

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 453

A Novel Approach to Trustworthy Resource Sharing on
Collaborative Cloud Computing

Meadisetti N Srinivas Rao1& Sk. Jahangeer Basha 2

1
PG Scholar,Dept of CSE, Rao & Naidu Engineering College, Ongole,Prakasam Dist, Andhra Pradesh

2
 Associate Professor,Dept of CSE, Rao & Naidu Engineering College, Ongole,Prakasam Dist, Andhra

Pradesh

Abstract—

Cloud computing has significant efficiency and

cost advantages, advancements in cloud

computing provides a promising future for

collaborative cloud computing (ccc). In ccc

globally-scattered distributed cloud resources

belonging to different organizations or

individuals are collectively used in a cooperative

manner to provide services. In this paper, we

address resource management and reputation

management are the two fundamental issues. In

ccc harmony platform Cloud will used to

integrates res mgt and rept mgt in a harmonious

manner. Harmony incorporates three key

innovations: integrated multi-faceted

resource/reputation management, multi-qos-

oriented resource selection, and price-assisted

resource/reputation control. The issues of

resource management and reputation

management must be jointly addressed in order

to ensure the successful deployment of ccc.

however, these two issues have typically been

addressed separately in previous research

efforts, and simply combining the two systems

generates double .

Keywords— Distributed systems; Reputation

management; Resource management; Distributed

hash tables; Cloud computing; Multi-qos

resource selection; Price control

I. INTRODUCTION

Cloud computing has become a popular

computing paradigm, in which cloud providers

offer scalable resources over the Internet to

customers. Currently, many clouds, such as

Amazon’s EC2, Google’s AppEngine, IBM’s

Blue- Cloud, and Microsoft’s Azure, provide

various services (e.g., storage and computing).

For example, Amazon [1] (cloud provider)

provides Dropbox [2] (cloud customer) the

simple storage service (S3) (cloud service).

Cloud customers are charged by the actual usage

of computing resources storage, and bandwidth.

The demand for scalable resources in some

applications has been increasing very rapidly.

For example, Dropbox currently has five million

users, three times the number last year. A single

cloud may not be able to provide sufficient

resources for an application (especially during a

peak time). Also, researchers may need to build a

virtual lab environment connecting multiple

clouds for petascale supercomputing capabilities

or for fully utilizing idle resources. Indeed, most

desktop systems are underutilized in most

organizations; they are idle around 95 percent of

the time [3]. Thus, advancements in cloud

computing are inevitably leading to a promising

future for collaborative cloud computing (CCC),

where globally- scattered distributed cloud

resources belonging to different organizations or

individuals (i.e., entities) are collectively pooled

and used in a cooperative manner to provide

services.

As shown in Fig. 1 below, a CCC platform

interconnects physical resources to enable

resource sharing between clouds, and provides a

virtual view of a tremendous amount of resources

to customers. This virtual organization is

transparent to cloud customers. When a cloud

does not have sufficient resources demanded by

its customers, it finds and uses the resources in

other clouds.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 454

 Fig:1 An example of collaborative cloud computing

Uses of Resource and Reputation

Management:

A node may provide low QoS because of system

problems (e.g., machines break down due to

insufficient cooling) or because it is not willing

to provide high QoS in order to save costs. Also,

nodes may be attacked by viruses and Trojan

horse programs. This weakness is revealed in all

the cloud platforms built by Google, IBM, and

Amazon [7], and security has been recognized as

an important factor in grids (the predecessor of

clouds) [8]. Thus, resMgt needs reputation

management (repMgt) to measure resource

provision QoS for guiding resource provider

selection [4], [7]. As in eBay and Amazon, a

repMgt system computes each node’s reputation

value based on evaluations from others about its

will exhibit contradictory behaviors and

significantly affect the effectiveness of both,

finally leading to degraded overall performance.

The results of the single-QoS-demand

assumption and contradictory behaviors pose two

challenges. First, in task (2), how can we jointly

consider multiple\ QoS demands such as

reputation, efficiency, and available resources in

resource selection? Second, in task (3), how can

we enable each node to actively control its

reputation and resource supply so that it avoids

being over overloaded while gaining high

reputation and profit?

