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Abstract— 

In many practical scenarios, image encryption has to 

be conducted prior to image compression. This has led 

to the problem of how to design a pair of image 

encryption and compression algorithms such that 

compressing the encrypted images can still be 

efficiently performed. In this project, design a highly 

efficient image encryption-then-compression (ETC) 

system, where both lossless and lossy compression are 

considered. Image encryption scheme operated over 

the prediction error domain. In gradient adaptive 

prediction (GAP) is adopted due to its excellent de-

correlation capability. Divide the prediction errors 

into clusters based on a context-adaptive approach. It 

perform cyclical shift operations to each resulting 

prediction error block and read out the data in raster-

scan order to obtain the permuted cluster and 

generates the final encrypted image. The state-of-the 

art lossless/lossy image coders, which take original, 

unencrypted images as inputs. In contrast, most of the 

existing ETC solutions induce significant penalty on 

the compression efficiency. Lossless Compression 

design an arithmetic coding (AC) based approach to 

efficiently compress the encrypted image. It can be 

shown that the proposed scheme can provide 

reasonably high level of security and efficiency. To 

measure compressed efficiency of proposed method to 

the encrypted images is compared with lossless rates 

given by Context Based Adaptive Lossless Image 

Codec (CALIC).In lossy compression of encrypted 

image, perform uniform scalar quantization on each 

element and then apply adaptive arithmetic 

coding(AC) over quantized prediction errors. It varies 

quantization parameters to measure peak signal to  

 

 

noise ratio and mean square error. It is high level of 

security and efficient. 

Index Terms: Compression of encrypted image; 

encrypted domain signal processing. 

1. INTRODUCTION 

Consider an application scenario in which a 

content owner Alice wants to securely and efficiently 

transmit an image I to a recipient Bob, via an untrusted 

channel provider Charlie. Conventionally, this could 

be done as follows. Alice first compresses I into B, 

and then encrypts B into Ie using an encryption 

function EK (.), where K denotes the secret key, as 

illustrated in Fig. 1(a). The encrypted data Ie is then 

passed to Charlie, who simply forwards it to Bob. 

Upon receiving Ie, Bob sequentially performs 

decryption and decompression to get a reconstructed 

image Ȋ. Even though the above Compression-then-

Encryption (CTE) paradigm meets the requirements in 

many secure transmission scenarios, the order of 

applying the compression and encryption needs to be 

reversed in some other situations. As the content 

owner, Alice is always interested in protecting the 

privacy of the image data through encryption. 

Nevertheless, Alice has no incentive to compress her 

data, and hence, will not use her limited computational 

resources to run a compression algorithm 
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Fig. 1. (a) Traditional Compression-then-Encryption 

(CTE) system;(b)Encryption-then-

Compression(ETC)system. 

 

before encrypting the data. This is especially true when 

Alice uses a resource-deprived mobile device. In contrast, 

the channel provider Charlie has an overriding interest in 

compressing all the network traffic so as to maximize the 

network utilization. It is therefore much desired if the 

compression task can be delegated by Charlie, who typically 

has abundant computational resources. A big challenge 

within such Encryption-then-Compression (ETC) 

framework is that compression has to be conducted in the 

encrypted domain, as Charlie does not access to the secret 

key K. This type of ETC system is demonstrated in Fig. 

1(b). The possibility of processing encrypted signals directly 

in the encrypted domain has been receiving increasing 

attention in recent years [2]–[6]. At the first glance, it seems 

to be infeasible for Charlie to compress the encrypted data, 

since no signal structure can be exploited to enable a 

traditional compressor. Although counter-intuitive, Johnson 

et.al showed that the stream cipher encrypted data is 

compressible through the use of coding with side 

information principles, without compromising either the 

compression efficiency or the information-theoretic security 

[7]. In addition to the theoretical findings, [7] also proposed 

practical algorithms to losslessly compress the encrypted 

binary images. Schonberg et. al later investigated the 

problem of compressing encrypted images when the 

underlying source statistics is unknown and the sources 

have memory [8], [9]. By applying LDPC codes in various 

bit-planes and exploiting the inter/intra correlation, 

Lazzeretti and Barni presented several methods for lossless 

compression of encrypted grayscale/color images. 

