
 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 370

A Novel Approach to Implement Online Shortest Path

Computation by Using Live Traffic Index (LTI)

Kalyani Muntha1, N Venkateswara Rao 2

1PG Scholar,Dept of CSE, Rao & Naidu Engineering College, Ongole,Prakasam Dist,Andhra

Pradesh
2 Associate Professor,Dept of CSE, Rao & Naidu Engineering College, Ongole,Prakasam

Dist,Andhra Pradesh

Abstract:

Nowadays, several online services provide

live traffic data such as Google-Map,

Navteq, INRIX Traffic Information

Provider, and TomTom NV. But still

computing the shortest path on live traffic is

big problem. This is important for car

navigation as it helps drivers to make

decisions. In presented approach server will

collect live traffic information and then

announce them over wireless network. With

this approach any number of clients can be

added. This new approach called live traffic

index-time dependant (LTI-TD) enables

drivers to update their shortest path result by

receiving only a small fraction of the index.

The existing systems were infeasible to

solve the problem due to their prohibitive

maintenance time and large transmission

overhead. LTI-TD is a novel solution for

Online Shortest Path Computation on Time

Dependent Network.

Keywords: LTI-TD, Shortest Path,

Transmission Overhead.

 I Introduction:

With the ever-growing popularity of

onlinemap applications and their wide

deployment in mobile devices and car-

navigation systems, an increasing number of

users search for point-to-point fastest paths

and the corresponding travel-times. On static

road networks where edge costs are

constant, this problem has been extensively

studied and manyefficient speed-up

techniques have been developed to compute

the fastest path in a matter of milliseconds.

The static fastest path approaches make the

simplifying assumption that the travel-time

for each edge of the road network is constant

(e.g., proportional to the length of the edge).

However, in real-world the actual travel-

time on a road segment heavily depends

 on the traffic congestion and, therefore, is a

function of time i.e., time-dependent. For

example, Figure 1 shows the variation of

travel-time (computed by averaging two-

years of historical traffic sensor data) for

aparticular road segment of I-10 freeway in

Los Angeles as a function of arrival-time to

the segment. As shown, the travel-time

changes with time (i.e, the time that one

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 371

arrives at the segment entry determines the

travel-time), and the change in travel-time is

significant. For instance, from 8AM to 9AM

the travel-time of the segment changes from

32 minutes to 18 minutes (a 45% decrease).

By induction, one can observe that the time-

dependent edge travel-times yield a

considerable change in the actual fastest

path between any pair of nodes throughout

the day. Specifically, the fastest between a

source and a destination node varies

depending on the departure-time from the

source. Unfortunately, all those techniques

that assume constant edge weights fail to

address the fastest path computation in real-

world time-dependent spatial networks.

Fig 1:Analysis between Day Time/Travel

Time

 The time-dependent fastest path problem

was first shown by Dreyfus to be

polynomially solvable in FIFO networks by

a trivial modification to Dijkstra algorithm

where, analogous to shortest path distances,

the arrival-time to the nodes is used as the

labels that form the basis of the greedy

algorithm. The FIFO property, which

typically holds for many networks including

road networks, suggests that moving objects

exit from an edge in the same order they

entered the edge1.

However, the modified Dijkstra algorithm is

far too slow for onlinemap

applicationswhich are usually deployed on

very large networks and require almost

instant response times. On the other hand,

there are many efficient precomputation

approaches that answer fastest path queries

in near real-time in static road networks.

However, it is infeasible to extend these

approaches to time-dependent networks.This

is because the input size (i.e., the number of

fastest paths) increases drastically in time-

dependent networks. Specifically, since the

length of a s-d path changes depending on

the departure-time from s, the fastest path is

not unique for any pair of nodes in time-de-

pendent networks. It has been conjectured in

and settled in that the number of fastest

paths between any pair of nodes in time-

dependent road networks can be super-

polynomial. Hence, an algorithm which

considers the every possible path

(corresponding to every possible departure-

time from the source) for any pair of nodes

in large time-dependent networks would

suffer from exponential time and

prohibitively large storage requirements. For

example, the timedependent extension of

Contraction Hierarchies (CH) and SHARC

speed-up techniques (which are proved to be

very efficient for static networks) suffer

from the impractical precomputation times

and intolerable storage complexity . In this

study, we propose a bidirectional time-

dependent fastest path algorithm

(BTDFP)based on A* search .

