

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 183

Fast data mining using association rules in distributed
databases

Sk. Reshma 1& N.Venkateswara rao 2

1
PG Scholar, Dept of CSE, Rao & Naidu Engineering College, Ongole, Prakasam Dist,Andhra Pradesh

2
Associate Professor, Dept of CSE, Rao & Naidu Engineering College, Ongole, Prakasam Dist,Andhra

Pradesh

Abstract:

Data mining can extract important knowledge

from large data collections – but sometimes these

collections are split among various parties.

Privacy concerns may prevent the parties from

directly sharing the data, and some types of

information about the data. This paper addresses

secure mining of association rules over

horizontally partitioned data. The methods

incorporate cryptographic techniques to

minimize the information shared, while adding

little overhead to the mining task.

The proposed is simple, yet powerful, methods to

generate SQL code to return aggregated columns

in a horizontal tabular layout, returning a set of

numbers instead of one number per row. This

new class of functions is called horizontal

aggregations. Horizontal aggregations build

data sets with a horizontal de normalized layout

(e.g. point-dimension, observation-variable,

instance-feature), which is the standard layout

required by most data mining algorithms.

The proposed method used three categories to

evaluate horizontal aggregations: CASE:

Exploiting the programming CASE construct;

SPJ: Based on standard relational algebra

operators (SPJ queries); PIVOT: Using the

PIVOT operator, which is offered by some

DBMSs. Experiments with large tables compare

the proposed query evaluation methods. A CASE

method has similar speed to the PIVOT operator

and it is much faster than the SPJ method. In

general, the CASE and PIVOT methods exhibit

linear scalability, whereas the SPJ method does

not.

I INTRODUCTION

Data mining methodology has emerged as a

means of identifying patterns and trends from

large quantities of data. Data mining go hand in

hand: most tools operate by gathering all data

into a central site, then running an algorithm

against that data.. This paper addresses the

problem of computing association rules within

such a scenario. We assume homogeneous

databases: All sites have the same schema, but

each site has information on different entities.

The goal is to produce association rules that hold

globally, while limiting the information shared

about each site. Computing association rules

without disclosing individual transactions is

straight forward. In a relational database,

especially with normalized tables, a significant

effort is required to prepare a summary data set

that can be used as input for a datam mining or

statistical algorithm. Most algorithms require as

input a data set with a horizontal layout, with

several Records and one variable or dimension

per column. That is the case with models like

clustering, classification, regression and PCA;

consult. Each research discipline uses different

terminology to describe the data set. In data

mining the common terms are point-dimension.

Statistics literature generally uses observation-

variable. Machine learning research uses

instance-feature. This paper introduces a new

class of aggregate functions that can be used to

build data sets in a horizontal layout (de

normalized with aggregations), automating SQL

query writing and extending SQL capabilities.

We show evaluating horizontal aggregations is a

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 184

challenging and interesting problem and we

introduced alternative methods and optimizations

for their efficient evaluation.

II. LITERATURE SURVEY

We study here the problem of secure mining of

association rules in horizontally partitioned

databases. In that setting, there are several sites

(or players) that hold homogeneous databases,

i.e., databases that share the same schema but

hold information on different entities. The goal is

to find all association rules with given minimal

support and confidence levels that hold in the

unified database, while minimizing the

information disclosed about the private databases

held by those players. That goal defines a

problem of secure multiparty computation. In

such problems, there are M players that hold

private inputs, x1, . . . , xM, and they wish to

securely compute y = f(x1, . . . , xM) for some

public function f. If here existed a trusted third

party, the players could surrender to him their

inputs and he would perform the function

evaluation and send to them the resulting output.