Furthermore, Kumar and Makur applied the approach  to the 

prediction error domain and achieved better lossless 

compression performance on the encrypted grayscale/color 

images [11]. Aided by rate-compatible punctured turbo 

codes, Liu et. al developed a progressive method to 

losslessly compress stream cipher encrypted grayscale/color 

images. More recently, Klinc et al. extended Johnson‟s 

framework to the case of compressing block cipher 

encrypted data .To achieve higher compression ratios, lossy 

compression of encrypted data was also studied . Zhang et. 

al proposed a scalable lossy coding framework of encrypted 

images via a multi-resolution construction. In a compressive 

sensing (CS) mechanism was utilized to compress encrypted 

images resulted from linear encryption. A modified basis 

pursuit algorithm can then be applied to estimate the 

original image from the compressed and encrypted data. 

Another CS-based approach for encrypting compressed 

images was reported in [12]. Furthermore, Zhang designed 

an image encryption scheme via pixel-domain permutation, 

and demonstrated that the encrypted file can be efficiently 

compressed by discarding the excessively rough and fine 

information of coefficients in the transform domain. 

Recently, Zhang et. al suggested a new compression 

approach for encrypted images through multi-layer 

decomposition. Extensions to blind compression of 

encrypted videos were developed. Despite extensive efforts 

in recent years, the existing ETC systems still fall 

significantly short in the compression performance, 

compared with the state-of-the-art lossless/lossy image and 

video coders that require unencrypted inputs. The primary 

focus of this work is on the practical design of a pair of 

image encryption and compression schemes, in such a way 

that compressing the encrypted images is almost equally 

efficient as compressing their original, unencrypted 

counterparts. Meanwhile, reasonably high level of security 

needs to be ensured. If not otherwise specified, 8-bit 

grayscale images are assumed. Both lossless and lossy 

compression of encrypted images will be considered. 

Specifically, we propose a permutation-based image 

encryption approach conducted over the prediction error 

domain. A context-adaptive arithmetic coding (AC) is then 

shown to be able to efficiently compress the encrypted data. 

Thanks to the nearly i.i.d property of the prediction error 

sequence, negligible compression penalty (< 0.1% coding 

loss for lossless case) will be introduced. Furthermore, due 

to the high sensitivity of prediction error sequence against 

disturbances, reasonably high level of security could be 

retained. The rest of this project is organized as follows. 

Gives the details of  proposed ETC system, where lossless 

compression is considered. Extension to the case of lossy 

compression presents the security analysis and evaluation of 
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the compression performance. Experimental results are 

reported in to validate our findings.  

 

II. RELATED WORK 

In the last years, we have witnessed the coincidence of 

several key factors, such as the popularization of social 

networks and the creation of multiple web services that store 

and process personal data in environments out of the control 

of the data owner. This fact raised the issue of personal data 

privacy, therefore questioning the legality and morality of 

the use of such data by untrustworthy parties. Furthermore, 

European data protection directives require a high level of 

privacy protection for personal and sensitive data in 

virtually any context.  

 The emergent discipline of Signal Processing 

in the Encrypted Domain (SPED), born as a result of the 

joint efforts of the cryptographic community and signal 

processing community, provides efficient technological 

means to enforce privacy protection in signal processing 

applications. This target is achieved through the 

development of malleable encryption schemes and secure 

protocols for sensitive data and signals that allow for the 

execution of operations directly on the encrypted signals, 

with no access to them in the clear. Hence, the application 

of SPED techniques preserves users' privacy even when 

their data are stored and processed in an untrusted 

environment, like a public Cloud. It  has an active research 

line in SPED, with a broad theoretical-practical scope, that 

has been materialized in recent years in numerous 

publications and contributions to international journals and 

conferences, and several international patient applications in 

the area of secure signal processing. The privacy models 

and primitives developed within the cryptographic concepts 

like Secure Multiparty Computation and Secure Function 

Evaluation. However, we have not left aside the practical 

approach given by the numerous applications of this 

technology, some of them being 

 Protection of biometric signals in access control 

systems 

 Secure adaptive filtering 

 Privacy protection in outsourced multimedia 

Clouds 

 Privacy protection in videosurveillance systems 

 Privacy in fine-grained Smart Metering 

applications 

 Data mining on private databases 

 Secure applications for eHealth (telediagnosis 

/telemedicine, e.g., DNA analysis) 

 Traceability of copyright infringements through 

private insertion of watermarks 

III. PROPOSED ETC SYSTEM 

In this section, we present the details of the three key 

components in our proposed ETC system, namely, image 

encryption conducted by Alice, image compression 

conducted by Charlie, and the sequential decryption and 

decompression conducted by Bob.     

Image Encryption Via Prediction Error Clustering and 

Random Permutation: 

 

 

Figure:2 Schematic diagram of image encryption. 

