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Abstract— 

Cloud computing has significant efficiency and 

cost advantages, advancements in cloud 

computing provides a promising future for 

collaborative cloud computing (ccc). In ccc 

globally-scattered distributed cloud resources 

belonging to different organizations or 

individuals are collectively used in a cooperative 

manner to provide services. In this paper, we 

address resource management and reputation 

management are the two fundamental issues. In 

ccc harmony platform Cloud will used to 

integrates res mgt and rept mgt in a harmonious 

manner. Harmony incorporates three key 

innovations: integrated multi-faceted 

resource/reputation management, multi-qos-

oriented resource selection, and price-assisted 

resource/reputation control. The issues of 

resource management and reputation 

management must be jointly addressed in order 

to ensure the successful deployment of ccc. 

however, these two issues have typically been 

addressed separately in previous research 

efforts, and simply combining the two systems 

generates double .  
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I. INTRODUCTION  

Cloud computing has become a popular 

computing paradigm, in which cloud providers 

offer scalable resources over the Internet to 

customers. Currently, many clouds, such as 

Amazon’s EC2, Google’s AppEngine, IBM’s 

Blue- Cloud, and Microsoft’s Azure, provide  

 

various services (e.g., storage and computing). 

For example, Amazon [1] (cloud provider) 

provides Dropbox [2] (cloud customer) the 

simple storage service (S3) (cloud service). 

Cloud customers are charged by the actual usage 

of computing resources storage, and bandwidth.  

 

The demand for scalable resources in some 

applications has been increasing very rapidly. 

For example, Dropbox currently has five million 

users, three times the number last year. A single 

cloud may not be able to provide sufficient 

resources for an application (especially during a 

peak time). Also, researchers may need to build a 

virtual lab environment connecting multiple 

clouds for petascale supercomputing capabilities 

or for fully utilizing idle resources. Indeed, most 

desktop systems are underutilized in most 

organizations; they are idle around 95 percent of 

the time [3]. Thus, advancements in cloud 

computing are inevitably leading to a promising 

future for collaborative cloud computing (CCC), 

where globally- scattered distributed cloud 

resources belonging to different organizations or 

individuals (i.e., entities) are collectively pooled 

and used in a cooperative manner to provide 

services.  

As shown in Fig. 1 below, a CCC platform 

interconnects physical resources to enable 

resource sharing between clouds, and provides a 

virtual view of a tremendous amount of resources 

to customers. This virtual organization is 

transparent to cloud customers. When a cloud 

does not have sufficient resources demanded by 

its customers, it finds and uses the resources in 

other clouds. 
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    Fig:1 An example of collaborative cloud computing 

Uses of Resource and Reputation 

Management:  

A node may provide low QoS because of system 

problems (e.g., machines break down due to 

insufficient cooling) or because it is not willing 

to provide high QoS in order to save costs. Also, 

nodes may be attacked by viruses and Trojan 

horse programs. This weakness is revealed in all 

the cloud platforms built by Google, IBM, and 

Amazon [7], and security has been recognized as 

an important factor in grids (the predecessor of 

clouds) [8]. Thus, resMgt needs reputation 

management (repMgt) to measure resource 

provision QoS for guiding resource provider 

selection [4], [7]. As in eBay and Amazon, a 

repMgt system computes each node’s reputation 

value based on evaluations from others about its 

will exhibit contradictory behaviors and 

significantly affect the effectiveness of both, 

finally leading to degraded overall performance. 

The results of the single-QoS-demand 

assumption and contradictory behaviors pose two 

challenges. First, in task (2), how can we jointly 

consider multiple\ QoS demands such as 

reputation, efficiency, and available resources in 

resource selection? Second, in task (3), how can 

we enable each node to actively control its 

reputation and resource supply so that it avoids 

being over overloaded while gaining high 

reputation and profit?  

To ensure the successful deployment of CCC, the 

issues of resMgt and repMgt must be jointly 

addressed for both efficient and trustworthy 

resource sharing in three tasks:  

1. Efficiently locating required trustworthy 

resources.  