In the absence of such a trusted third party, it is

needed to devise a protocol that the players can

run on their own in order to arrive at the required

output y. Such a protocol is considered perfectly

secure if no player can learn from his view of the

protocol more than what he would have learnt in

the idealized setting where the computation is

carried out by a trusted third party. Yao was the

first to propose a generic solution for this

problem in the case of two players. Other generic

solutions, for the multi-party case, were later

proposed in [2,4,10].2 T. Tassa In our problem,

the inputs are the partial databases, and the

required out-put is the list of association rules

with given support and confidence. As the above

mentioned generic solutions rely upon a

description of the function f as a Boolean circuit,

they can be applied only to small inputs

andfunctions which are realizable by simple

circuits. In more complex settings, such as ours,

other methods are required for carrying out this

computation. In such cases, some relaxations of

the notion of perfect security might be inevitable

when looking for practical protocols, provided

that the excess information is deemed benign

(see examples of such protocols in e.g.

[12,20,23]). Kantarcioglu and Clifton studied

that problem in [12] and devised a protocol for

its solution. The main part of the protocol is a

sub-protocol for the secure computation of the

union of private subsets that are held by the

different players. (Those subsets include

candidate itemsets, as we explain below.) That is

the most costly part of the protocol and its

implementation relies upon cryptographic

primitives such as commutative encryption,

oblivious transfer, and hash functions. This is

also the only part in the protocol in which the

players may extract from their view of the

protocol information on other databases, beyond

what is implied by the final output and their own

input. While such leakage of information renders

the protocol not perfectly secure, the perimeter of

the excess information is explicitly bounded in

and it is argued that such information leakage is

innocuous, whence acceptable from practical

point of view. Herein we propose an alternative

protocol for the secure computation of the union

of private subsets. The proposed protocol

improves upon that in terms of simplicity and

efficiency as well as privacy. In particular, our

protocol does not depend on commutative

encryption and oblivious transfer (what

simplifies it significantly and contributes towards

reduced communication and computational

costs). The protocol that we propose here

computes a parameterized family of functions,

which we call threshold functions, in which the

two extreme cases correspond to the problems of

computing the union and intersection of private

subsets. Those are in fact general-purpose

protocols that can be used in other contexts as

well. Another problem of secure multi-party

computation that we solve here as part of our

discussion is the problem of determining whether

an element held by one player is included in a

subset held by another. Literature survey is the

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 185

most important step in software development

process. Before developing the tool it is

necessary to determine the time factor, economy

n company strength. Once these things are

satisfied, ten next steps is to determine which

operating system and language can be used for

developing the tool. Once the programmers start

building the tool the programmers need lot of

external suppor. This support can be obtained

from senior programmers, from book or from

websites. Before building

III.OBJECTIVES AND MOTIVATIONS

Objectives generally, data mining (sometimes

called data or knowledge discovery database

(KDD) is the process of analyzing data from

different perspectives and summarizing it into

useful information. Information that can be used

to increase revenue, cuts costs, or both data

mining software is one of a number of analytical

tools for analyzing data. It allows users to

analyze data from many different dimensions or

angles, categorize it, and summarize the

relationships identified. Technically, data mining

is the process of finding correlations or patterns

among different fields in large relational

databases. Building a suitable data set for data

mining purposes is a time- consuming task. This

task generally requires writing long SQL

statements or customizing SQL Code if it is

automatically generated by some tool. There are

two main ingredients in such SQL code: joins

and aggregations; we focus on the second one.

The most widely-known aggregation is the sum

of a column over groups of rows. Some other

aggregations return the average, maximum,

minimum or row count over groups of rows.

There exist many aggregations functions and

operators in SQL. Unfortunately, all these

aggregations have limitations to build data sets

for data mining purposes. The main reason is

that, in general, data sets that are stored in a

relational database (or a data warehouse) come

from On-Line Transaction Processing (OLTP)

systems where database schemas are highly

normalized. But data mining, statistical or

machine learning algorithms generally require

aggregated data in summarized form. Based on

current available functions and clauses in SQL, a

significant effort is required to compute

aggregations when they are desired in a cross

tabular (Horizontal) form, suitable to be used by

a data mining algorithm. Such effort is due to the

amount and complexity of SQL code that needs

to be written, optimized and tested. There are

further practical reasons to return aggregation

results in a horizontal (cross-tabular) layout.

Standard aggregations are hard to interpret when

there are many result rows, especially when

grouping attributes have high cardinalities.

