

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 479

A study of Automated Energy Optimization for Android Phone

Jayashri Khedkar1; GaneshHiwale2; SonaliMukhekar3&S. Pratap Singh4

BE Computer Department, SP’s IOK COE, PUNE
1, 2, 3

Prof. Computer Department, SP’s IOK COE, PUNE
4

Sweetjaya1011@gmail.com
1
, ganesh_hivale2011@rediffmail.com

2
,

mukhekarsonali29@gmail.com
3
,pratap.singh.s@gmail.com

4
.

ABSTRACT:

The Smartphone application market is growing rapidly. Many Android applications are not energy

efficient. Locating energy problems in Android applications is difficult. GreenDroid is automated

approach to diagnosing energy problems in Android applications. GreenDroid will also use to

diagnosis the energy problems in mobile sensors like GPS, Wi-Fi, Bluetooth, Light Sensor etc.It

monitors sensors and wake lock operations to detect missing deactivation of sensors and wake locks. It

also tracks transformation and usage of sensory data and judges whether they are effectively utilized

by the application using our state sensitive data utilization metric.GreenDroid is evaluated using

Android applications and mobile sensors.Our research paper consists of comprehensive study of

additional use of GreenDroid. It can be used to optimize energy usage automatically. This approach

can generate detailed reports with actionable information to assist developers in validating detected

energy problem. We can develop an Android application which is automatically turned off the mobile

sensors which are not in current use.

Keywords: Smartphone Applications; Energy problems; mobile sensors; automated diagnosis; Green

Droid

1. INTRODUCTION:

Smartphone has become pervasive.

Smartphone are as powerful as the PCs.

Therefore, they are perfectly suitable to

becomethe first real-life platforms for

ubiquitouscomputing.Sensing operations are

usually energy consumptive,and limited battery

capacity always restricts such anapplication’s

usage. As such, energy efficiency becomes

acritical concern for Smartphone users. Existing

studies show that many Android applications

arenot energy efficient due to two major reasons

[1]. First, theAndroid framework exposes

hardware operation APIs (e.g.APIs for

controlling screen brightness) to

developers.Although these APIs provide

flexibility, developers have to beresponsible for

using them cautiously because hardware

misusecould easily lead to unexpectedly large

energy waste.Second, Android applications are

mostly developed by smallteamswithout

dedicated quality assurance efforts. Their

developersrarely exercise due diligence in

assuring energy savings. Locating energy

problems in Android applications is difficult.

By examining bug reports, commitlogs,

bug-fixing patches, patch reviews and release

logs of Android applications,we made an

interesting observation: Although the root

causesof energy problems can vary with

different applications, many ofthem are closely

related to two types of problematiccoding

phenomena:

Missing sensor or wake lock deactivation: To

use a Smartphonesensor, an application needs to

register a listenerwith the Android OS. The

listener should be unregisteredwhen the

concerned sensor is no longer being used.

Similarly,to make a phone stay awake for

computation, anapplication has to acquire a

mailto:ganesh_hivale2011@rediffmail.com2

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 480

wake lock from the Android OS. The acquired

wake lock should also be released as soonas the

computation completes. Forgetting to unregister

sensorlisteners or release wake locks could

quickly deplete afully charged phone battery [2]

[3].

Sensory data underutilization: Smartphone

sensors probetheir environments and collect

sensory data. These data areobtained at high

energy cost and therefore should be

utilizedeffectively by applications. Poor sensory

data utilization canalso result in energy waste.

For example, Osmdroid, a popular navigation

application, may continually collect GPS

datasimply to render an invisible map. This

problem occursoccasionally at certain

application states. Battery energy isthus

consumed, but collected GPS data fail to

produce anyobservable user benefits.

To realizeefficient and effective analysis

of sensory data and data utilization by

applications in Smartphone, we need to address

tworesearch issues and two major technical

issues as follows[8].

Research issues: While existing techniques can

be adaptedto monitor sensor and wake lock

operations to detect their missing deactivation,

how to effectively identify energy problems

arising from ineffective uses of sensory data is

anoutstanding challenge, which requires

addressing tworesearch issues. First, sensory

data, once received by anapplication, would be

transformed into various forms andused by

different application components. Identifying

programdata that depend on these sensory data

typicallyrequires instrumentation of additional

code to the originalprograms. Manual

instrumentation is undesirable because it is

labor-intensive and error-prone. Second, even if

a programcould be carefully instrumented, there

is still no well-definedmetric for judging

ineffective utilization of sensory

dataautomatically. To address these research

issues, we proposeto monitor an application’s

execution and perform dynamicdata flow

analysis at a bytecode instruction level. This

allowssensory data usage to be continuously

tracked without any need for instrumenting the

concerned programs. We alsopropose a state-

sensitive metric to enable automated analysisof

sensory data utilization and identify those

applicationstates whose sensory data have been

underutilized.