2. Choosing resources from the located options.  

3. Fully utilizing the resources in the system 

while avoiding overloading any node. 

II. METHODOLOGY 

A cloud environment often contains large 

number of machines that are connected by a 

high-speed network. Users access sites hosted by 

the cloud environment through the public 

internet. A site is typically accessed through a 

URL that is translated to a network address 

through a global list check, such as domain name 

system. A demand is made on a site through the 

internet which either processes the request or 

forwards it. Clouds are shared environments 

where multiple cloud users utilize the same 

equipment. Cloud user requests the resource 

from service provider. Multiple cloud users can 

request number of cloud services concurrently. 

So there must be a preparation that all 

requirements are made available to the 

demanding user in powerful manner to satiate 

their need. Collaborative Cloud networks are 

shared in a best-effective manner, making it hard 

for both users and cloud operators to reason 

about how network resources are allocated. 

A. Existing Methodology  

Although many distributed resMgt and repMgt 

systems for grids have been proposed previously, 

and cloud resource orchestration (i.e., resource 

provision, configuration, utilization and 

decommission across a distributed set of physical 

resources in clouds) has been studied in recent 

years, these two issues have typically been 

addressed separately. Simply building and 

combining individual resMgt and repMgt 

systems in CCC will generate doubled, 

prohibitively high overhead. Moreover, most 

previous resMgt and repMgt approaches are not 

sufficiently efficient or effective in the large-

scale and dynamic environment of CCC. 
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Previous repMgt systems neglect resource 

heterogeneity by assigning each node one 

reputation value for providing all of its resources. 

We claim that node reputation is multi-faceted 

and should be differentiated across multiple 

resources (e.g., CPU, bandwidth, and memory). 

For example, a person trusts a doctor for giving 

advice on medical issues but not on financial 

issues. Similarly, a node that performs well for 

computing services does not necessarily perform 

well for storage services. Thus, previous repMgt 

systems are not effective enough to provide 

correct guidance for trustworthy individual 

resource selection. So, RepMgt needs to rely on 

resMgt for reputation differentiation across 

multiple resources.  

B. Proposed System Combined Multi faceted 

Res/Rep Management:  

A CCC operates in a large-scale environment 

involving thousands or millions of resources 

across disparate geographically distributed areas, 

and it’s also inherently dynamic as entities may 

enter or leave the system and resource utilization 

and availability are continuously changing. This 

environment makes efficient resource 

management (res Mgt) a non-trivial task. Further, 

due to the autonomous and individual 

characteristics of entities in CCC, different nodes 

provide different quality of service (QoS) in 

resource provision. A node may provide low 

QoS because of system problems or because it is 

not willing to provide high QoS in order to save 

costs. Relying on a distributed hash table overlay 

(DHT), Harmony offers multi-faceted reputation 

evaluation across multiple resources by indexing 

the resource information and the reputation of 

each type of resource to the same directory node. 

In this way, it enables nodes to simultaneously 

access the information and reputation of 

available individual resources.  

 

Multi-QoS-Oriented Resource Selection: For a 

single QoS request of customers, Harmony 

allows a client to implement resource selection 

with joint consideration of various QoS requests, 

such as reputation, efficiency, distance, and 

price, with different priorities. The difficulty here 

is how to consider different or combined QoS 

attribute, and a customer’s most wanted priority 

of the attributes in provider collection. Harmony 

solves this problem by joining all attribute values 

and a client’s considered attribute priority into an 

overall QoS metric. Similarly, Harmony 

develops a list of QoS attributes. It involves 

nodes to give evaluations for each QoS element 

and overall QoS for a source package in addition 

to the repute for a server. As the reputation 

response, the QoS ratings are also collected at the 

directory node of the resource of the server. The 

overall QoS is actually a result of the joint power 

from the QoS elements. However, it is not easy 

to identify how the changed features impact the 

overall QoS. The various attributes related to 

QoS is shown in Fig 2. Harmony depends on a 

neural network to find out the stimulus load of 

each attribute on the overall QoS value, and 

further considers users’ attribute respect priority. 

