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Abstract: 

Networks are getting larger and more 

complex, yet administrators rely on 

rudimentary tools such as and to debug 

problems. We propose an automated and 

systematic approach for testing and 

debugging networks called “Automatic 

Test Packet Generation” (ATPG). ATPG 

reads router configurations and generates a 

device-independent model. The model is 

used to generate a minimum set of test 

packets to (minimally) exercise every link in 

the network or (maximally) exercise every 

rule in the network. Test packets are sent 

periodically, and detected failures trigger a 

separate mechanism to localize the fault. 

ATPG can detect both functional (e.g., 

incorrect firewall rule) and performance 

problems (e.g., congested queue). ATPG 

complements but goes beyond earlier work 

in static checking (which cannot detect 

liveness or performance faults) or fault 

localization (which only localize faults 

given liveness results). We describe our 

prototype ATPG implementation and results 

on two real-world data sets: Stanford 

University’s backbone network and 

Internet2. We find that a small number of 

test packets suffices to test all rules in these  

networks. For example, 4000 packets can 

cover all rules in Stanford backbone 

network, while 54 are enough to cover all 

links. Sending 4000 test packets 10 times  

per second consumes less than 1% of link 

capacity. ATPG code and the data sets are 

publicly available. 

Index Terms—Data plane analysis, network 

troubleshooting, test packet generation. 

1.INTRODUCTION

It is notoriously hard to debug networks. 

Every day, network engineers wrestle with 

router misconfigurations, fiber cuts, faulty 

interfaces, mislabeled cables, software bugs, 

intermittent links, and a myriad other  

reasons that cause networks to misbehave or 

fail completely. Network engineers hunt 

down bugs using the most rudimentary tools 

(e.g., SNMP) and track down root causes 

using a combination of accrued wisdom and 

intuition. Debugging networks is only 

becoming harder as networks are getting 

bigger (modern data centers may contain 10 

000 switches, a campus network may serve 

50 000 users, a 100-Gb/s long-haul 
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Fig.1. Static versus dynamic checking: A 

policy is compiled to forwarding state,which 

is then executed by the forwarding plane. 

Static checking (e.g., [16]) confirms that . 

Dynamic checking (e.g., ATPG in this 

paper) confirms that the topology is meeting 

liveness properties and that .link may carry 

100000 flows) and are getting more 

complicated (with over 6000 RFCs, router 

software is based on millions of lines of 

source code, and network chips often 

contain billions of gates). It is a mall wonder 

that network engineers have been labeled 

“masters of complexity” [32]. Consider two 

examples. Example 1: Suppose a router with 

a faulty line card starts dropping packets 

silently. Alice, who administers 100 routers, 

receives a ticket from several unhappy users 

complaining about connectivity. First, Alice 

examines each router to see if the 

configuration was changed recently and 

concludes that the configuration was 

untouched. Next, Alice uses her knowledge 

of the topology to triangulate the faulty 

device with and . Finally, she calls a 

colleague to replace the line card. 

We can think of the controller compiling the 

policy (A) into device-specific configuration 

files (B), which in turn determine the 

forwarding behavior of each packet (C). To 

ensure the net-work behaves as designed, all 

three steps should remain consis-tent at all 

times, i.e., . In addition, the 

topology, shown to the bottom right in the 

figure, should also satisfy a set of 

livenessproperties . Minimally,  requires 

that sufficient links and nodes are working; 

if the control plane specifies that a laptop 

can access a server, the desired outcome can 

fail if links fail. can also specify 

performance guarantees that detect flaky 

links. 

Recently, researchers have proposed tools 

to check that , enforcing consistency 

between policy and the config-uration[7], 

[16], [25], [31]. While these approaches 

canfind(or prevent) software logic errors in 

the control plane, they are not designed to 

identify liveness failures caused by failed 

linksand routers, bugs caused by faulty 

router hardware or software, or performance 

problems caused by network congestion. 

