
International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 391

Implementation of Automatic Test Packet Generation
N.Venkatadri #1, A.Chaitanya #2

#1 Assoc. Professor, Dept. Of CSE, SKR College Of Engineering And Technology,

Kondurusatram, Manubolu,Nellore,AP

#2 PG Student, Dept. Of CSE, SKR College Of Engineering And Technology,

Kondurusatram,Manubolu,Nellore,AP.

Abstract:

Networks are getting larger and more

complex, yet administrators rely on

rudimentary tools such as and to debug

problems. We propose an automated and

systematic approach for testing and

debugging networks called “Automatic

Test Packet Generation” (ATPG). ATPG

reads router configurations and generates a

device-independent model. The model is

used to generate a minimum set of test

packets to (minimally) exercise every link in

the network or (maximally) exercise every

rule in the network. Test packets are sent

periodically, and detected failures trigger a

separate mechanism to localize the fault.

ATPG can detect both functional (e.g.,

incorrect firewall rule) and performance

problems (e.g., congested queue). ATPG

complements but goes beyond earlier work

in static checking (which cannot detect

liveness or performance faults) or fault

localization (which only localize faults

given liveness results). We describe our

prototype ATPG implementation and results

on two real-world data sets: Stanford

University’s backbone network and

Internet2. We find that a small number of

test packets suffices to test all rules in these

networks. For example, 4000 packets can

cover all rules in Stanford backbone

network, while 54 are enough to cover all

links. Sending 4000 test packets 10 times

per second consumes less than 1% of link

capacity. ATPG code and the data sets are

publicly available.

Index Terms—Data plane analysis, network

troubleshooting, test packet generation.

1.INTRODUCTION

It is notoriously hard to debug networks.

Every day, network engineers wrestle with

router misconfigurations, fiber cuts, faulty

interfaces, mislabeled cables, software bugs,

intermittent links, and a myriad other

reasons that cause networks to misbehave or

fail completely. Network engineers hunt

down bugs using the most rudimentary tools

(e.g., SNMP) and track down root causes

using a combination of accrued wisdom and

intuition. Debugging networks is only

becoming harder as networks are getting

bigger (modern data centers may contain 10

000 switches, a campus network may serve

50 000 users, a 100-Gb/s long-haul

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 392

Fig.1. Static versus dynamic checking: A

policy is compiled to forwarding state,which

is then executed by the forwarding plane.

Static checking (e.g., [16]) confirms that .

Dynamic checking (e.g., ATPG in this

paper) confirms that the topology is meeting

liveness properties and that .link may carry

100000 flows) and are getting more

complicated (with over 6000 RFCs, router

software is based on millions of lines of

source code, and network chips often

contain billions of gates). It is a mall wonder

that network engineers have been labeled

“masters of complexity” [32]. Consider two

examples. Example 1: Suppose a router with

a faulty line card starts dropping packets

silently. Alice, who administers 100 routers,

receives a ticket from several unhappy users

complaining about connectivity. First, Alice

examines each router to see if the

configuration was changed recently and

concludes that the configuration was

untouched. Next, Alice uses her knowledge

of the topology to triangulate the faulty

device with and . Finally, she calls a

colleague to replace the line card.

We can think of the controller compiling the

policy (A) into device-specific configuration

files (B), which in turn determine the

forwarding behavior of each packet (C). To

ensure the net-work behaves as designed, all

three steps should remain consis-tent at all

times, i.e., . In addition, the

topology, shown to the bottom right in the

figure, should also satisfy a set of

livenessproperties . Minimally, requires

that sufficient links and nodes are working;

if the control plane specifies that a laptop

can access a server, the desired outcome can

fail if links fail. can also specify

performance guarantees that detect flaky

links.

Recently, researchers have proposed tools

to check that , enforcing consistency

between policy and the config-uration[7],

[16], [25], [31]. While these approaches

canfind(or prevent) software logic errors in

the control plane, they are not designed to

identify liveness failures caused by failed

linksand routers, bugs caused by faulty

router hardware or software, or performance

problems caused by network congestion.