A neural network can be used to derive meaning 

from complex data, extract forms and detect 

trends. 

 

Fig.2. Quality of Services (QoS) attributes 
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Fig.3. a neural network model for resource 

selection 

In Harmony, each directory node builds a neural 

network model as shown in Fig.8. Its inputs are 

the ratings of each QoS attribute, denoted by 

{A1,A2, · · · ,A5, · · · }, and its output is the 

overall QoS value for a provider. The training 

process of the neural network is the process of 

determining the weight of influence of each 

attribute on the QoS, denoted by {w1, w2, · · · , 

w5, · · · }. These weights reflect the normal 

degree of influence from different QoS attributes 

on the overall QoS calculated by the collected 

QoS ratings from many nodes. After building the 

neural network, each directory node trains its 

neural network model periodically using its 

newly collected QoS ratings to keep the model 

and the calculated weights wi up-to-date. After 

the directory node locates satisfying resource 

providers, it calculates the overall QoS value for 

each server option by considering both the 

normal influence of QoS attributes on the overall 

QoS and the requester’s consideration priority.as 

shown in Fig.3. It It then inputs each server’s 

attribute values {A1,A2, · · · ,A5, · · · } into the 

neural network. The output of the neural network 

is the overall QoS. Finally, the directory node 

determines the server(s) with the highest overall 

QoS value. Thus, Harmony jointly takes into 

account the client’s considered priority on 

different attributes and the influence weights of 

attributes on the final rating in server selection.  

Price Assisted Res/Rep Management: In a 

supply matter, a store activist pays a resource 

provider (in the form of virtual credits) for its 

resource. The communications are directed in a 

circulated custom in Harmony. Harmony works 

an exchange perfect for supply communications 

in store allocation and controls the store price to 

regulator each node’s reserve use and standing. It 

qualifies each node to adaptively regulate its 

supply price to make best use of its income and 

retain an in height character although escaping 

presence encumbered, in demand to totally and 

fairly utilize possessions in the system. A worker 

usually requires the price of its resources giving 

to the reputation value, load, and the interest of 

the resources. Resources with difficult 

reputations, lower loads, and higher demand 

(frequently requested) should have high prices. 

Therefore, in direction to earn more payment, 

each node is interested to afford high QoS to 

retain high reputation, while avoiding being 

overloaded. The price-assisted res/rep controller 

scheme checks sun helpful manners, heartens 

nodes to provide high QoS, and allows nodes to 

adaptively alter their load to offer high QoS. As a 

result, all properties in the system are fully and 

fairly utilized, nodes are not overloaded, and a 

node’s reputation can truly reflect its QoS in 

offering resources without the influence of the 

overloaded status. To address the problem of low 

reputation for newly joined nodes, Harmony 

assigns the nodes a certain amount of starting 

virtual credits that can be used for building initial 

reputation. We define a load factor f = l/c, where 

l is the amount of resource a node has provided 

to others, and c is the total amount of that 

resource the node owns. When a node’s f > 1, it 

is overloaded. A node periodically checks its f. If 

the node’s f > α (0.8 ≤ α < 1), it increases its 

price by one price unit to discourage requesters 

and avoid being overloaded. Otherwise, it 

decreases its price by one price unit in order to 

promote its resource usage to raise its own 

reputation and income. We choose α < 1 rather 

than α = 1 in order to avoid delayed responses to 

the node’s overloaded status. This control 

method is used to deal with the overloaded and 

under loaded resource utilization situations. 

Cloud Broker or their brokers request a service 

anywhere around the world to the Cloud. An 
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important notice makes the difference between 

Cloud consumers and users of the deployed 

cloud services. For example, a company 

deploying a Web application can be a consumer 

that represents different workload as per the 

different number of "users" using it. 