Such failures require checking for and 

whether . Alice’s first problem was 

with (link not working), and her second 

problem was with (low level token 

bucket state not reflecting policy for video 

bandwidth). 
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In fact, we learned from a survey of 61 

network operators (see Table I in Section II) 

that the two most common causes of net-

work failure are hardware failures and 

software bugs, and that problems manifest 

themselves both as reachability failures and 

throughput/latency degradation. Our goal is 

to automatically detect these types of 

failures. 

The main contribution of this paper is 

what we call an Automatic Test Packet 

Generation (ATPG) framework that 

automatically generates a minimal set of 

packets to test the liveness ofthe underlying 

topology and the congruence between data 

plane state and configuration specifications. 

The tool can also automatically generate 

packets to test performance assertions such 

as packet latency. In Example 1, instead of 

Alice manually deciding which  packets 

to send, the tool does so periodically on her 

behalf. In Example 2, the tool determines 

that it must send packets with certain 

headers to “exercise” the video queue, and 

then determines that these packets are being 

dropped. 

ATPG detects and diagnoses errors by 

independently and exhaustively testing all 

forwarding entries, firewall rules, and any 

packet processing rules in the network. In 

ATPG, test packets are generated 

algorithmically from the device 

configuration files and FIBs, with the 

minimum number of packets required for 

complete coverage. Test packets are fed into 

the network so that every rule is exercised 

directly from the data plane. Since ATPG 

treats links just like normal forwarding 

rules, its full coverage guarantees testing of 

every link in the network. It can also be 

specialized to generate a minimal set of 

packets that merely test every link for 

network liveness. At least in this basic form, 

we feel that ATPG or some similar 

technique is fundamental to networks: 

Instead of reacting to failures, many 

network operators such as Internet2 [14] 

proactively check the health of their network 

using pings between all pairs of sources. 

How-ever, all-pairs  does not guarantee 

testing of all links andhas b een found to be 

unscalable for large networks such as 

PlanetLab [30]. 

Organizations can customize ATPG to 

meet their needs; for example, they can 

choose to merely check for network liveness 

(link cover) or check every rule (rule cover) 

to ensure security policy. ATPG can be 

customized to check only for reachability or 

for performance as well. ATPG can adapt to 

constraints such as requiring test packets 

from only a few places in the network or 

using special routers to generate test packets 

from every port. ATPG can also be tuned to 

allocate more test packets to exercise more 

critical rules. For example, a healthcare 

network may dedicate more test packets to 

Firewall rules to ensure HIPPA compliance. 

We tested our method on two real-world 

data sets the back-bone networks of Stanford 

University, Stanford, CA, USA, and 

Internet2, representing an enterprise network 
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and a nationwide ISP. The results are 

encouraging: Thanks to the structure of real 

world rule sets, the number of test packets 

needed is surprisingly small. For the 

Stanford network with over 757 000 rules 

and more than 100 VLANs, we only need 

4000 packets to exercise all forwarding rules 

and ACLs. On Internet2, 35 000 packets 

suffice to exercise all IPv4 forwarding rules. 

Put another way, we can check every rule in 

every router on the Stanford backbone 10 

times every second by sending test packets 

that consume less than 1% of network 

bandwidth. The link cover for Stanford is 

even smaller, around 50 packets, which 

allows proactive liveness testing every 

millisecond using 1% of net-work 

bandwidth. 

The contributions of this paper are as 

follows: 

1) a survey of network operators revealing

common failures and root causes

(Section II);

2) a test packet generation algorithm

(Section IV-A);

3) a fault localization algorithm to isolate

faulty devices and rules (Section IV-B);

4) ATPG use cases for functional and

performance testing (Section V);

5) evaluation of a prototype ATPG system

using rulesets collected from the

Stanford and Internet2 backbones

II. CURRENT PRACTICE

To understand the problems network 

engineers encounter, and how they currently 

troubleshoot them, we invited sub-scribers 

to the NANOG1 mailing list to complete a 

survey in May–June 2012. Of the 61 who 

responded, 12 administer small networks (  

k hosts), 23 medium networks (1 k–10 k 

hosts), 11 large networks (10 k–100 k 

hosts), and 12 very large networks (  k 

hosts). All responses (anonymized) are 

reported in [33] and are summarized in 

Table I. The most relevant findings are as 

follows. 