Technical issues: JPF was originally designed

for analyzingconventional Java programs with

explicit control flows. Itexecutes the byte code

of a target Java program in its virtualmachine.

However, Android applications are event-

drivenand depend greatly on user interactions.

Their program codecomprises many loosely

coupled event handlers, amongwhich no explicit

control flow is specified. At runtime, theseevent

handlers are called by the Android framework,

whichbuilds on hundreds of native library

classes.As such, applying JPF to analyze

Android applications requires: (1)

generatingvalid user interaction events, and (2)

correctly schedulingevent handlers. To address

the first technical issue, we proposeto analyze

an Android application’s GUI layout

configurationfiles, and systematically enumerate

all possible userinteraction event sequenceswith

a bounded length at runtime.We show that such

a bounded length does not impair the

effectiveness of our analysis, but instead helps

quickly exploredifferent application states and

identify energy problems. Toaddress the second

technical issue, we present an

applicationexecution model (AEM) derived

from Android specifications.This model

captures application-generic temporal rules

thatspecify calling relationships between event

handlers. Withthis model,we are able to ensure

an Android application to beexercised with

correct control flows, rather than being

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 481

randomlyscheduled on its event handlers. As we

will show inour later evaluation, the latter brings

almost no benefit to theidentification of energy

problems inAndroid applications.

2. BACKGROUND

We select the Android platform for our

study because it is currently one of the most

widely adopted Smartphone platforms and it is

open for research. Applications running on

Android are primarily written in Java

programming language.An Android application

is first compiled to Java virtualmachine

compatible .class files that contain Javabytecode

instructions. These .class files are then

convertedto Dalvik virtual machine executable

.dex files that containDalvik bytecode

instructions. Finally, the .dex files

areencapsulated into an Android application

package file (i.e. an .apk file) for distribution

and installation. For ease of presentation,we in

the following may simply refer to

“Androidapplication” by “application” when

there is no ambiguity.An Android application

typically comprises four kinds of components as

follows [7]:

Activities: Activities are the only components

that allowgraphical user interfaces (GUIs). An

application may usemultiple activities to

provide cohesive user experiences.The GUI

layout of each activity component is specified

inthe activity’s layout configuration file.

Services: Services are components that run at

backgroundfor conducting long-running tasks

like sensor data reading.Activities can start and

interact with services.

Broadcast receivers: Broadcast receivers

define how anapplication responds to system-

wide broadcasted messages.It can be statically

registered in an application’s configurationfile

(i.e., the AndroidManifest.xml file associated

witheach application), or dynamically registered

at runtime bycalling certain Android library

APIs.

Content providers: Content providers manage

sharedapplication data, and provide an interface

for other componentsor applications to query or

modify these data.

Fig1: An activity’s lifecycle diagram

3. EXISTING TECHNOLOGIES

Cloud Offloading: Cloud offloading is a

mobile application optimization technique that

makes it possible to execute the application’s

energy intensive functionality in the cloud,

without draining the mobile device’s battery.

Cloud offloading is typically implemented as a

program partitioning transformation that splits a

mobile application into two parts: client running

on a mobile device and server running in the

cloud; all the communication between the parts

is conducted via a middleware mechanism such

as XML-RPC. Thus, cloud offloading is a

special case of automated program partitioning-

distributing a centralized program to run across

the network using a compiler-based tool

transform a centralized program or migrating

execution between different application images

at the OS level. The promise of cloud offloading

is demonstrated by the proliferation of

competing approaches to this technique in the

literature. We partition applications without

destroying their ability to execute locally. All of

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 482

the prior cloud offloading techniques shares the

goal of reducing the energy consumed by

mobile devices. The approach presented in this

paper adopts many of the techniques above to

automatically transform mobile applications

without any changes to their source code and to

synchronize program states between partitions.

However, our approach’s goal is to improve on

the efficiency of the prior cloud offloading

technique by postponing the offloading

decisions until the runtime, when a feedback-

loop mechanism can determine which amount of

offloading is optimal.

Energy Consumption Patterns in Mobile

Applications: Network communication

constitutes one of the largest sources of energy

consumption in a mobile application. According

to a recent study, network communication

consumes between 10 and 50% of the total

energy budget of a typical mobile application.