C. Dynamic Priority Scheduling A dynamic 

scheduling algorithm is proposed with dynamic 

priority for the nodes based on which the virtual 

machines are scheduled. It schedules the virtual 

machines to the nodes controlled by upon their 

arrangement value, which varies dynamically 

based on their load vector. This dynamic priority 

approach leads to better operation of the 

property. Priority of a node is assigned turn to 

upon its space and the load factor. This algorithm 

hammers the true sense of balance among act and 

control effectiveness.  

Algorithm scheduling priority { 

Flag=0;  

If (P =/0)  

P1=max available resource node  

If (load vector of P1<0.8)  

Assign VM to P1;  

If (P2 is set AND load vector of P2<0.8  

AND  

Swap P1 and P2;  

Assign VM to P2;  

Else if P2=P1  

P1=current max available resource node  

Assign VM to P1; 

} 

III. PERFORMANCE MEASURE  

Finally we are evaluating the proposed approach 

with the existing approach for the Resource 

selection. Here we analyze and compare the 

performance offered by different configurations 

of the computing cluster. And present the 

evaluation comparison by the parameter metrics 

such as the viability, from the point of view of 

scalability, execution time, performance, and 

cost. Based on the comparison and the results 

from the experiment, we show that proposed 

approach works better than the other existing 

systems. 

 

A. Performance Evaluation on Planet Lab 

To validate the design of Harmony, we 

implemented a prototype on Planet Lab and 

conducted trace-driven experiments. Since we 

can stably access around 234 nodes in Planet 

Lab, we set the number of nodes in the system to 

234. We created 12 resource types in our system. 

In order to derive node overall reputations and 

individual reputations for these resource types, 

we first identified 13 sellers from the Zol trace 

data with 3 merchandise types in common. We 

then mapped this trace data to the 234 nodes and 

12 merchandise types. We normalized the 

reputation values from [0,100] to [0, 10]. The 

lowest overall reputation of these sellers is 8.9 in 

the trace data. To simulate an environment with 

high-, medium- and low-reputed nodes, we 

generated synthetic data for 1/3 nodes with 

overall and individual reputations randomly 

chosen from [1, 3] and [4, 6], respectively. Their 

individual reputations were set equal to their 

overall reputations. On Planet Lab, we selected 

21 nodes (7 from the US, Europe and Asia, 

respectively) as landmark nodes for calculating 

node Hilbert numbers. We randomly chose 8 

nodes as requesters in America, Europe, and 

Asia, respectively. In the experiments, unless 

otherwise specified, each requester sends one 

request every 10s for a resource randomly chosen 

from the 12 types. 

 

B. Integrated Multi-Faceted Res/Rep 

Management 

Resource management needs reputation 

management to provide a cooperative 
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environment for resource sharing. Otherwise, a 

node cannot know which resources are 

trustworthy. Resource management in turn 

facilitates reputation management to evaluate 

multi-faceted node reputation in providing 

different resources. Therefore, resMgt may 

choose nodes unwilling to provide services and 

generate many service failures. Power Trust may 

choose overloaded nodes that cannot process 

requests successfully. By integrating both 

resource management and reputation 

management, Harmony enables joint 

consideration of node reputation and load status 

and chooses lightly loaded high-reputed nodes 

that can always process requests successfully. 

Below, we present experimental results to show 

the importance of integrating resource 

management and reputation management. 

 

C. Trustworthy Resource Sharing 

We first tested different methods when all 

requests are single resource requests. In order to 

see the effect of reputation management alone, 

we assumed that nodes do not drop requests 

when overloaded but queue the requests for 

processing later on. Fig.4 (a) shows the average 

success rate of each system, which is measured 

by the ratio of successfully resolved resource 

requests over total requests. A request is 

successfully resolved if the selected server has 

provided its requested resource. We see that 

Harmony achieves a success rate of over 96%, 

while Power Trust achieves around 73% and 

resMgt achieves around 44%. ResMgt selects a 

resource without considering reputation and may 

choose a resource provider with low reputation 

for the requested resource, leading to a low 

success rate. Power Trust always selects the 

highest overall-reputed provider. As verified by 

the trace, a node with a high overall reputation 

may provide low QoS for another resource due to 

either unwillingness or overloaded status. 