To perform analysis of exported tables into

spreadsheets it may be more convenient to have

aggregations on the same group in one row (e.g.

to produce graphs or to compare data sets with

repetitive information). OLAP tools generate

SQL code to transpose results (sometimes called

PIVOT). Transposition can be more efficient if

there are mechanisms combining aggregation and

transposition together. With such limitations in

mind, we propose a new class of aggregate

functions that aggregate numeric expressions and

transpose

results to produce a data set with a horizontal

/.mnvlayout. Functions belonging to this class

are called horizontal aggregations. Horizontal

aggregations represent an extended form of

traditional SQL aggregations, which return a set

of values in a horizontal layout (somewhat

similar to a multidimensional vector), instead of

a single value per row. This article explains how

to evaluate and optimize horizontal aggregations

generating standard SQL code

A. Data Mining Techniques

The most commonly used techniques in data

mining are:

1. Clustering: Data items are grouped according

to logical relationships or consumer preferences.

For example, data can be mined to identify

market segments or consumer affinities.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 186

2. Associations Rule: Data can be mined to

identify associations. The beer-diaper example is

an example of associative mining.

3. Sequential patterns: Data is mined to

anticipate behavior patterns and trends. For

example, an outdoor equipment retailer could

predict the likelihood of a backpack being

purchased based on a consumer's purchase of

sleeping bags and hiking shoes.

4. Artificial neural networks: Non-linear

predictive models that learn through training and

resemble biological neural networks in structure.

5. Genetic algorithms: Optimization techniques

that use process such as genetic combination,

mutation, and natural selection in a design based

on the concepts of natural evolution.

6. Decision trees: Tree-shaped structures that

represent sets of decisions. These decisions

generate rules for the classification of a dataset.

Specific decision tree methods include

Classification and Regression Trees (CART) and

Chi Square Automatic Interaction Detection

(CHAID) CART and CHAID are decision tree

techniques used for classification of a dataset.

They provide a set of rules that you can apply to

a new (unclassified) dataset to predict which

records will have a given outcome.

7. Nearest neighbor method: A technique that

classifies each record in a dataset based on a

combination of the classes of the k record(s)

most similar to it in a historical dataset (where k

1) sometimes called the k-nearest neighbor

technique.

8. Rule induction: The extraction of useful if-

then rules from data based on statistical

significance.

9. Data visualization: The visual interpretation

of complex relationships in multidimensional

data. Graphics tools are used to illustrate data

relationships.

VI. IMPLEMENTATION:

Implementation is the stage of the project when

the theoretical design is turned out into a

working system. Thus it can be considered to be

the most critical stage in achieving a successful

new system and in giving the user, confidence

that the new system will work and be effective

The implementation stage involves careful

planning, investigation of the existing system and

it’s constraints on implementation, designing of

methods to achieve changeover and evaluation of

changeover methods.

The CwFT algorithm is a workflow scheduling

algorithm extended from the HEFT algorithm for

distributed en-vironments with multiple

heterogeneous processing nodes. Instead of

optimizing only the workflow

A. COST WITH FINISH TIME-BASED

ALGO-RITHM:

makespan as usual, CwFT algorithm also

considers reducing the monetary cost that CCs

need to pay in a computing framework with the

combination between numerous Cloud node and

a local system. Similar to HEFFT, the CwFT

algorithm is comprised of two phases: Task

Prioritizing to mark the priority level for all tasks

and Node Selection to select tasks in a

descending or-der by the priority level and then

schedule each select-ed task on an appropriate

processing node to optimize the value of the

utility function.

B. OBJECTIVES:

Objectives Generally, data mining (sometimes

called data or knowledge discovery database

(KDD) is the process of analyzing data from

different perspectives and summarizing it into

useful information. Informa-tion that can be used

to increase revenue, cuts costs, or both. Data

mining software is one of a number of analytical

tools for analyzing data. It allows users to an-

alyze data from many different dimensions or

angles, categorize it, and summarize the

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 187

relationships identi-fied. Technically, data

mining is the process of finding correlations or

patterns among different fields in large relational

databases. Building a suitable data set for data

mining purposes is a time- consuming task. This

task generally requires writing long SQL

statements or customizing SQL Code if it is

automatically generated by some tool. There are

two main ingredients in such SQL code: joins

and aggregations; we focus on the sec-ond one.