To ensure the successful deployment of CCC, the

issues of resMgt and repMgt must be jointly

addressed for both efficient and trustworthy

resource sharing in three tasks:

1. Efficiently locating required trustworthy

resources.

2. Choosing resources from the located options.

3. Fully utilizing the resources in the system

while avoiding overloading any node.

II. METHODOLOGY

A cloud environment often contains large

number of machines that are connected by a

high-speed network. Users access sites hosted by

the cloud environment through the public

internet. A site is typically accessed through a

URL that is translated to a network address

through a global list check, such as domain name

system. A demand is made on a site through the

internet which either processes the request or

forwards it. Clouds are shared environments

where multiple cloud users utilize the same

equipment. Cloud user requests the resource

from service provider. Multiple cloud users can

request number of cloud services concurrently.

So there must be a preparation that all

requirements are made available to the

demanding user in powerful manner to satiate

their need. Collaborative Cloud networks are

shared in a best-effective manner, making it hard

for both users and cloud operators to reason

about how network resources are allocated.

A. Existing Methodology

Although many distributed resMgt and repMgt

systems for grids have been proposed previously,

and cloud resource orchestration (i.e., resource

provision, configuration, utilization and

decommission across a distributed set of physical

resources in clouds) has been studied in recent

years, these two issues have typically been

addressed separately. Simply building and

combining individual resMgt and repMgt

systems in CCC will generate doubled,

prohibitively high overhead. Moreover, most

previous resMgt and repMgt approaches are not

sufficiently efficient or effective in the large-

scale and dynamic environment of CCC.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 455

Previous repMgt systems neglect resource

heterogeneity by assigning each node one

reputation value for providing all of its resources.

We claim that node reputation is multi-faceted

and should be differentiated across multiple

resources (e.g., CPU, bandwidth, and memory).

For example, a person trusts a doctor for giving

advice on medical issues but not on financial

issues. Similarly, a node that performs well for

computing services does not necessarily perform

well for storage services. Thus, previous repMgt

systems are not effective enough to provide

correct guidance for trustworthy individual

resource selection. So, RepMgt needs to rely on

resMgt for reputation differentiation across

multiple resources.

B. Proposed System Combined Multi faceted

Res/Rep Management:

A CCC operates in a large-scale environment

involving thousands or millions of resources

across disparate geographically distributed areas,

and it’s also inherently dynamic as entities may

enter or leave the system and resource utilization

and availability are continuously changing. This

environment makes efficient resource

management (res Mgt) a non-trivial task. Further,

due to the autonomous and individual

characteristics of entities in CCC, different nodes

provide different quality of service (QoS) in

resource provision. A node may provide low

QoS because of system problems or because it is

not willing to provide high QoS in order to save

costs. Relying on a distributed hash table overlay

(DHT), Harmony offers multi-faceted reputation

evaluation across multiple resources by indexing

the resource information and the reputation of

each type of resource to the same directory node.

In this way, it enables nodes to simultaneously

access the information and reputation of

available individual resources.

Multi-QoS-Oriented Resource Selection: For a

single QoS request of customers, Harmony

allows a client to implement resource selection

with joint consideration of various QoS requests,

such as reputation, efficiency, distance, and

price, with different priorities. The difficulty here

is how to consider different or combined QoS

attribute, and a customer’s most wanted priority

of the attributes in provider collection. Harmony

solves this problem by joining all attribute values

and a client’s considered attribute priority into an

overall QoS metric. Similarly, Harmony

develops a list of QoS attributes. It involves

nodes to give evaluations for each QoS element

and overall QoS for a source package in addition

to the repute for a server. As the reputation

response, the QoS ratings are also collected at the

directory node of the resource of the server. The

overall QoS is actually a result of the joint power

from the QoS elements. However, it is not easy

to identify how the changed features impact the

overall QoS. The various attributes related to

QoS is shown in Fig 2. Harmony depends on a

neural network to find out the stimulus load of

each attribute on the overall QoS value, and

further considers users’ attribute respect priority.