Such failures require checking for and

whether . Alice’s first problem was

with (link not working), and her second

problem was with (low level token

bucket state not reflecting policy for video

bandwidth).

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 393

In fact, we learned from a survey of 61

network operators (see Table I in Section II)

that the two most common causes of net-

work failure are hardware failures and

software bugs, and that problems manifest

themselves both as reachability failures and

throughput/latency degradation. Our goal is

to automatically detect these types of

failures.

The main contribution of this paper is

what we call an Automatic Test Packet

Generation (ATPG) framework that

automatically generates a minimal set of

packets to test the liveness ofthe underlying

topology and the congruence between data

plane state and configuration specifications.

The tool can also automatically generate

packets to test performance assertions such

as packet latency. In Example 1, instead of

Alice manually deciding which packets

to send, the tool does so periodically on her

behalf. In Example 2, the tool determines

that it must send packets with certain

headers to “exercise” the video queue, and

then determines that these packets are being

dropped.

ATPG detects and diagnoses errors by

independently and exhaustively testing all

forwarding entries, firewall rules, and any

packet processing rules in the network. In

ATPG, test packets are generated

algorithmically from the device

configuration files and FIBs, with the

minimum number of packets required for

complete coverage. Test packets are fed into

the network so that every rule is exercised

directly from the data plane. Since ATPG

treats links just like normal forwarding

rules, its full coverage guarantees testing of

every link in the network. It can also be

specialized to generate a minimal set of

packets that merely test every link for

network liveness. At least in this basic form,

we feel that ATPG or some similar

technique is fundamental to networks:

Instead of reacting to failures, many

network operators such as Internet2 [14]

proactively check the health of their network

using pings between all pairs of sources.

How-ever, all-pairs does not guarantee

testing of all links andhas b een found to be

unscalable for large networks such as

PlanetLab [30].

Organizations can customize ATPG to

meet their needs; for example, they can

choose to merely check for network liveness

(link cover) or check every rule (rule cover)

to ensure security policy. ATPG can be

customized to check only for reachability or

for performance as well. ATPG can adapt to

constraints such as requiring test packets

from only a few places in the network or

using special routers to generate test packets

from every port. ATPG can also be tuned to

allocate more test packets to exercise more

critical rules. For example, a healthcare

network may dedicate more test packets to

Firewall rules to ensure HIPPA compliance.

We tested our method on two real-world

data sets the back-bone networks of Stanford

University, Stanford, CA, USA, and

Internet2, representing an enterprise network

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 394

and a nationwide ISP. The results are

encouraging: Thanks to the structure of real

world rule sets, the number of test packets

needed is surprisingly small. For the

Stanford network with over 757 000 rules

and more than 100 VLANs, we only need

4000 packets to exercise all forwarding rules

and ACLs. On Internet2, 35 000 packets

suffice to exercise all IPv4 forwarding rules.

Put another way, we can check every rule in

every router on the Stanford backbone 10

times every second by sending test packets

that consume less than 1% of network

bandwidth. The link cover for Stanford is

even smaller, around 50 packets, which

allows proactive liveness testing every

millisecond using 1% of net-work

bandwidth.

The contributions of this paper are as

follows:

1) a survey of network operators revealing

common failures and root causes

(Section II);

2) a test packet generation algorithm

(Section IV-A);

3) a fault localization algorithm to isolate

faulty devices and rules (Section IV-B);

4) ATPG use cases for functional and

performance testing (Section V);

5) evaluation of a prototype ATPG system

using rulesets collected from the

Stanford and Internet2 backbones

II. CURRENT PRACTICE

To understand the problems network

engineers encounter, and how they currently

troubleshoot them, we invited sub-scribers

to the NANOG1 mailing list to complete a

survey in May–June 2012. Of the 61 who

responded, 12 administer small networks (

k hosts), 23 medium networks (1 k–10 k

hosts), 11 large networks (10 k–100 k

hosts), and 12 very large networks (k

hosts). All responses (anonymized) are

reported in [33] and are summarized in

Table I. The most relevant findings are as

follows.