From the perspective of the whole ETC system, the design 

of the encryption algorithm should simultaneously consider 

the security and the ease of compressing the encrypted data. 

To this end, we propose an image encryption scheme 

operated over the prediction error domain. The schematic 

diagram of this image encryption method is depicted in Fig. 

2. For each pixel Ii, j of the image I to be encrypted, a 

prediction Ii, j is first made by using an image predictor, e.g. 

GAP or MED, according to its causal surroundings. In our 

work, the GAP is adopted due to its excellent de-correlation 

capability. The prediction result Ii, j can be further refined 

to ˜ Ii, j through a context-adaptive, feedback mechanism. 

Consequently, the prediction error associated with Ii, j can 

be computed by 

𝑒𝑖 ,𝑗 = 𝐼𝑖 ,𝑗 − 𝐼 𝑖 ,𝑗          (1) 

Although for 8-bit images, the prediction error ei, j can 

potentially take any values in the range [−255, 255], it can 

be mapped into the range [0, 255], by considering the fact 

that the predicted value ˜ Ii, j is available at the decoder 

side. From (1), we know that ei, j must fall into the interval 

[− ˜ Ii, j , 255− ˜ Ii, j ], which only contains 256 distinct 

values. More specifically, if ˜ Ii, j ≤ 128, we rearrange the 

possible prediction errors. − ˜ Ii, j ,− ˜ Ii, j + 1, . . . , 0, 1, . . . 

, ˜ Ii, j , ˜ Ii, j + 1, . . . , 255 − ˜ Ii, j in the order 0,+1,−1, . . . 

,+ ˜ Ii, j ,− ˜ Ii, j , ˜ Ii, j + 1, ˜ Ii, j + 2, . . . , 255 − ˜ Ii, j , each 

of which is sequentially mapped to a value between 0 to 

255. If ˜ Ii, j > 128, a similar mapping could be applied. 
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Note that, in order to reverse the above mapping, the 

predicted value ˜ Ii, j needs to be known. In the sequel, let 

us denote the mapped prediction error by ˜ei, j , which takes 

values in the range [0, 255]. Our proposed image encryption 

algorithm is performed over the domain of the mapped 

prediction error ˜ei, j . Instead of treating all the prediction 

errors as a whole, we divide the prediction errors into L 

clusters based on a context-adaptive approach. The 

subsequent randomization and compression will be shown 

to be benefited from this clustering operation. To this end, 

an error energy estimator originally proposed in [21] is used 

as an indicator of the image local activities. More 

specifically, for each pixel location (i, j ), the error energy 

estimator is defined by  

 

∆𝑖 ,𝑗 = 𝑑ℎ + 𝑑𝑣 + 2|𝑒𝑖−1,𝑗 |        (2) 

 

Where 

𝑑ℎ =  𝐼𝑖−1,𝑗 − 𝐼𝑖−2,𝑗  +  𝐼𝑖,𝑗−1 − 𝐼𝑖−1,𝑗−1 + |𝐼𝑖,𝑗−1

− 𝐼𝑖+1,𝐽+1| 

 

𝑑𝑣 =  𝐼𝑖−1,𝑗 − 𝐼𝑖−1,𝑗−1 +  𝐼𝑖 ,𝑗−1 − 𝐼𝑖 ,𝑗−2 + |𝐼𝑖+1,𝑗−1 −

𝐼𝑖+1,𝑗+2|      (3) 

 

and ei−1, j is the prediction error at location (i − 1, j ). The 

design of the cluster should simultaneously consider the 

security and the ease of compressing the encrypted data. In 

an off-line training process, we collect a set of samples ( 

˜e,_) from appropriate training images. A dynamic 

programming technique can then be employed to get an 

optimal cluster in minimum entropy sense, i.e., choose 0 = 

q0 < q1 < ・ ・ ・ < qL = ∞ such that the following 

conditional entropy measure is minimized 

 𝐻 𝑒~\𝑞𝑖 ≤ ∆< 𝑞𝑖+1 𝑝(𝑞𝑖 ≤ ∆< 𝑞𝑖+1)0≤𝑖≤𝐿−1        (4) 

 

 

where H(・) is the 1-D entropy function taking logarithm in 

base 2. It can be seen that the term H( ˜e|qi ≤ _ < qi+1) 

denotes the entropy of the prediction error sequence in the i 

th cluster, and hence, (4) becomes an approximation of the 

bit rate (in bpp) of representing all the prediction errors. 