A neural network can be used to derive meaning

from complex data, extract forms and detect

trends.

Fig.2. Quality of Services (QoS) attributes

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 456

Fig.3. a neural network model for resource

selection

In Harmony, each directory node builds a neural

network model as shown in Fig.8. Its inputs are

the ratings of each QoS attribute, denoted by

{A1,A2, · · · ,A5, · · · }, and its output is the

overall QoS value for a provider. The training

process of the neural network is the process of

determining the weight of influence of each

attribute on the QoS, denoted by {w1, w2, · · · ,

w5, · · · }. These weights reflect the normal

degree of influence from different QoS attributes

on the overall QoS calculated by the collected

QoS ratings from many nodes. After building the

neural network, each directory node trains its

neural network model periodically using its

newly collected QoS ratings to keep the model

and the calculated weights wi up-to-date. After

the directory node locates satisfying resource

providers, it calculates the overall QoS value for

each server option by considering both the

normal influence of QoS attributes on the overall

QoS and the requester’s consideration priority.as

shown in Fig.3. It It then inputs each server’s

attribute values {A1,A2, · · · ,A5, · · · } into the

neural network. The output of the neural network

is the overall QoS. Finally, the directory node

determines the server(s) with the highest overall

QoS value. Thus, Harmony jointly takes into

account the client’s considered priority on

different attributes and the influence weights of

attributes on the final rating in server selection.

Price Assisted Res/Rep Management: In a

supply matter, a store activist pays a resource

provider (in the form of virtual credits) for its

resource. The communications are directed in a

circulated custom in Harmony. Harmony works

an exchange perfect for supply communications

in store allocation and controls the store price to

regulator each node’s reserve use and standing. It

qualifies each node to adaptively regulate its

supply price to make best use of its income and

retain an in height character although escaping

presence encumbered, in demand to totally and

fairly utilize possessions in the system. A worker

usually requires the price of its resources giving

to the reputation value, load, and the interest of

the resources. Resources with difficult

reputations, lower loads, and higher demand

(frequently requested) should have high prices.

Therefore, in direction to earn more payment,

each node is interested to afford high QoS to

retain high reputation, while avoiding being

overloaded. The price-assisted res/rep controller

scheme checks sun helpful manners, heartens

nodes to provide high QoS, and allows nodes to

adaptively alter their load to offer high QoS. As a

result, all properties in the system are fully and

fairly utilized, nodes are not overloaded, and a

node’s reputation can truly reflect its QoS in

offering resources without the influence of the

overloaded status. To address the problem of low

reputation for newly joined nodes, Harmony

assigns the nodes a certain amount of starting

virtual credits that can be used for building initial

reputation. We define a load factor f = l/c, where

l is the amount of resource a node has provided

to others, and c is the total amount of that

resource the node owns. When a node’s f > 1, it

is overloaded. A node periodically checks its f. If

the node’s f > α (0.8 ≤ α < 1), it increases its

price by one price unit to discourage requesters

and avoid being overloaded. Otherwise, it

decreases its price by one price unit in order to

promote its resource usage to raise its own

reputation and income. We choose α < 1 rather

than α = 1 in order to avoid delayed responses to

the node’s overloaded status. This control

method is used to deal with the overloaded and

under loaded resource utilization situations.

Cloud Broker or their brokers request a service

anywhere around the world to the Cloud. An

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 457

important notice makes the difference between

Cloud consumers and users of the deployed

cloud services. For example, a company

deploying a Web application can be a consumer

that represents different workload as per the

different number of "users" using it.

C. Dynamic Priority Scheduling A dynamic

scheduling algorithm is proposed with dynamic

priority for the nodes based on which the virtual

machines are scheduled. It schedules the virtual

machines to the nodes controlled by upon their

arrangement value, which varies dynamically

based on their load vector. This dynamic priority

approach leads to better operation of the

property. Priority of a node is assigned turn to

upon its space and the load factor. This algorithm

hammers the true sense of balance among act and

control effectiveness.

