 

matrix , while still retain the overlapping information of 

patches in . The -th diagonal entry of is 

 
is the mean of all the ’s and is a small parameter to ensure 

the entry to be positive. Under this approximation, the 
optimal weight is 

 
It is easy to see that each can be solved independently via 

QP. We also note that using the Lagrangian multiplier 
method based on may lead to negative elements in , which 

means constraint is non-trivial. 

 

B. The Practical Profile 

 

       The approximation profile can be interpreted under a 

more general linear combination framework. We can see 

that in (18) can be approximated by 

 

 
 

under the same constraints as in (18). In the practical 

profile, we compute the optimal weight as , where is a 

practically learned real scalar that yields the minimum 
averaged MSE on a training image set. When is a good 

approximation of , would be within 

 
Fig. 2. The PSNR gain by using under for K-SVD. Each 

curve represent one training image and the circle indicates 

the position of the optimal that leads to the maximum gain 

for that image. 
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so that both profiles can improve the denoising 

performance. Otherwise, may be negative and only the 

practical profile performs well under this case. 

In practice, we find that ’s are quite likely to be a positive 

scalar times the identity matrix, which makes to be the 

averaging weight. Thus we modify to be the original 

weight of a certain denoising algorithm. This reduces the 
computational cost of solving (20) and makes the original 

algorithm as a special case under the practical profile by 

setting . 

 

IV. NUMERICAL EXPERIMENTS 

 

   In this section, we test the proposed weighting approach 

under three representative denoising algorithms: K-SVD, 

EPLL, and BM3D. Due to space limitation, we list the 

experimental results done on frequently used standard 

images in image denoising domain here, and list the other 
supportive results on our webpage. For the K-SVD 

algorithm, we find the denoising performance can be 

improved most significantly under high noise levels using 

the practical profile with negative ’s. For each noise level, 

is pre-learned from a training set with three standard 

images. Taking as an example, as shown in Fig. 2, we 

compute the PSNR gain of using for , and find that can 

lead to almost the maximum PSNR gain for any of the 

training images. Therefore, we set under to denoise all the 

images. After the training process, we apply the practical 

profile to the other 8 standard images under from 30 to 50, 
and compare the PSNR with the original K-SVD 

algorithm. As shown in Table II, the averaged PSNR gain 

increases from about 0.1 dB to 0.2 dB as increases. 

 

            For the EPLL algorithm, we apply the proposed 

weighting approach for multiple times since it is an 

iterative algorithm. We find both of the two profiles are 

effective for moderate noise levels, while the 

approximation profile performs even better. Therefore, we 

choose the approximation profile to improve the EPLL 

algorithm. As shown in Table III, for noise level from to , 

the averaged PSNR gain can reach around 0.1dB. The 
proposed weighting approach is not effective for high noise 

levels probably because: It is designed to minimize 

 

TABLE II 

PSNR COMPARISON UNDER K-SVD. UNDER EACH 

NOISE LEVEL, THE LEFT COLUMN USES THE 

ORIGINAL WEIGHT, THE RIGHT COLUMN USES 

WEIGHT OF THE PRACTICAL PROFILE 

 
 

TABLE III 

PSNR COMPARISON UNDER EPLL. UNDER EACH 

NOISE LEVEL, THE LEFT COLUMN USES THE 

ORIGINAL WEIGHT, THE RIGHT COLUMN USES 

WEIGHT OF THE APPROXIMATION PROFILE 
 

 
theMSE under only one F&Wprocess.When it is used for 

multiple times, minimizing the MSE within each iteration 

may not be the optimal. As the noise level increases, the 
number of iteration also increases, which enlarges the 

impact of the misleading objective. For the BM3D 

algorithm, we find the PSNR improvement by using the 

proposed weighting approach is insignificant, no matter 

which profile is used. This is probably because BM3D has 

much more estimates for the same pixel compare to K-

SVD 

and EPLL, and their correlation is alsomore 

complicated,which makes approximating the hidden 

covariancematrix in (14) accurately very hard. Therefore, 

we need to design more sophisticated profiles for BM3D in 
the future. 

 

V. CONCLUSION: 

 

     In this letter, we propose a bias-variance model to 

estimate theMSE accurately by analyzing the correlation 

among the estimates. We then propose a new weighting 

approach that contains two profiles using QP. The 

proposed weighting approach optimize 

the weights by preserving the overlapping information of 

restored patches. Experimental results show that the PSNR 

gain of K-SVD and EPLL can be improved by about 0.1 
dB under a range of noise levels. The 0.1 dB improvement 

is promising, since it is independent to which image model 

is used, especially when the gain from designing new 

image models becomes less and less. This work setup a 

novel bias-variance model that formulates the selection of 

weights as an optimization problem. The proposed two 
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profiles for solving this optimization problem can be seen 

as a stepping stone, and better profiling methodology may 

be proposed with more sophisticated techniques. 
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