Therefore, Harmony significantly outperforms 

Power Trust by always selecting the supplier 

with the highest individual, rather than overall, 

reputation. Fig.4 (b) shows the average 

individual reputation of every group of 500 

selected resource providers for the requested 

resources, which follows Harmony>Power 

Trust>resMgt. The experimental results confirm 

the effectiveness of multi-faceted reputation 

management and its importance in guiding 

trustworthy resource selection. We then tested 

different methods when all requests are multiple-

resource requests. Fig.4(c) shows the average 

success rate of each method, with each request 

calling for three resources. A multi-resource 

request is successfully resolved only after all 

three resources are successfully discovered The 

result shows that Harmony>Power Trust>resMgt 

due to the same reasons as in Fig.4 (a) and Fig.4 

(b). Comparing Fig.4(c) with Fig.4 (a), we 

observe that the average success rate of Harmony 

decreases about 0.06, while those of Power Trust 

and resMgt decrease around 0.34 and 0.35, 

respectively. This is because if one of the three 

resource suppliers has a low individual 

reputation, the final request failure is low. We 

also find that Harmony outperforms Power Trust 

and resMgt more significantly for multiple-

resource requests because it can ensure the 

success rate of each of the three selected 

suppliers by considering multi-faceted 

reputations for different resources. We used the 

product of the individual reputations of the 

selected three resource providers of a request as 

the individual reputation result of this request. 

Fig. 3(d) shows the average individual reputation 

for each group of 500 multi-resource requests 

over time. The experimental result also follows 

Harmony>Power Trust>resMgt, which is 

consistent with the success rate result in Fig.4(c). 

Also, the result of each method in Fig.4 (d) is 

lower than that in Fig.3 (b). This is caused by the 

same reasons for the differences between Fig.4 

(a) and Fig.4(c), which confirms the importance 

of considering individual reputation in selecting 

resource providers, especially for multi-resource 

requests. 
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Fig.4. Trustworthy resource sharing. 
 

 
Fig.5. Efficient resource sharing. 
 

D. Efficient Resource Sharing  
Without resource management, reputation 
management cannot tell if a resource supplier has 

sufficient available resources. We then tested the 

importance of resource management to reputation 
management. In this experiment, each node maintains 

a waiting queue; an overloaded resource 

provider inserts its received request into its waiting 
queue. The requests staying in the queue for more 

than 100s are dropped. Therefore, a resource 

provision failure is caused by either a provider’s 

overloaded status or its unwillingness to provide a 
service as reflected by its reputation. The Pareto 

distribution reflects the real world in which the 

amounts of available resources vary by different 
orders of magnitude. Thus, we used a Pareto 

distribution in determining a node’s capacity for a 

resource type, a request’s requested amount, and time 
period. We set the shape parameter to 2, and the scale 

parameters to 100, 40, and 200 for the above three 

parameters, respectively. We arbitrarily set the values 

in their reasonable ranges. Different setting values 
will not change the relative performance differences 

of the methods. 
 

 
Fig.6. Predicted and real QoS values. 