Therefore, the cluster designed by minimizing (4) is 

expected to achieve optimal compression performance. 

Also, the selection of the parameter L needs to balance the 

security and the encryption complexity. Generally, larger L 

could potentially provide higher level of security because 

there are more possibilities for the attacker to figure out. 

However, it also incurs higher complexity of encryption. 

We heuristically find that L = 16 is an appropriate choice 

balancing the  above two factors well. Note that the cluster 

configurations, i.e. the values of all qi , are publicly 

accessible. For each pixel location (i, j ), the corresponding 

cluster index k can be 

determined by 

 

𝑘 = {𝑘\𝑞𝑘 ≤ ∆𝑖 ,𝑗 < 𝑞𝑘+1            (5) 

 

The algorithmic procedure of performing the image 

encryption is then given as follows: 

Step 1: Compute all the mapped prediction errors ˜ei, j of 

the whole image I . 

Step 2: Divide all the prediction errors into L clusters Ck , 

for 0 ≤ k ≤ L − 1, where k is determined by (5), and each Ck 

is formed by concatenating the mapped prediction errors in 

a raster-scan order. 

Step 3: Reshape the prediction errors in each Ck into a 2-D 

block having four columns and _|Ck |/4_ rows, where |Ck| 

denotes the number of prediction errors in Ck . 

Step 4: Perform two key-driven cyclical shift operations to 

each resulting prediction error block, and read out the data 

in raster-scan order to obtain the permuted cluster ˜Ck .  

Let CSk and RSk be the secret key vectors controlling the 

column and the row shift offsets for Ck . Here, CSk and 

RSk are obtained from the key stream generated by a stream 

cipher, which implies that the employed key vectors could 

be different, even for the same image encrypted at different 

sessions. The random permutation is also illustrated in Fig. 

3 for an input sequence S = s1s2 . . . s16, where the numbers 

within the blocks denote the indexes of the elements of S. 

Before permutation, the first row becomes (1, 2, 3, 4), the 

second row becomes (5, 6, 7, 8), etc. The column shifts are 

specified by a key vector CS = [2 3 0 1], with each column 

undergoing a downward cyclical shift in accordance with 

the key value associated with that column. The procedure is 

then repeated using another key vector RS = [1 3 1 2] for 

each of the rows. Note that such permutation operations can 

be realized via circular shifts, which are easily implemented 

in either hardware or software. 

Step 5: The assembler concatenates all the permuted 

clusters ˜C k, for 0 ≤ k ≤ L − 1, and generates the final 

encrypted image Ie = ˜C0 ˜C 1 . . . ˜CL−1 (6) in which each 

prediction error is represented by 8 bits. As the number of 

prediction errors equals that of the pixels, the file size before 

and after the encryption preserves. 
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Step 6: Pass Ie to Charlie, together with the length of each 

cluster |˜Ck |, for 0 ≤ k ≤ L − 2. The values of |˜Ck| enable 

Charlie to divide Ie into L clusters correctly. In comparison 

with the file size of the encrypted data, the overhead 

induced by sending the length |˜Ck | is negligible. 

 

 
 

Figure:3 An example of the cyclical shifts. 

 

4.1.2Lossless Compression of Encrypted Image Via 

Adaptive AC: 

The compression of the encrypted file Ie needs to 

be performed in the encrypted domain, as Charlie does not 

have   access to the secret key K. In Fig. 4, we show the 

diagram of lossless compression of Ie. Assisted by the side 

information   |˜Ck |, for 0 ≤ k ≤ L−2, a de-assembler can be 

utilized to parse   Ie into L segments ˜C0, ˜C1, . . . , ˜CL−1 

in the exactly same way as that done at the encryption stage. 

An adaptive AC is then    employed to losslessly encode 

each prediction error sequence ˜C k into a binary bit stream 

Bk . Note that the generation of all Bk can be carried out in a 

parallel manner to improve the throughput. Eventually, an 

assembler concatenates all Bk to produce the final 

compressed and encrypted bit stream B, namely, B =  B0B1 

. . .BL−1 (7) Similar to the encryption stage, the length of 

Bk, i.e. |Bk |,   for 0 ≤ k ≤ L−2, needs to be sent to Bob as 

side information. The compressibility of each ˜Ck relies on 

the fact that random   permutation only changes the 

locations, while not the values of the prediction errors. This 

leads to the preservation of the probability mass function 

(PMF) of prediction error sequence, which drives the 

adaptive AC. The length of the resulting compressed bit 

stream can then be computed by 

 

𝐿𝑐 =  𝐵 +  𝐿 − 1 [log2 |𝐵|]              (8) 

 

where |B| is measured by bits, and the second term denotes  

the overhead induced by sending the side information |Bk |, 

for 0 ≤ k ≤ L − 2.  