Algorithm scheduling priority {

Flag=0;

If (P =/0)

P1=max available resource node

If (load vector of P1<0.8)

Assign VM to P1;

If (P2 is set AND load vector of P2<0.8

AND

Swap P1 and P2;

Assign VM to P2;

Else if P2=P1

P1=current max available resource node

Assign VM to P1;

}

III. PERFORMANCE MEASURE

Finally we are evaluating the proposed approach

with the existing approach for the Resource

selection. Here we analyze and compare the

performance offered by different configurations

of the computing cluster. And present the

evaluation comparison by the parameter metrics

such as the viability, from the point of view of

scalability, execution time, performance, and

cost. Based on the comparison and the results

from the experiment, we show that proposed

approach works better than the other existing

systems.

A. Performance Evaluation on Planet Lab

To validate the design of Harmony, we

implemented a prototype on Planet Lab and

conducted trace-driven experiments. Since we

can stably access around 234 nodes in Planet

Lab, we set the number of nodes in the system to

234. We created 12 resource types in our system.

In order to derive node overall reputations and

individual reputations for these resource types,

we first identified 13 sellers from the Zol trace

data with 3 merchandise types in common. We

then mapped this trace data to the 234 nodes and

12 merchandise types. We normalized the

reputation values from [0,100] to [0, 10]. The

lowest overall reputation of these sellers is 8.9 in

the trace data. To simulate an environment with

high-, medium- and low-reputed nodes, we

generated synthetic data for 1/3 nodes with

overall and individual reputations randomly

chosen from [1, 3] and [4, 6], respectively. Their

individual reputations were set equal to their

overall reputations. On Planet Lab, we selected

21 nodes (7 from the US, Europe and Asia,

respectively) as landmark nodes for calculating

node Hilbert numbers. We randomly chose 8

nodes as requesters in America, Europe, and

Asia, respectively. In the experiments, unless

otherwise specified, each requester sends one

request every 10s for a resource randomly chosen

from the 12 types.

B. Integrated Multi-Faceted Res/Rep

Management

Resource management needs reputation

management to provide a cooperative

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 458

environment for resource sharing. Otherwise, a

node cannot know which resources are

trustworthy. Resource management in turn

facilitates reputation management to evaluate

multi-faceted node reputation in providing

different resources. Therefore, resMgt may

choose nodes unwilling to provide services and

generate many service failures. Power Trust may

choose overloaded nodes that cannot process

requests successfully. By integrating both

resource management and reputation

management, Harmony enables joint

consideration of node reputation and load status

and chooses lightly loaded high-reputed nodes

that can always process requests successfully.

Below, we present experimental results to show

the importance of integrating resource

management and reputation management.

C. Trustworthy Resource Sharing

We first tested different methods when all

requests are single resource requests. In order to

see the effect of reputation management alone,

we assumed that nodes do not drop requests

when overloaded but queue the requests for

processing later on. Fig.4 (a) shows the average

success rate of each system, which is measured

by the ratio of successfully resolved resource

requests over total requests. A request is

successfully resolved if the selected server has

provided its requested resource. We see that

Harmony achieves a success rate of over 96%,

while Power Trust achieves around 73% and

resMgt achieves around 44%. ResMgt selects a

resource without considering reputation and may

choose a resource provider with low reputation

for the requested resource, leading to a low

success rate. Power Trust always selects the

highest overall-reputed provider. As verified by

the trace, a node with a high overall reputation

may provide low QoS for another resource due to

either unwillingness or overloaded status.