Symptoms: Of the six most common 

symptoms, four cannotbe detected by static 

checks of the type  (throughput/ 

latency, intermittent connectivity, router 

CPU utilization, con-gestion) and require 

ATPG-like dynamic testing. Even the re-

maining two failures (reachability failure 

and security Policy Violation) may require 

dynamic testing to detect forwarding plane 

failures. 
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Fig. 1. Reported number of (a) network-

related tickets generated per month and 

(b) time to resolve a ticket. 

Cost of troubleshooting: 

Two metrics capture the cost ofnetwork 

debugging—the number of network-related 

tickets per month and the average time 

consumed to resolve a ticket (Fig. 1). There 

are 35% of networks that generate more than 

100 tickets per month. Of the respondents, 

40.4% estimate it takes under 30 min to 

resolve a ticket. However, 24.6% report that 

it takes over an hour on average. 

Tools: Table II shows that , , 

and SNMP are by far the most popular tools. 

When asked what the ideal tool for network 

debugging would be, 70.7% reported a 

desire for automatic test generation to check 

performance and correctness. Some added a 

desire for “long running tests to detect jitter 

or intermittent issues,” “real-time link 

capacity monitoring,” and “monitoring tools 

for network state.” 

In summary, while our survey is small, it 

supports the hypoth-esis that network 

administrators face complicated symptoms 

and causes. The cost of debugging is 

nontrivial due to the frequency of problems 

and the time to solve these problems. 

Classical tools such as  and 

are still heavily used, but administrators 

desire more sophisticated tools. 

III. NETWORK MODEL

ATPG uses the header space 

framework—a geometric model of how 

packets are processed we described in [16] 

(and used in [31]). In header space, 

protocol-specifi c meanings associ-ated with 

headers are ignored: A header is viewed as a 

flat se-quence of ones and zeros. A header is 

a point (and a flow is a region) in the 

space, where  is an upper bound on header 

length. By using the header space 

framework, we ob-tain a unified, vendor- 

independent, and protocol-agnostic model of 

the network2 that simplifies the packet 

generation process significantly. 

Fig:2. Life of a packet: repeating  and  

until the packet reaches its destination or 

is dropped. 
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IV. ATPG SYSTEM

Based on the network model, ATPG 

generates the minimal number of test 

packets so that every forwarding rule in the 

net-work is exercised and covered by at least 

one test packet. When an error is detected, 

ATPG uses a fault localization algorithm to 

determine the failing rules or links. 

Fig. 3 is a block diagram of the ATPG 

system The system first collects all the 

forwarding state from the network (step 1). 

This usually involves reading the FIBs, 

ACLs, and config files, as well as obtaining 

the topology. ATPG uses Header Space 

Analysis [16] to compute reachability 

between all the test terminals (step 2).  

Fig.3.  ATPG system block diagram. 

A. Test Packet Generation 

1) Algorithm: We assume a set of test

terminals in the net-work can send and 

receive test packets. Our goal is to generate 

a set of test packets to exercise every rule in 

every switch function, so that any fault will 

be observed by at least one test packet. This 

is analogous to software test suites that try to 

test every possible branch in a program. The 

broader goal can be limited to testing every 

link or every queue.  

When generating test packets, ATPG must 

respect two key constraints: 1) Port: ATPG 

must only use test terminals that are 

available; 2) Header: ATPG must only use 

headers that each test terminal is permitted 

to send. For example, the network admin-

iterator may only allow using a specific set 

of VLANs. Formally, we have the following 

problem.  

Problem 1 (Test Packet Selection): For a 

network with theswitch functions,    , 

and topology function, , determini the 

minimum set of test packets to exercise all 

reach-able rules, subject to the port and 

header constraints. 