There are two main challenges to employ

bidirectional A* search in time-dependent

networks. First, finding an admissible

heuristic function (i.e., lower-bound

distance) between an intermediate vi node

and the destination d is challenging as the

distance between vi and d changes based on

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 372

the departure-time fromvi. Second, it is not

possible to implement a backward search

without knowing the arrival-time at the

destination.We address the former challenge

by partitioning the road network to non-

overlapping partitions (an off-line operation)

and precompute the intra (node-to-border)

and inter (border-to-border) partition

distance labels with respect to Lower-bound

Graph G which is generated by substituting

the edge travel-times in G with minimum

possible travel-times.We use the

combination of intra and inter distance

labels as a heuristic function in the online

computation.To address the latter challenge,

we run the backward search on the lower-

bound graph (G) which enables us to filter-

in the set of the nodes that needs to be

explored by the forward search. The

remainder of this paper is organized as

follows. In Section 2, we explain the

importance of time-dependency for accurate

and useful path planning.

In Section 3, we review the related work on

time-dependent fastest path algorithms. In

Section 4, we formally define the time-

dependent fastest path problem in spatial

networks. In Section 5, we establish the

theoretical foundation of our proposed

bidirectional algorithm and explain our

approach. In Section 6, we present the

results of our experiments for both

approacheswith a variety of spatial networks

with real-world time-dependent edge

weights.

II. LITERATURE SURVEY

A. Spectral Clustering Based on the

Graph Laplacian
A connection between the Cheeger cut and

the second eigenvector of the graph p-

Laplacian, a nonlinear generalization of the

graph Laplacian. A p-Laplacian which is

slightly from the one used has been used for

semi supervised learning .The main

motivation for the use of eigenvectors of the

graph p-Laplacian was the generalized

isoperimetric inequality. In which relates the

second eigenvalue of the graph p-Laplacian

to the optimal Cheeger cut. The

isoperimetric inequality becomes tight as p,

so that the second Eigen value converges to

the optimal Cheeger cut value.

B. SHARC: Fast and Robust

Unidirectional Routing Introduce SHARC-

Routing, a fast and robust approach for

unidirectional routing in large networks. The

central idea of SHARC (Shortcuts + Arc-

Flags) is the adaptation of techniques

developed for Highway Hierarchies to Arc

Flags. In general, SHARC-Routing

iteratively constructs a contraction-based

hierarchy during preprocessing and

automatically sets arc- ags for edges

removed during contraction. More precisely,

arc- ags are set in such a way that a

unidirectional query considers these

removed component-edges only at the

beginning and the end of a query as a result,

able to route very efficiently in scenarios

where other techniques fail due to their

bidirectional nature. It turned out that

SHARC was a promising candidate for

routing in time-dependent networks.

C. Computing point to point shortest path

from External Memory The ALT

algorithm for the point-to-point shortest path

problem in the context of road networks the

suggest improvements to the algorithm itself

and to its preprocessing stage. Also develop

a memory-efficient implementation of the

algorithm that runs on a Pocket PC

(Personal Computer). It stores graph data in

a ash memory card and uses RAM (Random

Access Memory) to store information only

for the part of the graph visited by the

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 373

current shortest path computation. The

implementation works even on very large

graphs, including that of the North America

road network, with almost 30 million

vertices.

D. Time-Dependent SHARC-Routing

During the last years, many speed-up

techniques for Dijkstra”s algorithm have

been developed. As a result, computing a

shortest path in a static road network is a

matter of microseconds. However, only few

of those techniques work in time-dependent

networks. Unfortunately, such networks

appear frequently in reality.

 E. Shortest Path Tree Computation in

Dynamic Graphs The Dynamic Shortest

Path (DSP) problem is to compute S from D.

This problem either focuses on a single edge

weight change, or for multiple edge weight

changes, some of them are incorrect or are

not optimized. The correct and extend a few

state-of-the-art dynamic SPT algorithms to

handle multiple edge weight updates. Hence

prove that these algorithms are correct

dynamic algorithms may not out perform

static algorithms all the time to evaluate the

proposed dynamic algorithms, compare

them with the well-known static Dijkstra”s

algorithm.