Symptoms: Of the six most common

symptoms, four cannotbe detected by static

checks of the type (throughput/

latency, intermittent connectivity, router

CPU utilization, con-gestion) and require

ATPG-like dynamic testing. Even the re-

maining two failures (reachability failure

and security Policy Violation) may require

dynamic testing to detect forwarding plane

failures.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 395

Fig. 1. Reported number of (a) network-

related tickets generated per month and

(b) time to resolve a ticket.

Cost of troubleshooting:

Two metrics capture the cost ofnetwork

debugging—the number of network-related

tickets per month and the average time

consumed to resolve a ticket (Fig. 1). There

are 35% of networks that generate more than

100 tickets per month. Of the respondents,

40.4% estimate it takes under 30 min to

resolve a ticket. However, 24.6% report that

it takes over an hour on average.

Tools: Table II shows that , ,

and SNMP are by far the most popular tools.

When asked what the ideal tool for network

debugging would be, 70.7% reported a

desire for automatic test generation to check

performance and correctness. Some added a

desire for “long running tests to detect jitter

or intermittent issues,” “real-time link

capacity monitoring,” and “monitoring tools

for network state.”

In summary, while our survey is small, it

supports the hypoth-esis that network

administrators face complicated symptoms

and causes. The cost of debugging is

nontrivial due to the frequency of problems

and the time to solve these problems.

Classical tools such as and

are still heavily used, but administrators

desire more sophisticated tools.

III. NETWORK MODEL

ATPG uses the header space

framework—a geometric model of how

packets are processed we described in [16]

(and used in [31]). In header space,

protocol-specifi c meanings associ-ated with

headers are ignored: A header is viewed as a

flat se-quence of ones and zeros. A header is

a point (and a flow is a region) in the

space, where is an upper bound on header

length. By using the header space

framework, we ob-tain a unified, vendor-

independent, and protocol-agnostic model of

the network2 that simplifies the packet

generation process significantly.

Fig:2. Life of a packet: repeating and

until the packet reaches its destination or

is dropped.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 396

IV. ATPG SYSTEM

Based on the network model, ATPG

generates the minimal number of test

packets so that every forwarding rule in the

net-work is exercised and covered by at least

one test packet. When an error is detected,

ATPG uses a fault localization algorithm to

determine the failing rules or links.

Fig. 3 is a block diagram of the ATPG

system The system first collects all the

forwarding state from the network (step 1).

This usually involves reading the FIBs,

ACLs, and config files, as well as obtaining

the topology. ATPG uses Header Space

Analysis [16] to compute reachability

between all the test terminals (step 2).

Fig.3. ATPG system block diagram.

A. Test Packet Generation

1) Algorithm: We assume a set of test

terminals in the net-work can send and

receive test packets. Our goal is to generate

a set of test packets to exercise every rule in

every switch function, so that any fault will

be observed by at least one test packet. This

is analogous to software test suites that try to

test every possible branch in a program. The

broader goal can be limited to testing every

link or every queue.

When generating test packets, ATPG must

respect two key constraints: 1) Port: ATPG

must only use test terminals that are

available; 2) Header: ATPG must only use

headers that each test terminal is permitted

to send. For example, the network admin-

iterator may only allow using a specific set

of VLANs. Formally, we have the following

problem.

Problem 1 (Test Packet Selection): For a

network with theswitch functions, ,

and topology function, , determini the

minimum set of test packets to exercise all

reach-able rules, subject to the port and

header constraints.