The most widely-known aggregation is the sum

of a column over groups of rows. Some other ag-

gregations return the average, maximum,

minimum or row count over groups of rows.

There exist many ag-gregations functions and

operators in SQL.

Unfortunately, all these aggregations have

limitations to build data sets for data mining

purposes. The main reason is that, in general,

data sets that are stored in a relational database

(or a data warehouse) come from On-Line

Transaction Processing (OLTP) systems where

database schemas are highly normalized. But

data min-ing, statistical or machine learning

algorithms generally require aggregated data in

summarized form. Based on current available

functions and clauses in SQL, a signifi-cant

effort is required to compute aggregations when

they are desired in a cross tabular (Horizontal)

form, suitable to be used by a data mining

algorithm. Such ef-fort is due to the amount and

complexity of SQL code that needs to be written,

optimized and tested.

There are further practical reasons to return

aggregation results in a horizontal (cross-tabular)

layout. Standard aggregations are hard to

interpret when there are many result rows,

especially when grouping attributes have high

cardinalities. To perform analysis of exported

tables into spreadsheets it may be more

convenient to have aggregations on the same

group in one row (e.g. to produce graphs or to

compare data sets with repetitive information).

OLAP tools generate SQL code to transpose

results (sometimes called PIVOT). Transposition

can be more efficient if there are mechanisms

combining aggregation and transposition

together. With such limitations in mind, we

propose a new class of aggregate functions that

aggregate numeric expressions and transpose

results to produce a data set with a horizontal

layout. Functions belonging to this class are

called horizontal aggregations. Horizontal aggre-

gations represent an extended form of traditional

SQL aggregations, which return a set of values in

a horizontal layout (somewhat similar to a

multidimensional vector), instead of a single

value per row. This article explains how to

evaluate and optimize horizontal aggregations

generating standard SQL code

C. HORIZONTAL AGGREGATION:

Introduce a new class of aggregations that have

similar behavior to SQL standard aggregations,

but which produce tables with a horizontal

layout. In contrast, we call standard SQL

aggregations vertical aggregations since they

produce tables with a vertical layout. Horizontal

aggregations just require a small syntax

extension to aggregate functions called in a

SELECT statement. Alternatively, horizontal

aggregations can be used to generate SQL code

from a data mining tool to build data sets for data

mining analysis. We start by explaining how to

automatically generate SQL code

2.Proposed Syntax in Extended SQL : We now

turn our attention to a small syntax extension to

the SELECT statement, which allows

understanding our proposal in an intuitive

manner. We must point out the proposed

extension represents non -standard SQL because

the columns in the output table are not known

when the query is parsed.

3.SQL Code Generation: Query Evaluation

Methods We proposes three methods to evaluate

horizontal aggregations. The first method relies

only on relational operations. That is, only doing

select, project, join and aggregation queries; we

call it the SPJ method. The second form relies on

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 188

the SQL “case” constructs; we call it the CASE

method.

Each table has an index on its primary key for

efficient join processing.. The third method uses

the built in PIVOT operator, which transforms

rows to columns (e.g. transposing). An overview

of the main steps to be explained below (for a

sum ()) aggregation.

V. Experimental results

Fig.1 shows the values of the three measures that

were listed in SectionIV-C as a function of N. In

all of those experiments, the value of M and s

remained unchanged M = 10 and s = 0.1. Fig.2

shows the values of the three measures as a

function of M; here, N = 500, 000 and s = 0.1.

Fig.3 shows the values of the three measures as a

function of s; here, N = 500, 000 and M = 10.

