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Abstract: 

Nowadays, several online services provide 

live traffic data such as Google-Map, 

Navteq, INRIX Traffic Information 

Provider, and TomTom NV. But still 

computing the shortest path on live traffic is 

big problem. This is important for car 

navigation as it helps drivers to make 

decisions. In presented approach server will 

collect live traffic information and then 

announce them over wireless network. With 

this approach any number of clients can be 

added. This new approach called live traffic 

index-time dependant (LTI-TD) enables 

drivers to update their shortest path result by 

receiving only a small fraction of the index. 

The existing systems were infeasible to 

solve the problem due to their prohibitive 

maintenance time and large transmission 

overhead. LTI-TD is a novel solution for 

Online Shortest Path Computation on Time 

Dependent Network.  

Keywords: LTI-TD, Shortest Path, 

Transmission Overhead. 

 

 

 

 

 I Introduction: 

With the ever-growing popularity of 

onlinemap applications and their wide 

deployment in mobile devices and car-

navigation systems, an increasing number of 

users search for point-to-point fastest paths 

and the corresponding travel-times. On static 

road networks where edge costs are 

constant, this problem has been extensively 

studied and manyefficient speed-up 

techniques have been developed to compute 

the fastest path in a matter of milliseconds. 

The static fastest path approaches make the 

simplifying assumption that the travel-time 

for each edge of the road network is constant 

(e.g., proportional to the length of the edge). 

However, in real-world the actual travel-

time on a road segment heavily depends  

 on the traffic congestion and, therefore, is a 

function of time i.e., time-dependent. For 

example, Figure 1 shows the variation of 

travel-time (computed by averaging two-

years of historical traffic sensor data) for 

aparticular road segment of I-10 freeway in 

Los Angeles as a function of arrival-time to 

the segment. As shown, the travel-time 

changes with time (i.e, the time that one 
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arrives at the segment entry determines the 

travel-time), and the change in travel-time is 

significant. For instance, from 8AM to 9AM 

the travel-time of the segment changes from 

32 minutes to 18 minutes (a 45% decrease). 

By induction, one can observe that the time-

dependent edge travel-times yield a 

considerable change in the actual fastest 

path between any pair of nodes throughout 

the day. Specifically, the fastest between a 

source and a destination node varies 

depending on the departure-time from the 

source. Unfortunately, all those techniques 

that assume constant edge weights fail to 

address the fastest path computation in real-

world time-dependent spatial networks. 

 

Fig 1:Analysis between Day Time/Travel 

Time 

 

 The time-dependent fastest path problem 

was first shown by Dreyfus to be 

polynomially solvable in FIFO networks by 

a trivial modification to Dijkstra algorithm 

where, analogous to shortest path distances, 

the arrival-time to the nodes is used as the 

labels that form the basis of the greedy 

algorithm. The FIFO property, which 

typically holds for many networks including 

road networks, suggests that moving objects 

exit from an edge in the same order they 

entered the edge1. 

However, the modified Dijkstra algorithm is 

far too slow for onlinemap 

applicationswhich are usually deployed on 

very large networks and require almost 

instant response times. On the other hand, 

there are many efficient precomputation 

approaches that answer fastest path queries 

in near real-time in static road networks. 

However, it is infeasible to extend these 

approaches to time-dependent networks.This 

is because the input size (i.e., the number of 

fastest paths) increases drastically in time-

dependent networks. Specifically, since the 

length of a s-d path changes depending on 

the departure-time from s, the fastest path is 

not unique for any pair of nodes in time-de-

pendent networks. It has been conjectured in 

and settled in that the number of fastest 

paths between any pair of nodes in time-

dependent road networks can be super-

polynomial. Hence, an algorithm which 

considers the every possible path 

(corresponding to every possible departure-

time from the source) for any pair of nodes 

in large time-dependent networks would 

suffer from exponential time and 

prohibitively large storage requirements. For 

example, the timedependent extension of 

Contraction Hierarchies (CH) and SHARC 

speed-up techniques (which are proved to be 

very efficient for static networks) suffer 

from the impractical precomputation times 

and intolerable storage complexity . In this 

study, we propose a bidirectional time-

dependent fastest path algorithm 

(BTDFP)based on A* search . 