Therefore, Harmony significantly outperforms

Power Trust by always selecting the supplier

with the highest individual, rather than overall,

reputation. Fig.4 (b) shows the average

individual reputation of every group of 500

selected resource providers for the requested

resources, which follows Harmony>Power

Trust>resMgt. The experimental results confirm

the effectiveness of multi-faceted reputation

management and its importance in guiding

trustworthy resource selection. We then tested

different methods when all requests are multiple-

resource requests. Fig.4(c) shows the average

success rate of each method, with each request

calling for three resources. A multi-resource

request is successfully resolved only after all

three resources are successfully discovered The

result shows that Harmony>Power Trust>resMgt

due to the same reasons as in Fig.4 (a) and Fig.4

(b). Comparing Fig.4(c) with Fig.4 (a), we

observe that the average success rate of Harmony

decreases about 0.06, while those of Power Trust

and resMgt decrease around 0.34 and 0.35,

respectively. This is because if one of the three

resource suppliers has a low individual

reputation, the final request failure is low. We

also find that Harmony outperforms Power Trust

and resMgt more significantly for multiple-

resource requests because it can ensure the

success rate of each of the three selected

suppliers by considering multi-faceted

reputations for different resources. We used the

product of the individual reputations of the

selected three resource providers of a request as

the individual reputation result of this request.

Fig. 3(d) shows the average individual reputation

for each group of 500 multi-resource requests

over time. The experimental result also follows

Harmony>Power Trust>resMgt, which is

consistent with the success rate result in Fig.4(c).

Also, the result of each method in Fig.4 (d) is

lower than that in Fig.3 (b). This is caused by the

same reasons for the differences between Fig.4

(a) and Fig.4(c), which confirms the importance

of considering individual reputation in selecting

resource providers, especially for multi-resource

requests.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 459

Fig.4. Trustworthy resource sharing.

Fig.5. Efficient resource sharing.

D. Efficient Resource Sharing
Without resource management, reputation
management cannot tell if a resource supplier has

sufficient available resources. We then tested the

importance of resource management to reputation
management. In this experiment, each node maintains

a waiting queue; an overloaded resource

provider inserts its received request into its waiting
queue. The requests staying in the queue for more

than 100s are dropped. Therefore, a resource

provision failure is caused by either a provider’s

overloaded status or its unwillingness to provide a
service as reflected by its reputation. The Pareto

distribution reflects the real world in which the

amounts of available resources vary by different
orders of magnitude. Thus, we used a Pareto

distribution in determining a node’s capacity for a

resource type, a request’s requested amount, and time
period. We set the shape parameter to 2, and the scale

parameters to 100, 40, and 200 for the above three

parameters, respectively. We arbitrarily set the values

in their reasonable ranges. Different setting values
will not change the relative performance differences

of the methods.

Fig.6. Predicted and real QoS values.

Fig.5 (a) shows the average success rates for

groups of 500 requests by each method. The

black color represents delayed successful

requests that have waited in the queue before

being processed, and the grey color represents

successful requests with no delay. We see that

Power Trust generates a large number of delayed

successful requests, while the other methods

generate no delayed requests. Fig.5 (b) shows the

total waiting time for each group of 500 requests,

including failed requests. We see that Power

Trust generates high delay for a request, while

Harmony and resMgt produce little or no delay,

which is consistent with Fig.5 (a). This is

because Power Trust always chooses the highest-

overall-reputed nodes as resource providers

without considering node load. These nodes

receive too many requests, causing many to wait

in the queues. Since both Harmony and resMgt

select lightly loaded nodes as resource providers,

they generate few delayed requests. Fig.5 (a) also

shows that the success rates in most cases follow

Harmony>resMgt>Power Trust. In order to

further explore the trend, we show in Fig.5(c) the

failure rate due to provider overload or

unwillingness to serve for groups of 500 requests

for each method. We see that Power Trust

generates a higher failure rate due to overload

than resMgt; this is because Power Trust fails to

consider load in provider selection. However,

resMgt has a higher failure rate due to provider

unwillingness than Power Trust because resMgt

only considers node load but neglects reputation.

Only Harmony can constrain failures due to

either cause, as it jointly considers both load and

reputation.

E. Multi-QoS-oriented Resource Selection

We then evaluate the effectiveness of the multi-

QoS-oriented resource selection scheme. We

used 95×12 transaction records for 95 sellers,

each with 12 types of merchandise. Each

transaction record has 52 transactions. We used

40×12 for training and the remaining 55 × 12 for

testing. We regard a node’s individual reputation

(rating on its transactions for a type of

merchandise) as its overall QoS for the

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 460

merchandise (i.e., resource) and regard its overall

reputation as its reputation in Harmony. The

inputs of the neural network model include the

QoS attributes in each transaction (i.e., price,

distance, service, quality and efficiency) and the

seller’s overall reputation. The output of the

model is the seller’s overall QoS. Because the

real trace does not have users’ consideration

priorities, we assume that the six QoS attributes

have equal priorities. Fig.6 shows the predicted

overall QoS and the real overall QoS for 100

resource requests, both of which almost overlap.