 

Sequential Decryption and Decompression: 

Upon receiving the compressed and encrypted bit 

stream B, Bob aims to recover the original image I . The 

schematic diagram demonstrating the procedure of 

sequential decryption and decompression is provided in Fig. 

5. According to the side information |Bk |, Bob divides B 

into L segments Bk , for 0 ≤ k ≤ L − 1, each of which is 

associated with a cluster of prediction errors. For each Bk , 

an adaptive arithmetic decoding can be applied to obtain the 

corresponding permuted prediction error sequence ˜Ck . As 

Bob knows the secret key K, the corresponding de-

permutation operation can be employed to get back the 

original Ck . 

 

 
Fig. 4. Schematic diagram of sequential decryption and 

decompression 

With all the Ck , the decoding of the pixel values can be 

performed in a raster-scan order. For each location (i, j ), the 

associated error energy estimator _i, j and the predicted 

value ˜ Ii, j can be calculated from the causal surroundings 

that have already been decoded. Given _i, j , the 

corresponding cluster index k can be determined by using 

(5). The first ‘unused’ prediction error in the kth cluster is 

selected as ˜ei, j, which will be used to derive ei, j according 

to ˜ Ii, j and the mapping rule described in Section II-A. 

Afterwards, a „used‟ flag will be attached to the processed 

prediction error. The reconstructed  pixel value can then be 

computed by 

𝐼 𝑖,𝑗 = 𝐼 𝑖 ,𝑗 + 𝑒𝑖,𝑗  

As the predicted value ˜ Ii, j and the error energy estimator 

_i, j are both based on the causal surroundings, the decoder 

can get the exactly same prediction ˜ Ii, j . In addition, in the 

case of lossless compression, no distortion occurs on the 

prediction error ei, j , which implies ˆ Ii, j = Ii, j , i.e., error-

free decoding is achieved. 

 

IV. EXTENSION TO LOSSY COMPRESSION: 

The extension of our framework to provide lossy 

compression of encrypted images. A seemingly straight 

forward solution to this end is to let Charlie perform 

uniform scalar quantization on each element of ˜Ck, for 0 ≤ 
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k ≤ L − 1, and then apply adaptive AC over quantized 

prediction errors. Unfortunately, this straightforward 

method leads to the un decodable problem, because the 

prediction ˜ Ii, j is based on the original, un quantized 

surrounding pixels that are not available to the decoder side 

in the case of lossy compression. To remedy this problem, 

quantization on prediction errors needs to be conducted by 

Alice. In other words, Alice has to be cooperative in order to 

gain the compression ratios. More specifically, after getting 

each prediction error ei, j via (1), Alice applies the 

following uniform scalar quantization on ei, j with a 

parameter τ 

 

𝑒𝑖 ,𝑗 =  
(2𝜏 + 1 (𝑒𝑖 ,𝑗 + 𝜏)/(2𝜏 + 1))

(2𝜏 + 1 (𝑒𝑖 ,𝑗 − 𝜏)/(2𝜏 + 1))
  

 

𝑒 𝑖, 𝑗 =  
(2𝜏 + 1) (𝑒𝑖 ,𝑗 + 𝜏)/(2𝜏 + 1) 𝑖𝑓𝑒𝑖 ,𝑗 ≥ 0

(2𝜏 + 1) (𝑒𝑖 ,𝑗 − 𝜏)/(2𝜏 + 1) 𝑖𝑓𝑒𝑖 ,𝑗 < 0
  

 

where ˇei, j denotes the quantized version of ei, j . 