Specifically, in our prior research, we measured

and analysed how middleware can significantly

affect a mobile application’s energy

consumption. Our experiments assessed the

energy consumption of passing varying volumes

of data over networks with different

latency/bandwidth characteristics. Then, we

isolated how mobile applications consume

energy to infer their common energy

consumption patterns. The experimental results

and systematic analysis conducted through that

research inspired us to initiate the work

presented in this paper.

Program Analysis: Program analysis codifies a

set of techniques to infer various facts about the

source code to be leveraged for optimization

and transformation. Class hierarchy analysis

(CHA) constructs a call graph in object-oriented

languages. Dataflow analysis determines how

program variables are assigned to each other.

Side-effect free analysis determines whether a

method changes the program’s heap. CHA is

used to compute the functionality to offload and

the program state to transfer for a given

offloading. To select optimal offloading

strategies, we combine dataflow and side-effect

analyses. Based on the results, a bytecode

enhancer then rewrites the application without

changing its source code. It used Soot to

implement our program analysis and

transformations.

4. PROPOSED WORK:

GreenDroid will be used as an energy

optimizer in Smartphone. It first list out all

available sensors of Smartphone. After that

analyses the sensory data and its utilization.

Applications current state and related data

utilization from the sensor will used as a input

data for GreenDroid. Working on Wi-Fi and

Bluetooth will depend on data under utilization

of Wi-Fi and data transaction information of

Bluetooth respectively. Analysis report contains

the current state and data utilization of

application and sensors. Utilized and unused

sensors will be disabled. Appropriate action will

be taken by GreenDroid as per analysis report.

As per that approach we can save the unwanted

battery consumption. Hence it optimizes the

energy for Android phones.

Runtime

Controller

Sensory data

utilization analysis

GreenDroid with JPF

Analysis

report

Disable

unutilized

sensors

Applications,

Sensors, Wi-Fi,

Bluetooth

under analysis

Fig2: Approach Overview

International Journal of Research (IJR)

e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 10, October 2015

Available at http://internationaljournalofresearch.org

Available online:http://internationaljournalofresearch.org/ P a g e | 483

Using this approach we can optimize mobile

battery consumption using GreenDroid. In this

approach automatic diagnosis and optimization

will done sequentially. In future, we will study

more efficient energy optimization techniques

and use of GreenDroid. GreenDroid may use to

develop efficient processors for Smart phones.

5. CONCLUSION:

In this paper, we presented a study of

realenergy problems in Smartphone. We have

used GreenDroid tool to diagnosis the energy

problems in Android phones. This tool is only

used to list out the problem of smartphone

applications but cannot solve the issues like

energy optimization. So we are going to focus on

this study.Our study results confirmed the

effectiveness and practical usefulness of

GreenDroid for energy optimization.

REFERENCES:

[1]A. Pathak, Y. C. Hu, and M. Zhang,

“Bootstrapping energy debugging on

smartphones: A first look at energy bugs in

mobile devices,” in Proc. ACM Workshop Hot

Topics Netw., 2011, pp. 5:1–5:6.

[2] Android Sensor Management. (2013).

[Online].Available:http://developer.android.com/

reference/android/hardware/SensorManager.html

[3] Android power management. (2013).

[Online].Available:http://developer.android.com/

reference/android/os/PowerManager.html.

[4] S. Anand, M. Naik, M. J. Harrold, and H.

Yang, “Automated concolic testing of

smartphone apps,” in Proc. ACM SIGSOFT 20
th

Int. Symp. Found. Softw. Eng., 2012, pp. 59:1–

59:11.

[5]“Android Process Lifecycle” (2013). URL:

http://developer.android.com/reference/android/o

s/PowerManger.html

[6] “Android Power Management.” URL:

http://develpers.android.com/reference/android/o

s/PowerManger.html.

[7] “Android Activity Lifecycles.” URL:

http://developer.android.com/guide/components/

activities.html.

[8]W. Visser, K. Havelund, G. Brat, and S. Park,

“Model checking programs,” in Proc. Int. Conf.

Automated Softw. Eng., 2000, pp. 3–11.

[9] S. Hao, D. Li, W. G. J. Halfond, and R.

Govindan, “Estimating mobile application

energy consumption using program analysis,” in

Proc. 35th Int. Conf. Softw. Eng., pp. 92–101.

[10] C. S. Jensen, M. R. Prasad, and A. Møller,

“Automated testing with targeted event sequence

generation,” in Proc. Int. Symp.Softw. Testing

Anal., 2013, pp. 67–77.

http://developer.android.com/reference/android/os/PowerManger.html
http://developer.android.com/reference/android/os/PowerManger.html
http://develpers.android.com/reference/android/os/PowerManger.html
http://develpers.android.com/reference/android/os/PowerManger.html