Their root mean square error equals 0.95, a very

small value. The results show the effectiveness

and accuracy of the neural network model in

predicting the QoS in individual resource

selection.

F. Effect of Queuing Timeout

In order to study the effect of the timeout for

dropping requests on the success rate and failure

rate, we measured the two metrics with varying

timeout values for 5000 requests. Fig.7 (a) shows

the success rates of different methods with

different timeout values. We see that Harmony

and resMgt generate no delayed requests since

they choose lightly loaded nodes, while Power

Trust generates many delayed successful requests

since it does not consider node load. This result

is consistent with that in Fig.5 (a). We observe

that the timeout value does not affect the success

rate of Harmony and resMgt. Also, as the

timeout value increases, the success rate of

Power Trust for delayed successful requests

increases. As Harmony and resMgt always

choose lightly loaded nodes, they do not need to

store requests that cannot be processed in time

into a queue. Power Trust heavily depends on the

queue since it is very likely to choose an

overloaded node. A smaller timeout introduces

more request drops and hence fewer delayed

successful requests, and vice versa. We also

observe that the success rate follows

Harmony>resMgt>Power Trust except when the

timeout equals 1000s for the same reasons as in

Fig.5 (a). The large timeout of 1000s allows

Power Trust to store and resolve more requests,

thus producing more successful requests than

resMgt.

Fig.7. Effect of queuing timeout on resource sharing

Fig.7(b) shows the failure rate due to overload or

unwillingness for the three methods at different

timeouts. We see that the failures in Harmony and
resMgt are all caused by provider unwillingness to

provide services, and the failures in Power Trust are

caused by both overload and unwillingness. As the

timeout value increases, the failure rate caused by
provider overloads decreases. A larger timeout

enables more requests to be resolved and leads to few

failures and vice versa. These results are consistent
with those in Fig.7 (a). We also observe that the

failure rate follows Harmony<resMgt<Power Trust

except when the timeout equals 1000s, for the same
reasons as in Fig.5(c). The large 1000s timeout allows

Power Trust to store and resolve more requests, thus

producing fewer failed requests than resMgt. In

conclusion, Harmony and resMgt are not affected by
the timeout, while Power Trust is sensitive to the

timeout and a large timeout enables it to resolve more

requests. Moreover, Harmony always achieves a
higher success rate than the other methods since it

considers both reputation and load status.

G. Price-assisted Resource/Reputation

Control

We then test the performance on a system with and

without the price-assisted resource/reputation control
algorithm denoted by w/Price and w/price,

respectively, in a heavy load situation. We randomly

chose nodes from the system to generate requests.
The request generating rate follows a Poisson process

at a rate of 2 requests per second. We set every

request to use 40 units of a resource for 200s. We

chose these values so that some resource providers
have insufficient available resources when requested.

We set the price range to [10, 20] credits. All nodes

have the same capacity of 200 and reputation of 9.

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 461

During the simulation period, no resource

information is updated in the directory nodes. To
choose a resource provider, a requester first identifies

the providers with reputation > 8, then identifies the

providers with the lowest price, and finally randomly

chooses one. Nodes with reputation > 8 have
probability 1 to offer the service. A resource request

fails only when its provider is overloaded. If a

requester receives a successful service, the resource
provider’s reputation is increased by 0.001.

Otherwise, its reputation is decreased by 0.02. In

every 10s, each node checks its load; if its load factor
f > 0.8, it reduces its price by 1; otherwise, it

increases its price by 1.

Fig.8. Effectiveness of price-assisted control

algorithm.

Also, each provider charges its clients for its

offered resources and its reputation is updated in

every 10s. The timeout of the waiting queue of

each provider was set to 60s. We randomly

determined the values of the above parameters in

their reasonable ranges, and different parameter

values should not change the relative

performance differences

between different methods. Fig.8 (a) shows the

total request waiting time in node queues and

total number of request timeouts versus time.