ATPG chooses test packets using an

algorithm we call TestPacket Selection

(TPS). TPSfirstfinds all equivalent classes

between each pair of available ports. An

equivalent class is a set of packets that

exercises the same combination of rules.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 397

V. RELATED WORK

We are unaware of earlier techniques that

automatically generate test packets from

configurations. The closest related works we

know of are offline tools that check

invariants in net-works. In the control plane,

NICE [7] attempts to exhaustively cover the

code paths symbolically in controller

applications with the help of simplified

switch/host models. In the data plane,

Anteater [25] models invariants as

booleansatisfiability problems and checks

them against configurations with a SAT

solver. Header Space Analysis [16] uses a

geometric model to check reachability,

detect loops, and verify slicing. Recently,

SOFT [18] was proposed to verify

consistency between different Open Flow

agent implementations that are responsible

for bridging control and data planes in the

SDN context. ATPG complements these

checkers by directly testing the data plane

and covering a significant set of dynamic or

performance errors that cannot otherwise be

captured.

End-to-end probes have long been used in

network fault diagnosis in work such as [8]–

[10], [17], [23], [24], [26]. Recently, mining

low-quality, unstructured data, such as

router confi durations and network tickets,

has attracted interest [12], [21], [34]. By

contrast, the primary contribution of ATPG

is not fault localization, but determining a

compact set of end-to-end measurements

that can cover every rule or every link. The

mapping between Min-Set -Cover and

network monitoring has been previously

explored in [3] and [5]. ATPG improves the

detection granuality to the rule level by

employing router configuration and data

plane information. Furthermore, ATPG is

not limited to liveness testing, but can be

applied to checking higher level properties

such as performance.

There are many proposals to develop a

measurement-friendly architecture for

networks [11], [22], [28], [35]. Our

approach is complementary to these

proposals: By incorporating input and port

constraints, ATPG can generate test packets

and injection points using existing

deployment of measurement devices.

Our work is closely related to work in

programming lan-guages and symbolic

debugging. We made a preliminary at-tempt

to use KLEE [6] and found it to be 10 times

slower than even the unoptimized header

space framework. We speculate that this is

fundamentally because in our framework we

directly simulate the forward path of a

packet instead of solving constraints using

an SMT solver. However, more work is

requiredto understand the differences and

potential opportunities.

VI. CONCLUSION

Testing liveness of a network is a

fundamental problem for ISPs and large data

center operators. Sending probes between

every pair of edge ports is neither exhaustive

nor scalable [30]. It suffices to find a

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 398

minimal set of end-to-end packets that

traverse each link. However, doing this

requires a way of abstracting across device

specific configuration files (e.g., header

space), generating headers and the links they

reach (e.g., all -pairs reach-ability), and

finally determining a minimum set of test

packets (Min- Set-Cover). Even the

fundamental problem of automat-ically

generating test packets for efficient liveness

testing re-quires techniques akin to ATPG.

ATPG, however, goes much further than

liveness testing with the same framework.

ATPG can test for reachability policy (by

testing all rules including drop rules) and

performance health (by associating

performance measures such as latency and

loss with test packets). Our implementation

also augments testing with a simple fault

localization scheme also constructed using

the header space framework. As in software

testing, the formal model helps maximize

test coverage while minimizing test packets.

Our results show that all forwarding rules in

Stanford backbone or Internet2 can be

exercised by a surprisingly small number of

test packets (for Stanford, and

for Internet2).

Network managers today use primitive

tools such as

and . Our survey results indicate

that they are eager for more sophisticated

tools. Other fields of engineering indi-cate

that these desires are not unreasonable: For

example, both the ASIC and software design

industries are buttressed by bil-lion-dollar

tool businesses that supply techniques for

both static (e.g., design rule) and dynamic

(e.g., timing) verification. In fact, many

months after we built and named our system,

we dis-covered to our surprise that ATPG

was a well-known acronym in hardware chip

testing, where it stands for Automatic Test

Pat-tern Generation [2]. We hope network

ATPG will be equallyuseful for automated

dynamic testing of production networks.

REFERENCES

[1] “ATPG code repository,” [Online].

Available: http://eastzone.github.

com/atpg/

[2] “Automatic Test Pattern

Generation,” 2013 [Online].