III. LTI-TD FRAMEWORK

The broadcasting model uses transmission

medium such as 3G, Mobile WiMAX. When

the traffic provider broadcasts a dataset all

drivers can listen to the dataset concurrently

thus, this transmission model balances well

independent of the number of driver. In the

wireless broadcast model the traffic provider

repeatedly transmits broadcast cycles,

containing the database and air index. The

broadcast cycle consists of fixed-size

packets. The most common wireless

broadcasting method is the (1, m)

interleaving scheme, shown in Fig.3.

Fig.2. System architecture for LTI-TD.

Fig.3. (1, m) interleaving scheme

The dataset is divided into m distinct

segments, and each data segment is

preceded by the index. This way the driver

may receive a copy of the index

immediately after the completion of the

currently transmitted data segment. A driver

can raise Algorithm 1 first in order to find

the shortest path from a source to a

destination after reading the necessary

segment, it computes the shortest path. In

each broadcasting cycle, the driver first

collects live traffic updates from the traffic

provider, and then updates the graphs. The

ALT algorithm was proposed to find

shortest path on road networks. With ALT, a

set of nodes are chosen and then the shortest

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 374

path between all the nodes in the network

are computed. The time-dependent ALT

algorithm calculates the leaving time from a

source to find the correct path. A driver can

raise Algorithm 2 in order to find the

shortest path from a source to a destination.

First, the client generates a search graph G

based on current position and destination.

When the driver keeps listening to the

broadcast channel until it discovers a

necessary segment in order to keep the

newness of LTI-TD, the system is required

to broadcast the newest weight of edges

alternating.

Algorithm ALT (graph G = (V, E),

Vertices s and t):

1: L = generate Landmarks (G, k) {select set

of k and mark}

2: for all v ∈ V do

3: parent (v) ← ⊥

4: state (v) ← unreached

 5: dist(s, v) ← ∞

6: dist(s, s) ← 0

7: state(s) ← reached

8: while vertex v with state (v) = reached

exists and state (t) 6= reached do

9: Select v ∈ V with state (v) = reached and

minimal cost (v) = dist(s, v) + πLt (v)

 10: for all u ∈ V with (v, u) ∈ E do

11: if dist(s, v) + len (v, u) + πLt (u) <dist(s,

u) + πLt (u) then

12: parent (u) ← v

13: dist(s, u) ← dist(s, v) + len (v, u) 14:

state (u) ← reached

15: state (v) ← settled

Algorithm driver(s: source; t:

destination):

1: generate G based on s and d

2: listen to the channel for a segment

3: decide the necessary segments :

4: compute the shortest path (from s to t) on

G.

Algorithm traffic-provider G: graph):

1: construct G.

2: for each broadcast cycle do

3: collect traffic updates from the traffic

provider

4: update the graphs G.

5: broadcast the graph G

IV. EXPERIMENTAL EVALUATIONS

In this section, we empirically evaluate the

performance ofsome representative

algorithms using the broadcasting

architecture; we ignore the client-server

architecture due to massive live traffic in

near future (see Section 1). From our

discussion in Section 2, bi-directional search

[3], ALT on 8.1 Effectiveness of

Optimizations First, we evaluate the

effectiveness of the optimizations proposed

in Section 4. The fully optimized LTI is

compared dynamic graph (DALT) , and

dynamic shortest paths tree [, are applicable

to raw transmission model. On the other

hand, contraction hierarchies ,

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 375

Hierarchical MulTi-graph model , and our

proposed live traffic index are applicable to

index transmission model. We omit some

methods (such as TNR [1], Quadtree ,

SHARC , and CALT) due to their

prohibitive maintenance time and broadcast

size. In the following, we first describe the

road map data used in experiments and

describe the simulation of clients’ move-

ments and live traffic circumstances on a

road map.

Then, we study the performance of the

above methods with respect to various

factors. Map data. We test with four dif-

ferent road maps, including New York City

(NYC) (264k nodes, 733k edges), San

Francisco bay area road map (SF) (174k

nodes, 443k edges),San Joaquin road map

(SJ) (18k nodes, 48k edges), and Oldenburg

road map (OB) (6k nodes, 14k edges). All of

them are available at [43] and

[44].Simulation of clients and traffic

updates. We run the networkbased generator

[44] to generate the weight of edges. It

initializes 100,000 cars (i.e., clients) and

then generates 1,000 new cars in each

iteration. It runs for 200 iterations in total,

with the other generator parameters as their

default values. The weight of an edge is set

to the average driving time on it.