There are two main challenges to employ 

bidirectional A* search in time-dependent 

networks. First, finding an admissible 

heuristic function (i.e., lower-bound 

distance) between an intermediate vi node 

and the destination d is challenging as the 

distance between vi and d changes based on 
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the departure-time fromvi. Second, it is not 

possible to implement a backward search 

without knowing the arrival-time at the 

destination.We address the former challenge 

by partitioning the road network to non-

overlapping partitions (an off-line operation) 

and precompute the intra (node-to-border) 

and inter (border-to-border) partition 

distance labels with respect to Lower-bound 

Graph G which is generated by substituting 

the edge travel-times in G with minimum 

possible travel-times.We use the 

combination of intra and inter distance 

labels as a heuristic function in the online 

computation.To address the latter challenge, 

we run the backward search on the lower-

bound graph (G) which enables us to filter-

in the set of the nodes that needs to be 

explored by the forward search. The 

remainder of this paper is organized as 

follows. In Section 2, we explain the 

importance of time-dependency for accurate 

and useful path planning. 

In Section 3, we review the related work on 

time-dependent fastest path algorithms. In 

Section 4, we formally define the time-

dependent fastest path problem in spatial 

networks. In Section 5, we establish the 

theoretical foundation of our proposed 

bidirectional algorithm and explain our 

approach. In Section 6, we present the 

results of our experiments for both 

approacheswith a variety of spatial networks 

with real-world time-dependent edge 

weights. 

II. LITERATURE SURVEY 

A. Spectral Clustering Based on the 

Graph Laplacian  
A connection between the Cheeger cut and 

the second eigenvector of the graph p-

Laplacian, a nonlinear generalization of the 

graph Laplacian. A p-Laplacian which is 

slightly from the one used has been used for 

semi supervised learning .The main 

motivation for the use of eigenvectors of the 

graph p-Laplacian was the generalized 

isoperimetric inequality. In which relates the 

second eigenvalue of the graph p-Laplacian 

to the optimal Cheeger cut. The 

isoperimetric inequality becomes tight as p, 

so that the second Eigen value converges to 

the optimal Cheeger cut value.  

B. SHARC: Fast and Robust 

Unidirectional Routing Introduce SHARC-

Routing, a fast and robust approach for 

unidirectional routing in large networks. The 

central idea of SHARC (Shortcuts + Arc- 

Flags) is the adaptation of techniques 

developed for Highway Hierarchies to Arc 

Flags. In general, SHARC-Routing 

iteratively constructs a contraction-based 

hierarchy during preprocessing and 

automatically sets arc- ags for edges 

removed during contraction. More precisely, 

arc- ags are set in such a way that a 

unidirectional query considers these 

removed component-edges only at the 

beginning and the end of a query as a result, 

able to route very efficiently in scenarios 

where other techniques fail due to their 

bidirectional nature. It turned out that 

SHARC was a promising candidate for 

routing in time-dependent networks.  

C. Computing point to point shortest path 

from External Memory The ALT 

algorithm for the point-to-point shortest path 

problem in the context of road networks the 

suggest improvements to the algorithm itself 

and to its preprocessing stage. Also develop 

a memory-efficient implementation of the 

algorithm that runs on a Pocket PC 

(Personal Computer). It stores graph data in 

a ash memory card and uses RAM (Random 

Access Memory) to store information only 

for the part of the graph visited by the 
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current shortest path computation. The 

implementation works even on very large 

graphs, including that of the North America 

road network, with almost 30 million 

vertices.  

D. Time-Dependent SHARC-Routing 

During the last years, many speed-up 

techniques for Dijkstra”s algorithm have 

been developed. As a result, computing a 

shortest path in a static road network is a 

matter of microseconds. However, only few 

of those techniques work in time-dependent 

networks. Unfortunately, such networks 

appear frequently in reality. 