Available:

http://en.wikipedia.org/wiki/Automatic

_test_pattern_generation

[3] P. Barford, N. Duffield, A. Ron, and

J. Sommers, “Network perfor-mance

anomaly detection and localization,”

in Proc. IEEE INFOCOM, Apr. , pp.

1377–1385.

[4] “Beacon,” [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, “Robust

monitoring of link delays and faults in

IP networks,” IEEE/ACM Trans.

Netw., vol. 14, no. 5, pp. 1092–1103,

Oct. 2006.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 399

[6] C. Cadar, D. Dunbar, and D. Engler,

“Klee: Unassisted and automatic

generation of high-coverage tests for

complex systems programs,” in Proc.

OSDI, Berkeley, CA, USA, 2008, pp.

209–224.

[7] M. Canini, D. Venzano, P. Peresini,

D. Kostic, and J. Rexford, “A NICE

way to test OpenFlow applications,” in

Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C.

Dovrolis, and C. Diot, “Netdiagnoser:

Troubleshooting network

unreachabilities using end-to-end

probes and routing data,” in Proc.

ACM CoNEXT, 2007, pp. 18:1–18:12..

[9] N. Duffield, “Network tomography

of binary network performance

characteristics,” IEEE Trans. Inf.

Theory, vol. 52, no. 12, pp. 5373–

5388, Dec. 2006.

[10] N. Duffield, F. L. Presti, V. Paxson,

and D. Towsley, “Inferring link loss

using striped unicast probes,” in Proc.

IEEE INFOCOM, 2001, vol. 2, pp.

915–923. 65

[11] N. G. Duffield and M. Grossglauser,

“Trajectory sampling for direct traffic

observation,” IEEE/ACM Trans. Netw.,

vol. 9, no. 3, pp. 280–292, Jun. 2001.

[12] P. Gill, N. Jain, and N. Nagappan,

“Understanding network failures in data

centers: Measurement, analysis, and

implications,” in Proc. ACMSIGCOMM,

2011, pp. 350–361.

[13] “Hassel, the Header Space Library,”

[Online]. Available: https://bit-

bucket.org/peymank/hassel-public/

[14] Internet2, Ann Arbor, MI, USA,

“The Internet2 observatory data col-

lections,” [Online]. Available:

http://www.internet2.edu/observatory/

archive/data-collections.html

[15] M. Jain and C. Dovrolis, “End-to-

end available bandwidth: Measure-ment

methodology, dynamics, and relation

with TCP throughput,” IEEE/ACM

Trans. Netw., vol. 11, no. 4, pp. 537–

549, Aug. 2003.

[16] P. Kazemian, G. Varghese, and N.

McKeown, “Header space analysis:

Static checking for networks,” in Proc.

NSDI, 2012, pp. 9–9.

[17] R. R. Kompella, J. Yates, A.

Greenberg, and A. C. Snoeren, “IP fault

localization via risk modeling,” in Proc.

NSDI, Berkeley, CA, USA, 2005, vol. 2,

pp. 57–70.

[18] M. Kuzniar, P. Peresini, M. Canini,

D. Venzano, and D. Kostic, “A SOFT

way for OpenFlow switch

interoperability testing,” in Proc.ACM

CoNEXT, 2012, pp. 265–276.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 400

[19] K. Lai and M. Baker, “Nettimer: A

tool for measuring bottleneck link,

bandwidth,” in Proc. USITS, Berkeley,

CA, USA, 2001, vol. 3, pp. 11–11.

[20] B. Lantz, B. Heller, and N.

McKeown, “A network in a laptop:

Rapid prototyping for software-defined

networks,” in Proc. Hotnets, 2010, pp.

19:1–19:6.

[21] F. Le, S. Lee, T. Wong, H. S. Kim,

and D. Newcomb, “Detecting network-

wide and router-specific

misconfigurations through data mining,”

IEEE/ACM Trans. Netw., vol. 17, no. 1,

pp. 66–79, Feb. 2009.