W/price generates a significantly higher total

request waiting time than w/Price. Also, the

request waiting time of w/price increases

dramatically while that of w/Price grows only

slightly as time goes on. This is because nodes in

w/Price adjust their own load by price, which can

effectively prevent node overload and avoid long

queues.

In contrast, reputed nodes in w/price are likely to

be overloaded since they have a high probability

of being chosen as providers but have no strategy

to adjust their load. Due to the same reason, the

total number of request timeouts of w/price is

much smaller than that of w/Price. Fig.8 (b)

shows the median, 99th and 1st percentiles of all

nodes’ maximum utilizations every 500s. We see

that w/Price generates smaller median values,

much smaller 99th percentile values, and larger

1st percentile values than w/price. These results

imply that w/Price distributes request load

among servers more evenly than w/price.

W/Price makes full use of all available resources

while constraining node utilization within 100%;

while in w/price, some nodes are overloaded or

under loaded. The experimental results in both

figures further verify the effectiveness of the

price-based control algorithm in fully utilizing

available resources and preventing overloads.

IV. CONCLUSION

Integrated resource/reputation management

developed a new environment called Harmony

which is a collaboration of the different clouds.

Harmony is built using inter-dependencies

between reputation and resources management

which is used to retrieve information available on

the cloud service providers; the resulted services

are very much efficient and effective. The multi

– QoS oriented allocate resources for it operation

based on the highest level of QoS (Quality of

Service) which is multiplied by QoS attributes.

Price – assisted resources/ reputation control

used to offer very high range of resources and

also avoid over loading of the nodes.

Collaborative Cloud Computing (CCC) generates

the nodes which are widely and globally

scattered over distributed areas and hence

sharing of resources is much more reliability.

Our literature paper helps to study about

collaborative cloud computing along with cloud

knowledge which is responsible for searching

and discovering other mobile resources,

connecting, maintaining, connections and

communicating with external device.

V. REFERENCES

[1] Haiying Shen, Senior Member, IEEE, Guoxin

Liu, Student Member, IEEE, “An Efficient and

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 462

Trustworthy Resource Sharing Platform for

Collaborative Cloud Computing”, IEEE

Transactions on Parallel and Distributed

Systems.

[2] Amazon elastic compute cloud (EC2).

http://aws .amazon.com.

[3] Drop box. Available: www.dropbox.com. [4]

P. Suresh Kumar, P. Sateesh Kumar, and S.

Ramachandram. Recent Trust Models in Grid.

JATIT, 2011.

[5] J. Li, B. Li, Z. Du, and L. Meng. CloudVO:

Building a Secure Virtual Organization for

Multiple Clouds Collaboration. In Proc. of

SNPD, 2010.

[6] C. Liu, B. T. Loo, and Y. Mao. Declarative

Automated Cloud Resource Orchestration. In

Proc. of SOCC, 2011.

[7] C. Liu, Y. Mao, J. E. Van der Merwe, and M.

F. Fernandez. Cloud Resource Orchestration: A

Data Centric Approach. In Proc. of CIDR, 2011.

[8] K. Hwang, S. Kulkarni, and Y. Hu. Cloud

Security with Virtualized Defense and

Reputation-based Trust Management. In Proc. of

DASC, 2009.

[9] IBM Red Boo. Fundamentals of Grid

Computing. Technical Report REDP-3613-00,

2000. [10] L. Xiong and L. Liu. Peertrust:

Supporting Reputation-based Trust for Peer-to-

Peer Electronic Communities. TKDE, 2004.

11] M. Srivatsa, L. Xiong, and L. Liu. Trust

guard: Countering Vulnerabilities in Reputation

Management for Decentralized Overlay

Networks. In Proc. of World Wide Web

Conference, 2005.

[12] R. Zhou and K. Hwang. Power Trust: A

Robust and Scalable Reputation System for

Trusted Peer-to-Peer Computing. IEEE TPDS,

2008