 E. Shortest Path Tree Computation in 

Dynamic Graphs The Dynamic Shortest 

Path (DSP) problem is to compute S from D. 

This problem either focuses on a single edge 

weight change, or for multiple edge weight 

changes, some of them are incorrect or are 

not optimized. The correct and extend a few 

state-of-the-art dynamic SPT algorithms to 

handle multiple edge weight updates. Hence 

prove that these algorithms are correct 

dynamic algorithms may not out perform 

static algorithms all the time to evaluate the 

proposed dynamic algorithms, compare 

them with the well-known static Dijkstra”s 

algorithm.  

 

III. LTI-TD FRAMEWORK  

 

The broadcasting model uses transmission 

medium such as 3G, Mobile WiMAX. When 

the traffic provider broadcasts a dataset all 

drivers can listen to the dataset concurrently 

thus, this transmission model balances well 

independent of the number of driver. In the 

wireless broadcast model the traffic provider 

repeatedly transmits broadcast cycles, 

containing the database and air index. The 

broadcast cycle consists of fixed-size 

packets. The most common wireless 

broadcasting method is the (1, m) 

interleaving scheme, shown in Fig.3. 

 

Fig.2. System architecture for LTI-TD. 

 

 

Fig.3. (1, m) interleaving scheme 

The dataset is divided into m distinct 

segments, and each data segment is 

preceded by the index. This way the driver 

may receive a copy of the index 

immediately after the completion of the 

currently transmitted data segment. A driver 

can raise Algorithm 1 first in order to find 

the shortest path from a source to a 

destination after reading the necessary 

segment, it computes the shortest path. In 

each broadcasting cycle, the driver first 

collects live traffic updates from the traffic 

provider, and then updates the graphs. The 

ALT algorithm was proposed to find 

shortest path on road networks. With ALT, a 

set of nodes are chosen and then the shortest 
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path between all the nodes in the network 

are computed. The time-dependent ALT 

algorithm calculates the leaving time from a 

source to find the correct path. A driver can 

raise Algorithm 2 in order to find the 

shortest path from a source to a destination. 

First, the client generates a search graph G 

based on current position and destination. 

When the driver keeps listening to the 

broadcast channel until it discovers a 

necessary segment in order to keep the 

newness of LTI-TD, the system is required 

to broadcast the newest weight of edges 

alternating. 

Algorithm ALT (graph G = (V, E), 

Vertices s and t):  

1: L = generate Landmarks (G, k) {select set 

of k and mark}  

2: for all v ∈ V do  

3: parent (v) ← ⊥  

4: state (v) ← unreached 

 5: dist(s, v) ← ∞  

6: dist(s, s) ← 0  

7: state(s) ← reached  

8: while vertex v with state (v) = reached 

exists and state (t) 6= reached do  

9: Select v ∈ V with state (v) = reached and 

minimal cost (v) = dist(s, v) + πLt (v) 

 10: for all u ∈ V with (v, u) ∈ E do  

11: if dist(s, v) + len (v, u) + πLt (u) <dist(s, 

u) + πLt (u) then  

12: parent (u) ← v  

13: dist(s, u) ← dist(s, v) + len (v, u) 14: 

state (u) ← reached  

15: state (v) ← settled  

Algorithm driver(s: source; t: 

destination):  

1: generate G based on s and d  

2: listen to the channel for a segment  

3: decide the necessary segments :  

4: compute the shortest path (from s to t) on 

G.  

Algorithm traffic-provider G: graph):  

1: construct G.  

2: for each broadcast cycle do  

3: collect traffic updates from the traffic 

provider  

4: update the graphs G.  