[22] H. V. Madhyastha, T. Isdal, M.

Piatek, C. Dixon, T. Anderson, A. Kr-

ishnamurthy, and A. Venkataramani,

“iplane: An information plane for

distributed services,” in Proc. OSDI,

Berkeley, CA, USA, 2006, pp. 367–380.

[23] A. Mahimkar, Z. Ge, J. Wang, J.

Yates, Y. Zhang, J. Emmons, B.

Huntley, and M. Stockert, “Rapid

detection of maintenance induced

changes in service performance,” in

Proc. ACM CoNEXT, 2011, pp. 13:1–

13:12.

[24] A. Mahimkar, J. Yates, Y. Zhang, A.

Shaikh, J. Wang, Z. Ge, and C. T. Ee,

“Troubleshooting chronic conditions in

large IP networks,” in Proc. ACM

CoNEXT, 2008, pp. 2:1–2:12.

[25] H. Mai, A. Khurshid, R. Agarwal,

M. Caesar, P. B. Godfrey, and S. T.

King, “Debugging the data plane with

Anteater,” Comput. Commun.Rev., vol.

41, no. 4, pp. 290–301, Aug. 2011.

[26] A. Markopoulou, G. Iannaccone, S.

Bhattacharyya, C.-N. Chuah, Y. Ganjali,

and C. Diot, “Characterization of failures

in an operational ip backbone network,”

IEEE/ACM Trans. Netw., vol. 16, no. 4,

pp. 749–762, Aug. 2008.

[27] N. McKeown, T. Anderson, H.

Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner,

“Openflow: Enabling innovation in

campus networks,” Comput. Commun.

Rev., vol. 38, pp. 69–74, Mar. 2008.

[28] “OnTimeMeasure,” [Online].

Available: http://ontime.oar.net/

[29] “Open vSwitch,” [Online].

Available: http://openvswitch.org/

[30] H. Weatherspoon, “All-pairs ping

service for PlanetLab ceased,” 2005

[Online]. Available: http://lists.planet-

lab.org/pipermail/users/2005-

July/001518.html

[31] M. Reitblatt, N. Foster, J. Rexford,

C. Schlesinger, and D. Walker, “Ab-

stractions for network update,” in Proc.

ACM SIGCOMM, 2012, pp. 323–334.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

International Journal of Research
 Available at http://internationaljournalofresearch.org/

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 02 Issue 09
October 2015

Available online: http://internationaljournalofresearch.org/ P a g e | 401

[32] S. Shenker, “The future of

networking, and the past of protocols,”

2011 [Online]. Available:

http://opennetsummit.org/archives/oct11/

shenker-tue.pdf

[33] “Troubleshooting the network

survey,” 2012 [Online]. Available:

http://eastzone.github.com/atpg/docs/Net

DebugSurvey.pdf

[34] D. Turner, K. Levchenko, A.

C.Snoeren, and S. Savage, “California

fault lines: Understanding the causes and

impact of network failures,” Comput.

Commun. Rev., vol. 41, no. 4, pp. 315–

326, Aug. 2010.

[35] P. Yalagandula, P. Sharma, S.

Banerjee, S. Basu, and S.-J. Lee, “S3: A

scalable sensing service for monitoring

large networked systems,” in Proc. INM,

2006, pp. 71–76.

Guide Profile:

Mr. N.Venkatadri was born in Andhra

Pradesh, India. He is working as Asso.Prof.,

M.Tech Department of CSE, SKR College

Of Engineering and Technology, Konduru

Satram, Manubolu, Nellore(DT).

Student Profile:

A.Chaitanya was born in Andhra Pradesh,

India. He received B.Tech Degree from

JNTU Ananthapur, Nellore (DT). I am

pursuing M.Tech Degree in CSE from

JNTU Ananthapur.

http://internationaljournalofresearch.org/
http://internationaljournalofresearch.org/