Meanwhile, Alice maintains a reconstruction 

𝐼 𝑖 ,𝑗 + 𝐼 𝑖,𝑗 + 𝑒 𝑖 ,𝑗  

 

which will be used to predict the subsequent pixels and 

establish the context models. In other words, the prediction 

and context modeling are now based on the causal 

reconstructed values ˆ Ii, j , rather than the original Ii, j . To 

achieve better compression performance. A will be 

conducted to narrow the range of ˇei, j . For simplicity, we 

still use ˜ei, j to represent the mapped version of ˇei, j . In 

addition, the optimal cluster used to partition the error 

energy space needs to be re-designed in accordance to 

different τ . More specifically, for each τ , the training 

samples become ( ˜e,_), where ˜e is the mapped version of 

ˇe quantized with parameter τ and _ is calculated with the 

reconstructed surrounding pixels. A dynamic programming 

technique can be similarly employed to get the optimal 

cluster 0= q0(τ )< 

q1(τ ) < ・ ・ ・ < qL(τ )=∞, where the cluster 

configurations now depend on τ . As in the lossless case, all 

the values of q0(τ ), q1(τ ), . . . , qL(τ ) are publicly 

accessible. The encrypted image is eventually constructed 

by concatenating the L clusters of quantized, permuted 

prediction error sequences, in a very similar fashion as that 

done in the lossless case.  

 

Upon receiving the encrypted image, Charlie can retrieve 

the L clusters of quantized, permuted prediction errors. An 

adaptive AC can then be applied to encode the prediction 

errors in each cluster in a lossless way. Within the above 

framework of lossy compression of encrypted image, given 

fixed distortion, the lowest bit rate achievable R is 

determined by Alice through setting the quantization 

parameter τ. This is because the entropy of the prediction 

error sequences is fixed for given τ , which limits the lowest 

bit rate achievable. However, Charlie still enjoys the 

flexibility of adjusting the bit rate, which also depends on 

the compression algorithm applied, in addition to the 

parameter τ . For instance, Charlie may employ a non-

adaptive Huffman coding to compress the prediction errors. 

Certainly, the resulting bit rate will be higher than that of 

the case when adaptive AC is used, while the complexity is 

lowered. In fact, Charlie may also select an even higher bit 

rate by compressing partial prediction errors and leaving the 

others in the uncompressed format, with even lowered 

complexity. Note that Charlie is not privileged to set a rate 

lower than R, because this results in lossy representation of 

the prediction error sequence. As will be discussed shortly 

in the next Section, tiny mismatch of the prediction error 

sequence still leads to severe degradation of the decoded 

image, causing it to be worthless. The ability of controlling 

the lowest achievable rate by the content owner may be 

treated as an advantageous feature of the proposed ETC 

scheme, since the quality of the decoded image at receiver 

side is guaranteed, though the manipulation of the encrypted 

data is completely handled by an un trusted party. In 

contrast, in many existing systems, such guarantee cannot 

be offered, as Charlie can arbitrarily reduce the bit rate. 

Furthermore, in the case of lossy compression, the 

computational overhead at Alice‟s side will not be 

materially increased, as the uniform scalar quantization can 

be efficiently implemented. Noticing the fact that the 

dynamic programming operations for the optimal cluster 

design are performed completely off-line, the overall 

complexity of computation by Alice is not very high, and 

should be similar to that of some existing systems, which 

are also operated over the prediction error domain. 
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EXPERIMENTAL RESULTS 

 

 

 

 

 

 

 

Figure 5: Input image & Error Image 

 
Figure 6: Encrypted &compression 

 

Figure 7: Decryption & Lossless compressed image 

 

 

 

 

 

 

Figure 8: Lossy compressed Image 

 

 

 

PERFORMANCE EVALUATION OF 

PROPOSED SYSTEM 

Table:1 Lossless compression bit rate 

S.No Image Proposed 

System 

Existing 

system 

1 Lena 3.816(Bpp) 4.096(Bpp) 

 

Table:2 Lossy Compression parameters of 

Lena Image 

S.N

o 

T 

valu

es 

Proposed System Existing system 

  PSNR RATE PSNR RATE 

1 t=1 60.418 3.220 49.89 2.570 

2 t=3 57.238 2.311 42.25 1.531 

3 t=5 54.059 1.789 38.73 1.034 

4 t=7 50.879 3.816 36.45 0.753 

 

 

 

 

 

 

 

 

Figure 9: Average performance PSNR & Image ID 
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Figure 10: Average performances of PSNR & 

Compression ratio 

IV.CONCLUSION 

 In this project, designed an efficient image 

Encryption-then-Compression (ETC) system. Within the 

proposed framework, the image encryption has been 

achieved via prediction error clustering and random 

permutation. Highly efficient compression of the encrypted 

data has then been realized by a context-adaptive arithmetic 

coding approach. Both theoretical and experimental results 

have shown that reasonably high level of security has been 

retained. More notably, the coding efficiency of our 

proposed compression method on encrypted images is very 

close to that of the stateof- the-art lossless/lossy image 

codecs, which receive original, unencrypted images as 

inputs. 
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