Fig :4 Varying number of partitions, Ɣ

TABLE 1:Performance of Different

Methods:

against to LTI-biPart (that is constructed by

only the graph partitioning technique,

described in Section 4.2) and Hi (which is

the most representative model of hierar-

chical index structures). For fairness, we

internally tune the HiTi graph model by

varying the number of children subgraphs,

and the eight-way regular partitioning is the

best HiTi graph model among all testings.

Fig. 12 plots the performance of all three

methods as a function of the number of

partitions g on the SF data set. For the sake

of saving space, we plot the costs at service

provider (i.e., broadcast size and

maintenance time) into one figure and plot

the costs at client (i.e., tune-in size and

response time) into another figure. The

number of packets(left y-axis) is represented

by bars, whereas the time (right y-axis) is

represented by lines. 8.2 Scalability

Experiments Next, we compare the

discussed solutions on four different road

maps.

The result is shown in Table 1. Note that all

methods on the raw transmission model

have the same tune-in size and broadcast

size. The only difference is the response

time as it represents the local computation

time for each client. Apart from BD and

DALT, other methods require each client to

maintain some index structures locally af-ter

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 376

receiving the live traffic updates. Thus, their

response time is slower5 than BD and

DALT on the raw transmis-sion model.

Based on the responsetime, DALT is the

best approach among the methods in his

category.

Fig 5 :Scalability experiments (client).

V .CONCLUSION:

In this paper we studied online shortest path

computa-tion; the shortest path result is

computed/updated based on the live traffic

circumstances. We carefully analyze the

existing work and discuss their

inapplicability to the problem (due to their

prohibitive maintenance time and large

transmission overhead). To address the

problem, we suggest a promising

architecture that broadcasts the index on the

air. We first identify an important feature of

the hierarchical index structure which

enables us to compute shortest path on a

small portion of index. This important

feature is thoroughly used in our solution,

LTI. Our ex-periments confirm that LTI is a

Pareto optimal solution in terms of four

performance factors for online shortest path

computation. In the future, we will extend

our solution on time dependent networks.

This is a very interesting topic since the

decision of a shortest path depends not only

on current traffic data but also based on the

predicted traffic circumstances.

V I.REFERENCES:

[1] H. Bast, S. Funke, D. Matijevic, P.

Sanders, and D. Schultes, “InTransit to

Constant Time Shortest-Path Que-ries in

RoadNetworks,” Proc. Workshop Algorithm

Eng. and Experiments(ALENEX), 2007.

[2] P. Sanders and D. Schultes,

“Engineering Highway Hierarchies,”Proc.

14th Conf. Ann. European Symp. (ESA), pp.

804-816, 2006.

[3] G. Dantzig, Linear Programming and

Extensions, se-ries Rand

CorporationResearch Study Princeton Univ.

Press, 1963.

[4] R.J. Gutman, “Reach-Based Routing: A

New Ap-proach to ShortestPath Algorithms

Optimized for Road Networks,” Proc.

SixthWorkshop Algorithm Eng. and

Experiments and the First

WorkshopAnalytic Algorith-mics and

Combinatorics (ALENEX/ANALC),

[5] B. Jiang, “I/O-Efficiency of Shortest

Path Algorithms: An Analysis,”Proc. Eight

Int’l Conf. Data Eng. (ICDE), pp. 12-19,

1992.

[6] P. Sanders and D. Schultes, “Highway

Hierarchies Hasten ExactShortest Path

Queries,” Proc. 13th Ann. Eu-ropean Conf.

Algorithms(ESA), pp. 568-579, 2005.

[7] D. Schultes and P. Sanders, “Dynamic

Highway-Node Routing,”Proc. Sixth Int’l

Conf. Experimental Algorithms (WEA), pp.

66-79,2007.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

 International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 01 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 377

[8] F. Zhan and C. Noon, “Shortest Path

Algorithms: An EvaluationUsing Real Road

Networks,” Transportation Science, vol. 32,

no. 1,pp. 65-73, 1998.

[9] “Google Maps,” http://maps.google.com,

2014.

[10] “NAVTEQ Maps and Traffic,”

http://www.navteq. com, 2014.

 [11] “INRIX Inc. Traffic Information

Provider,” http:// www.inrix. com, 2014.

[12] “TomTom NV,”

http://www.tomtom.com, 2014.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