Fig.5 (a) shows the average success rates for 

groups of 500 requests by each method. The 

black color represents delayed successful 

requests that have waited in the queue before 

being processed, and the grey color represents 

successful requests with no delay. We see that 

Power Trust generates a large number of delayed 

successful requests, while the other methods 

generate no delayed requests. Fig.5 (b) shows the 

total waiting time for each group of 500 requests, 

including failed requests. We see that Power 

Trust generates high delay for a request, while 

Harmony and resMgt produce little or no delay, 

which is consistent with Fig.5 (a). This is 

because Power Trust always chooses the highest-

overall-reputed nodes as resource providers 

without considering node load. These nodes 

receive too many requests, causing many to wait 

in the queues. Since both Harmony and resMgt 

select lightly loaded nodes as resource providers, 

they generate few delayed requests. Fig.5 (a) also 

shows that the success rates in most cases follow 

Harmony>resMgt>Power Trust. In order to 

further explore the trend, we show in Fig.5(c) the 

failure rate due to provider overload or 

unwillingness to serve for groups of 500 requests 

for each method. We see that Power Trust 

generates a higher failure rate due to overload 

than resMgt; this is because Power Trust fails to 

consider load in provider selection. However, 

resMgt has a higher failure rate due to provider 

unwillingness than Power Trust because resMgt 

only considers node load but neglects reputation. 

Only Harmony can constrain failures due to 

either cause, as it jointly considers both load and 

reputation. 

E. Multi-QoS-oriented Resource Selection 

We then evaluate the effectiveness of the multi-

QoS-oriented resource selection scheme. We 

used 95×12 transaction records for 95 sellers, 

each with 12 types of merchandise. Each 

transaction record has 52 transactions. We used 

40×12 for training and the remaining 55 × 12 for 

testing. We regard a node’s individual reputation 

(rating on its transactions for a type of 

merchandise) as its overall QoS for the 
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merchandise (i.e., resource) and regard its overall 

reputation as its reputation in Harmony. The 

inputs of the neural network model include the 

QoS attributes in each transaction (i.e., price, 

distance, service, quality and efficiency) and the 

seller’s overall reputation. The output of the 

model is the seller’s overall QoS. Because the 

real trace does not have users’ consideration 

priorities, we assume that the six QoS attributes 

have equal priorities. Fig.6 shows the predicted 

overall QoS and the real overall QoS for 100 

resource requests, both of which almost overlap. 

Their root mean square error equals 0.95, a very 

small value. The results show the effectiveness 

and accuracy of the neural network model in 

predicting the QoS in individual resource 

selection. 

 

F. Effect of Queuing Timeout 

In order to study the effect of the timeout for 

dropping requests on the success rate and failure 

rate, we measured the two metrics with varying 

timeout values for 5000 requests. Fig.7 (a) shows 

the success rates of different methods with 

different timeout values. We see that Harmony 

and resMgt generate no delayed requests since 

they choose lightly loaded nodes, while Power 

Trust generates many delayed successful requests 

since it does not consider node load. This result 

is consistent with that in Fig.5 (a). We observe 

that the timeout value does not affect the success 

rate of Harmony and resMgt. Also, as the 

timeout value increases, the success rate of 

Power Trust for delayed successful requests 

increases. As Harmony and resMgt always 

choose lightly loaded nodes, they do not need to 

store requests that cannot be processed in time 

into a queue. Power Trust heavily depends on the 

queue since it is very likely to choose an 

overloaded node. A smaller timeout introduces 

more request drops and hence fewer delayed 

successful requests, and vice versa. We also 

observe that the success rate follows 

Harmony>resMgt>Power Trust except when the 

timeout equals 1000s for the same reasons as in 

Fig.5 (a). The large timeout of 1000s allows 

Power Trust to store and resolve more requests, 

thus producing more successful requests than 

resMgt. 
 

 
Fig.7. Effect of queuing timeout on resource sharing 
 

Fig.7(b) shows the failure rate due to overload or 

unwillingness for the three methods at different 

timeouts. We see that the failures in Harmony and 
resMgt are all caused by provider unwillingness to 

provide services, and the failures in Power Trust are 

caused by both overload and unwillingness. As the 

timeout value increases, the failure rate caused by 
provider overloads decreases. A larger timeout 

enables more requests to be resolved and leads to few 

failures and vice versa. These results are consistent 
with those in Fig.7 (a). We also observe that the 

failure rate follows Harmony<resMgt<Power Trust 

except when the timeout equals 1000s, for the same 
reasons as in Fig.5(c). The large 1000s timeout allows 

Power Trust to store and resolve more requests, thus 

producing fewer failed requests than resMgt. In 

conclusion, Harmony and resMgt are not affected by 
the timeout, while Power Trust is sensitive to the 

timeout and a large timeout enables it to resolve more 

requests. Moreover, Harmony always achieves a 
higher success rate than the other methods since it 

considers both reputation and load status. 