5: broadcast the graph G 

IV. EXPERIMENTAL EVALUATIONS 

In this section, we empirically evaluate the 

performance ofsome representative 

algorithms using the broadcasting 

architecture; we ignore the client-server 

architecture due to massive live traffic in 

near future (see Section 1). From our 

discussion in Section 2, bi-directional search 

[3], ALT on 8.1 Effectiveness of 

Optimizations First, we evaluate the 

effectiveness of the optimizations proposed 

in Section 4. The fully optimized LTI is 

compared dynamic graph (DALT) , and 

dynamic shortest paths tree [, are applicable 

to raw transmission model. On the other 

hand, contraction hierarchies ,  
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Hierarchical MulTi-graph model , and our 

proposed live traffic index are applicable to 

index transmission model. We omit some 

methods (such as TNR [1], Quadtree , 

SHARC , and CALT ) due to their 

prohibitive maintenance time and broadcast 

size. In the following, we first describe the 

road map data used in experiments and 

describe the simulation of clients’ move-

ments and live traffic circumstances on a 

road map. 

Then, we study the performance of the 

above methods with respect to various 

factors. Map data. We test with four dif-

ferent road maps, including New York City 

(NYC) (264k nodes, 733k edges), San 

Francisco bay area road map (SF) (174k 

nodes, 443k edges),San Joaquin road map 

(SJ) (18k nodes, 48k edges), and Oldenburg 

road map (OB) (6k nodes, 14k edges). All of 

them are available at [43] and 

[44].Simulation of clients and traffic 

updates. We run the networkbased generator 

[44] to generate the weight of edges. It 

initializes 100,000 cars (i.e., clients) and 

then generates 1,000 new cars in each 

iteration. It runs for 200 iterations in total, 

with the other generator parameters as their 

default values. The weight of an edge is set 

to the average driving time on it. 

 

Fig :4 Varying number of partitions, Ɣ 

TABLE 1:Performance of Different 

Methods: 

 

 
against to LTI-biPart (that is constructed by 

only the graph partitioning technique, 

described in Section 4.2) and Hi (which is 

the most representative model of hierar-

chical index structures). For fairness, we 

internally tune the HiTi graph model by 

varying the number of children subgraphs, 

and the eight-way regular partitioning is the 

best HiTi graph model among all testings. 

Fig. 12 plots the performance of all three 

methods as a function of the number of 

partitions g on the SF data set. For the sake 

of saving space, we plot the costs at service 

provider (i.e., broadcast size and 

maintenance time) into one figure and plot 

the costs at client (i.e., tune-in size and 

response time) into another figure. The 

number of packets(left y-axis) is represented 

by bars, whereas the time (right y-axis) is 

represented by lines. 8.2 Scalability 

Experiments Next, we compare the 

discussed solutions on four different road 

maps. 

 

The result is shown in Table 1. Note that all 

methods on the raw transmission model 

have the same tune-in size and broadcast 

size. The only difference is the response 

time as it represents the local computation 

time for each client. Apart from BD and 

DALT, other methods require each client to 

maintain some index structures locally af-ter 
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receiving the live traffic updates. Thus, their 

response time is slower5 than BD and 

DALT on the raw transmis-sion model. 

Based on the responsetime, DALT is the 

best approach among the methods in his 

category. 

 
                

Fig 5 :Scalability experiments (client). 

 

V .CONCLUSION: 

In this paper we studied online shortest path 

computa-tion; the shortest path result is 

computed/updated based on the live traffic 

circumstances. We carefully analyze the 

existing work and discuss their 

inapplicability to the problem (due to their 

prohibitive maintenance time and large 

transmission overhead). To address the 

problem, we suggest a promising 

architecture that broadcasts the index on the 

air. We first identify an important feature of 

the hierarchical index structure which 

enables us to compute shortest path on a 

small portion of index. This important 

feature is thoroughly used in our solution, 

LTI. Our ex-periments confirm that LTI is a 

Pareto optimal solution in terms of four 

performance factors for online shortest path 

computation. In the future, we will extend 

our solution on time dependent networks. 

This is a very interesting topic since the 

decision of a shortest path depends not only 

on current traffic data but also based on the 

predicted traffic circumstances. 
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