From the first set of experiments, we can see that

N has little effect on the runtime of the

unification protocols, UNIFI-KC and UNIFI, nor

on the bit communication cost. However, since

the time to identify the globally s-frequent item

sets does grow linearly with N, and that

Procedure is carried out in the same manner in

FDM-KC and FDM, the advantage of Protocol

FDM over FDM-KC in terms of runtime

decreases with N. While for N = 100, 000,

Protocol FDM is 22 times faster than Protocol

FDM-KC, for N = 500, 000 it is five times faster.

(The total computation times for larger values of

N retain the same pattern that emerges from

Fig.1; for example, with N = 106 the total

computation times for FDM-KC and FDM were

744.1 and 238.5 seconds, respectively, which

gives an improvement factor of 3.1.). The second

set of experiments shows how the computation

and communication costs increase with M. In

particular, the improvement factor in the bit

communication cost, as offered by Protocol

UNIFI with respect to Protocol UNIFI-KC, is in

accord with our analysis. Finally, the third set of

experiments shows that higher support thresholds

entail smaller computation and communication

costs since the number of frequent item sets

decreases.

Fig.1. Computation and communication costs

versus the number of transactions N.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 189

Fig. 2. Computation and communication costs

versus the number of playersM.

Fig. 3. Computation and communication costs

versus the support threshold s.

VI.CONCLUSION:

We proposed a protocol for secure mining of

association rules in horizontally distributed

databases that improves significantly upon the

current leading protocol in terms of privacy and

efficiency. One of the main ingredients in our

proposed protocol is a novel secure multi-party

protocol for computing the union (or inter-

section) of private subsets that each of the

interacting players hold. Another ingredient is a

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 190

protocol that tests the inclusion of an element

held by one player in a subset held by another.

The latter protocol exploits the fact that the

underlying problem is of interest only when the

number of players is greater than two. One

research problem that this study suggests was

described in Section 3 namely, to devise an

efficient protocol for set inclusion verification

that uses the existence of a semi-honest third

party. Such a protocol might enable to further

improve upon the communication and

computational costs of the second and third

stages of the protocol of , as described in

Sections 3 and 4. Another research problem that

this study suggests is the extension of those tech-

niques to the problem of mining generalized

association rules.

VII REFERENCES:

[1] Tamir Tassa, ―Secure Mining of Association

Rules in

Horizontally Distributed Databases‖, IEEE

Transactions on Knowledge and Data

Engineering.

[2] R. Agrawal and R. Srikant. Fast algorithms

for mining association rules in large databases. In

VLDB, pages 487–499, 1994.

[3] R. Agrawal and R. Srikant. Privacy-

preserving data mining. In SIGMOD Conference,

pages 439–450, 2000.

[4] D. Beaver, S. Micali, and P. Rogaway. The

round complexity of secure protocols. In STOC,

pages 503–513, 1990.

[5] M. Bellare, R. Canetti, and H. Krawczyk.

Keying hash functions for message

authentication. In Crypto, pages 1–15, 1996.

[6] A. Ben-David, N. Nisan, and B. Pinkas.

FairplayMP - A system for secure multi-party

computation. In CCS, pages 257–266, 2008.

[7] J.C. Benaloh. Secret sharing

homomorphisms: Keeping shares of a secret

secret. In Crypto, pages 251–260, 1986.

[8] J. Brickell and V. Shmatikov. Privacy-

preserving graph algorithms in the semi-honest

model. In ASIACRYPT, pages 236–252, 2005.

[9] D.W.L. Cheung, J. Han, V.T.Y. Ng, A.W.C.

Fu, and Y. Fu. A fast distributed algorithm for

mining association rules. In PDIS, pages 31–42,

1996.

[10] D.W.L Cheung, V.T.Y. Ng, A.W.C. Fu, and

Y. Fu. Efficient mining of association rules in

distributed databases. IEEE Trans. Knowl. Data

Eng., 8(6):911–922, 1996.

[11] T. ElGamal. A public key cryptosystem and

a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory,

31:469–472, 1985.

[12] A.V. Evfimievski, R. Srikant, R. Agrawal,

and J. Gehrke. Privacy preserving mining of

association rules. In KDD, pages 217–228, 2002.