 

G. Price-assisted Resource/Reputation 

Control 

We then test the performance on a system with and 

without the price-assisted resource/reputation control 
algorithm denoted by w/Price and w/price, 

respectively, in a heavy load situation. We randomly 

chose nodes from the system to generate requests. 
The request generating rate follows a Poisson process 

at a rate of 2 requests per second. We set every 

request to use 40 units of a resource for 200s. We 

chose these values so that some resource providers 
have insufficient available resources when requested. 

We set the price range to [10, 20] credits. All nodes 

have the same capacity of 200 and reputation of 9. 
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During the simulation period, no resource 

information is updated in the directory nodes. To 
choose a resource provider, a requester first identifies 

the providers with reputation > 8, then identifies the 

providers with the lowest price, and finally randomly 

chooses one. Nodes with reputation > 8 have 
probability 1 to offer the service. A resource request 

fails only when its provider is overloaded. If a 

requester receives a successful service, the resource 
provider’s reputation is increased by 0.001. 

Otherwise, its reputation is decreased by 0.02. In 

every 10s, each node checks its load; if its load factor 
f > 0.8, it reduces its price by 1; otherwise, it 

increases its price by 1. 
 

 
 

Fig.8. Effectiveness of price-assisted control 

algorithm. 

Also, each provider charges its clients for its 

offered resources and its reputation is updated in 

every 10s. The timeout of the waiting queue of 

each provider was set to 60s. We randomly 

determined the values of the above parameters in 

their reasonable ranges, and different parameter 

values should not change the relative 

performance differences 

between different methods. Fig.8 (a) shows the 

total request waiting time in node queues and 

total number of request timeouts versus time. 

W/price generates a significantly higher total 

request waiting time than w/Price. Also, the 

request waiting time of w/price increases 

dramatically while that of w/Price grows only 

slightly as time goes on. This is because nodes in 

w/Price adjust their own load by price, which can 

effectively prevent node overload and avoid long 

queues. 

In contrast, reputed nodes in w/price are likely to 

be overloaded since they have a high probability 

of being chosen as providers but have no strategy 

to adjust their load. Due to the same reason, the 

total number of request timeouts of w/price is 

much smaller than that of w/Price. Fig.8 (b) 

shows the median, 99th and 1st percentiles of all 

nodes’ maximum utilizations every 500s. We see 

that w/Price generates smaller median values, 

much smaller 99th percentile values, and larger 

1st percentile values than w/price. These results 

imply that w/Price distributes request load 

among servers more evenly than w/price. 

W/Price makes full use of all available resources 

while constraining node utilization within 100%; 

while in w/price, some nodes are overloaded or 

under loaded. The experimental results in both 

figures further verify the effectiveness of the 

price-based control algorithm in fully utilizing 

available resources and preventing overloads. 

 

IV. CONCLUSION 

Integrated resource/reputation management 

developed a new environment called Harmony 

which is a collaboration of the different clouds. 

Harmony is built using inter-dependencies 

between reputation and resources management 

which is used to retrieve information available on 

the cloud service providers; the resulted services 

are very much efficient and effective. The multi 

– QoS oriented allocate resources for it operation 

based on the highest level of QoS (Quality of 

Service) which is multiplied by QoS attributes. 

Price – assisted resources/ reputation control 

used to offer very high range of resources and 

also avoid over loading of the nodes. 

Collaborative Cloud Computing (CCC) generates 

the nodes which are widely and globally 

scattered over distributed areas and hence 

sharing of resources is much more reliability. 

Our literature paper helps to study about 

collaborative cloud computing along with cloud 

knowledge which is responsible for searching 

and discovering other mobile resources, 

connecting, maintaining, connections and 

communicating with external device. 
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