ATPG chooses test packets using an 

algorithm we call TestPacket Selection 

(TPS). TPSfirstfinds all equivalent classes 

between each pair of available ports. An 

equivalent class is a set of packets that 

exercises the same combination of rules. 
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V. RELATED WORK 

We are unaware of earlier techniques that 

automatically generate test packets from 

configurations. The closest related works we 

know of are offline tools that check 

invariants in net-works. In the control plane, 

NICE [7] attempts to exhaustively cover the 

code paths symbolically in controller 

applications with the help of simplified 

switch/host models. In the data plane, 

Anteater [25] models invariants as 

booleansatisfiability problems and checks 

them against configurations with a SAT 

solver. Header Space Analysis [16] uses a 

geometric model to check reachability, 

detect loops, and verify slicing. Recently, 

SOFT [18] was proposed to verify 

consistency between different Open Flow 

agent implementations that are responsible 

for bridging control and data planes in the 

SDN context. ATPG complements these 

checkers by directly testing the data plane 

and covering a significant set of dynamic or 

performance errors that cannot otherwise be 

captured. 

End-to-end probes have long been used in 

network fault diagnosis in work such as [8]–

[10], [17], [23], [24], [26]. Recently, mining 

low-quality, unstructured data, such as 

router confi durations and network tickets, 

has attracted interest [12], [21], [34]. By 

contrast, the primary contribution of ATPG 

is not fault localization, but determining a 

compact set of end-to-end measurements 

that can cover every rule or every link. The 

mapping between Min-Set -Cover and 

network monitoring has been previously 

explored in [3] and [5]. ATPG improves the 

detection granuality to the rule level by 

employing router configuration and data 

plane information. Furthermore, ATPG is 

not limited to liveness testing, but can be 

applied to checking higher level properties 

such as performance. 

There are many proposals to develop a 

measurement-friendly architecture for 

networks [11], [22], [28], [35]. Our 

approach is complementary to these 

proposals: By incorporating input and port 

constraints, ATPG can generate test packets 

and injection points using existing 

deployment of measurement devices. 

Our work is closely related to work in 

programming lan-guages and symbolic 

debugging. We made a preliminary at-tempt 

to use KLEE [6] and found it to be 10 times 

slower than even the unoptimized header 

space framework. We speculate that this is 

fundamentally because in our framework we 

directly simulate the forward path of a 

packet instead of solving constraints using 

an SMT solver. However, more work is 

requiredto understand the differences and 

potential opportunities. 

VI. CONCLUSION

Testing liveness of a network is a 

fundamental problem for ISPs and large data 

center operators. Sending probes between 

every pair of edge ports is neither exhaustive 

nor scalable [30]. It suffices to find a 
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minimal set of end-to-end packets that 

traverse each link. However, doing this 

requires a way of abstracting across device 

specific configuration files (e.g., header 

space), generating headers and the links they 

reach (e.g., all -pairs reach-ability), and 

finally determining a minimum set of test 

packets (Min- Set-Cover). Even the 

fundamental problem of automat-ically 

generating test packets for efficient liveness 

testing re-quires techniques akin to ATPG. 

ATPG, however, goes much further than 

liveness testing with the same framework. 

ATPG can test for reachability policy (by 

testing all rules including drop rules) and 

performance health (by associating 

performance measures such as latency and 

loss with test packets). Our implementation 

also augments testing with a simple fault 

localization scheme also constructed using 

the header space framework. As in software 

testing, the formal model helps maximize 

test coverage while minimizing test packets. 

Our results show that all forwarding rules in 

Stanford backbone or Internet2 can be 

exercised by a surprisingly small number of 

test packets (  for Stanford, and 

for Internet2). 

Network managers today use primitive 

tools such as 

and  . Our survey results indicate 

that they are eager for more sophisticated 

tools. Other fields of engineering indi-cate 

that these desires are not unreasonable: For 

example, both the ASIC and software design 

industries are buttressed by bil-lion-dollar 

tool businesses that supply techniques for 

both static (e.g., design rule) and dynamic 

(e.g., timing) verification. In fact, many 

months after we built and named our system, 

we dis-covered to our surprise that ATPG 

was a well-known acronym in hardware chip 

testing, where it stands for Automatic Test 

Pat-tern Generation [2]. We hope network 

ATPG will be equallyuseful for automated 

dynamic testing of production networks. 
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